(发展战略)发展碲化镉薄膜太阳能电池的几个关键问题

(发展战略)发展碲化镉薄膜太阳能电池的几个关键问题
(发展战略)发展碲化镉薄膜太阳能电池的几个关键问题

发展碲化镉薄膜太阳能电池的几个关键问题

2009.4

?碲化镉薄膜太阳能电池的发展日益受到重视。碲资源、电池成本、电池生产和使用对环境的影响等问题是碲化镉薄膜太阳能电池发展中受到很多人关注的问题。本文对此进行了分析讨论,最后分析了工业化规模生产碲化镉薄膜太阳能电池组件的关键技术。

引言

碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1㎡组件生产线的建设和大面积电池生产技术的研发。

成本估算

考虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni,碲化镉薄膜的厚度为5微米,转换效率为7%,1MW碲化镉薄膜太阳能电池所消耗的材料的成本如下表所示。

碲化镉薄膜太阳能电池的材料成本

可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。

消耗材料的成本还可以进一步降低,如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。因此,材料成本达到或低于每峰瓦5元人民币是可能的。

考虑工资、管理、电力和设备折旧等其他成本,碲化镉薄膜太阳能电池的成本大约是每峰瓦13.64元人民币或更低。因此,即使销售价格为每峰瓦20~22元人民币,约为晶体硅太阳能电池现在价格的60%,也能保证制造商有相当的利润空间。

由于碲化镉薄膜太阳能电池成本低,其发展对于解决我国西部地区分散居住人口的电力供应具有重要意义。

碲资源

碲是地球上的稀有元素,发展碲化镉薄膜太阳能电池面临的首要问题就是地球上碲的储藏量是否能满足碲化镉太阳能电池组件的工业化规模生产及应用。工业上,碲主要是从电解铜或冶炼锌的废料中回收得到。据相关报道,地球上有碲14.9万吨,其中中国有2.2万吨,美国有2.5万吨。

在美国碲化镉薄膜太阳能电池制造商First Solar年产量25MW的工厂中,300~340

公斤碲化镉即可以满足1MW太阳能电池的生产需要。考虑到碲的密度为6.25g/cm3,镉的密度为8.64g/cm3,则130~140公斤碲即可以满足1MW碲化镉薄膜太阳能电池的生产需要。

由以上数据可以知道,按现已探明储量,地球上的碲资源可以供100个年生产能力为100MW的生产线用100年。

环境影响

由于碲化镉薄膜太阳能电池含有重金属元素镉,使很多人担心碲化镉太阳能电池的生产和使用对环境的影响。多年来,一些公司和专家不愿步入碲化镉太阳能电池的开发和生产。那么,碲化镉薄膜太阳能电池的生产和使用中镉的排放究竟有多严重呢?

为此,美国布鲁克文国家实验室的科学家们专门研究了这个问题。他们系统研究了晶体硅太阳能电池、碲化镉太阳能电池与煤、石油、天然气等常规能源和核能的单位发电量的重金属排放量。在太阳能电池的分析中,考虑了将原始矿石加工得到制备太阳能电池所需材料、太阳能电池制备、太阳能电池的使用等全寿命周期过程。研究结果表明(见图1),石油的镉排放量是最高的,达到44.3g /GWh,媒次之,为3.7g /GWh。而太阳能电池的排放量均小于1g /GWh,其中又以碲化镉的镉排放量最低,为0.3 g / GWh。与天然气相同,硅太阳能电池的镉排放量大约是碲化镉太阳能电池的两倍。

图1 太阳能电池组件与其他能源的镉排放量的比较图

他们还研究了硅太阳能电池和碲化镉太阳能电池生产与使用中其他重金属的排放。研究结果表明(见图2),碲化镉太阳能电池的砷、铬、铅、汞、镍等其他重金属的排放量也比硅太阳能电池的低。该研究报告结论基于对美国First Solar公司碲化镉薄膜太阳能电池生产线、碲化镉太阳能电池组件使用现场的系统考察,和对其他太阳能电池、能源的实际生产企业的工艺、相关产品的使用环境研究分析得出。研究结果的科学性、公正性得到国内外的认可。研究者在2006年欧洲材料年会硫系半导体光伏材料分会作的报告引起了与会人员的强烈关注。

图2 硅太阳能电池和碲化镉太阳能电池的重金属排放量的比较图

美国的研究人员还针对碲化镉薄膜太阳能电池组件使用过程中,遇到火灾等意外事故造成组件损毁时镉的污染进行了研究。他们将双玻璃封装的碲化镉薄膜太阳能电池组件在模拟建筑物发生火灾的情况下进行试验,实验温度高达1100℃。结果表明,高温下玻璃变软以至于熔化,化合物半导体薄膜被包封在软化了的玻璃中,镉流失量不到电池所含镉总量的0.04%。考虑到发生火灾的几率,得出使用过程中,镉的排放量不到0.06mg/ GWh。

虽然实验表明碲化镉薄膜太阳能电池组件的使用是安全的,但是建立寿命末期电池组件和损毁组件的回收机制可以增强公众的信心。分离出的Cd、Te及其他有用材料,还可用于制造生产太阳能电池组件所需的相关材料,进行循环生产。美国、欧洲的研究表明,技术上是可行的,回收材料的效益高于回收成本。事实上,美国First Solar公司的碲化镉太阳能电池组件在销售时就与用户签订了由工厂支付回收费用的回收合同。

综上所述,碲化镉太阳能电池在生产、使用等方面是环境友好的。

大面积碲化镉薄膜太阳能电池组件制造的关键技术

与小面积单元电池相同,硫化镉、碲化镉、复合背接触层等三层薄膜的沉积和后处理是获得高效率的技术关键。不同的是,需要在电池的制备过程中对在特定的工艺环节分别对透明导电薄膜、CdS/CdTe半导体层、金属背电极进行刻划,实现单元电池的串联集成。此外,工业化大面积组件生产要求工艺条件重复性高,薄膜性质均匀性好,使一些在制备高效率小面积单元电池时使用的有效技术,并不适用于大面积组件的制造,需要发展新的技术。

图3 碲化镉薄膜太阳能电池组件集成结构示意图

图4 碲化镉薄膜太阳能电池组件制备工艺流程图

1.集成技术

集成工艺对组件的转换效率具有决定性的影响。实现集成的刻划技术有机械刻划、激光刻划两种。机械刻划的刻划速度比激光刻划的慢得多,而且对于如碲化镉等厚度到微米量级的较脆的薄膜,保证刻槽的平直无渣工艺难度较大。激光刻划能够获得较窄的刻槽,宽度最低可到100微米。通常,使用基频(1.064微米)YAG:Nd激光刻划系统刻划透明导电薄膜,使用倍频(532nm)YAG:Nd激光刻划系统刻划硫化镉/碲化镉膜层和金属背电极。激光刻划系统有两种,其一是移动样品实现激光刻划,其二是样品固定激光头移动实现激光刻划。前者受微动台的限制,刻划速度只能达到300mm/Sec~500mm/Sec,后者的刻划速度可高达3000 mm/Sec以上。

刻痕形貌对串联集成的电子学特性有极大影响。激光入射方向、激光模式、刻划速度和Q开关调制频率是决定刻痕形貌的主要参量。从玻璃面入射比从薄膜面入射更容易得到高质量的刻痕。图5是分别用1064nm激光和532nm的激光刻划CdS/CdTe薄膜后,用探针式表面轮廓分析仪测量的刻痕形貌。1064nm激光刻划的刻槽边缘有高达4微米的“脊状峰”,这不利于后续沉积的背电极接触层及金属背电极与透明导电薄膜之间形成连续的具有良好欧姆特性的连接。

图5 CdTe薄膜激光刻划刻痕形貌

2.碲化镉薄膜的表面腐蚀技术

刚沉积的碲化镉薄膜载流子浓度低,需要在含氧、氯的气氛下进行380℃~450℃的热处理。该工艺同时也促进CdS/CdTe的界面扩散,减少界面的格子失配程度和钝化了薄膜的晶界势垒。但该工艺在碲化镉膜面形成了一高阻氧化层,可以用化学腐蚀或离子刻蚀去除CdTe膜面的高阻氧化层。

物理刻蚀技术废料少,容易和其他工艺环节集成,但是不易获得厚度在10nm~100nm 的高质量富碲层,该层对于形成良好欧姆接触特性的背电极是非常关键的。

化学腐蚀方法中,常用体积浓度为0.1%的溴甲醇溶液作为腐蚀液,腐蚀时间8~15秒。虽然使用该腐蚀工艺制备的小面积电池转换效率高达16.5%,但是溴甲醇溶液在空气中容易氧化,不适合工业化生产使用,需要发展更稳定的腐蚀液和速度慢的腐蚀工艺。使用磷酸-硝酸混合溶液可以获得较好的腐蚀效果,典型溶液的体积浓度为(硝酸:磷酸:水)0.5:70:29.5,室温下腐蚀时间为1分钟。降低硝酸浓度和温度可以进一步延长腐蚀。磷硝酸溶液沿晶界的择优腐蚀较为严重,容易在沉积背电极后形成局部的短路漏电通道。使用硝酸-冰乙酸溶液可以进一步减轻晶体择优腐蚀程度,获得更好的膜面腐蚀效果。

图6 不同温度下使用硝酸-冰乙酸腐蚀后碲化镉的XRD谱图

前景展望

碲化镉薄膜太阳能电池正日益受到国内外的关注。全球最大的碲化镉太阳能电池制造商——美国First Solar公司正加速扩大产能,该公司正在德国建设年产量100MW的工厂,该工厂得到欧盟4000万欧元的投资。同时,First Solar还计划在美国本土和亚洲分别建设一个100MW的工厂。鉴于碲化镉薄膜太阳能电池的发展前景,日本计划再启动碲化镉薄膜太阳能电池的工业化生产技术研究,意大利和德国也在进行类似的工作。

国内四川大学的碲化镉薄膜太阳能电池工业化生产技术研究进展顺利,将推动我国碲化镉薄膜太阳能电池的规模生产。

【CN109830561A】一种碲化镉薄膜太阳能电池组件及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910125234.1 (22)申请日 2019.02.20 (71)申请人 成都中建材光电材料有限公司 地址 610000 四川省成都市双流区西航港 街道空港二路558号 (72)发明人 彭寿 马立云 潘锦功 傅干华  邬小凤  (74)专利代理机构 成都市集智汇华知识产权代 理事务所(普通合伙) 51237 代理人 李华 温黎娟 (51)Int.Cl. H01L 31/073(2012.01) H01L 31/0445(2014.01) H01L 31/0216(2014.01) H01L 31/18(2006.01) C23C 14/35(2006.01)C23C 14/06(2006.01) (54)发明名称一种碲化镉薄膜太阳能电池组件及其制备方法(57)摘要本发明公开了一种碲化镉薄膜太阳能电池组件及其制备方法,碲化镉薄膜太阳能电池组件包括从下到上依次设置的衬底玻璃层、TCO薄膜层、CdS薄膜层、CdTe薄膜层、扩散阻挡层、Mo电极层、背板玻璃层;所述扩散阻挡层为TiN层。采用TiN薄膜代替Cu作背电极缓冲层,由于TiN的功函数在4.7eV,并且通过调节Ti与N的配比还可以深化功函数,从而可以降低金属背电极与碲化镉薄膜的肖特基势垒,优化两者之间的接触,并且TiN 层具有很好的稳定性,对玻璃中的Na扩散具有阻挡作用,从而使得碲化镉薄膜电池中碱金属Na的扩散可控,并且不会像铜掺杂那样后期向碲化镉与硫化镉界面扩散,破坏了p -n结特性,出现效率大幅度衰减, 从而延长了使用寿命。权利要求书1页 说明书4页 附图2页CN 109830561 A 2019.05.31 C N 109830561 A

发展碲化镉薄膜太阳能电池的几个关键问题9页

发展碲化镉薄膜太阳能电池的几个关键问题2009.4 ?碲化镉薄膜太阳能电池的发展日益受到重视。碲资源、电池成本、电池生产和使用对环境的影响等问题是碲化镉薄膜太阳能电池发展中受到很多人关注的问题。本文对此进行了分析讨论,最后分析了工业化规模生产碲化镉薄膜太阳能电池组件的关键技术。 引言 碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1㎡组件生产线的建设和大面积电池生产技术的研发。 成本估算 考虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni,碲化镉薄膜的厚度为5微米,转换效率为7%,1MW碲化镉薄膜太阳能电池所 消耗的材料的成本如下表所示。

碲化镉薄膜太阳能电池的材料成本 可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。 消耗材料的成本还可以进一步降低,如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。因此,材料成本达到或低于每峰瓦5元人民币是可能的。 考虑工资、管理、电力和设备折旧等其他成本,碲化镉薄膜太阳能电池的成本大约是每峰瓦13.64元人民币或更低。因此,即使销售价格为每峰瓦20~22元人民币,约为晶体硅太阳能电池现在价格的60%,也能保证制造商有相当的利润空间。

碲化镉太阳能电池资料

砷化镓太阳能电池历史版本 为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。 砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs 属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V 比率、总流量等诸多参数的影响。 GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,用MOCVD技术异质外延方法制造GaAs电池是降低成本很有希望的方法。 已研究的砷化镓系列太阳电池有单晶砷化镓、多晶砷化镓、镓铝砷--砷化镓异质结、金属--半导体砷化镓、金属--绝缘体--半导体砷化镓太阳电池等。砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法、直接拉制法、气相生长法、液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb、GaInP等电池材料也得到了开发。1998年德国费莱堡太阳能系统研究所制得的GaAs 太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。铜铟硒CuInSe2简称CIC。CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS 薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2)。1995年美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。CIS 作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 多元化合物薄膜太阳能电池多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。

薄膜太阳能电池分类

薄膜太阳能电池分类 21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其使用范围大,可和建筑物结合或是变成建筑体的一部份,使用非常广泛。 1.硅基薄膜电池 硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。 2.碲化镉(CdTe)薄膜电池 碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW 碲化镉太阳电池组件。 3.铜铟镓硒(CIGS)薄膜电池 铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。 4.砷化镓(GaAs)薄膜电池 砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被使用于人造卫星的太阳电池板。然而砷化镓电池价格昂贵,且砷是有毒元素,所以极少在地面使用。 5.染料敏化薄膜电池 染料敏化太阳电池是太阳电池中相当新颖的技术产品,由透明导电基板、二氧化钛(TiO2)纳米微粒薄膜、染料(光敏化剂)、电解质和ITO电极所组成。目前仍停留在实验室阶段,实验室最高效率在11%左右。 非晶硅薄膜电池 简介 非晶硅(amorphous silicon α-Si)又称无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。非晶硅的化学性质比晶体硅活泼。可由活泼金属(如钠、钾等) 在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。采用辉光放电气相沉积法就得含氢的非晶硅薄膜,氢在其中补偿悬挂链,并进行掺杂和制作pn结。非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。禁带宽度1.7~1.8eV,而迁移率和少子寿命远比晶体硅低。现已工业使用,主要用于提炼纯硅,制造太阳电池、薄膜晶体管、复印鼓、光电传感器等。 非晶硅薄膜电池的起源 非晶硅薄膜太阳能电池由Carlson和Wronski在20世纪70年代中期开发成功,80年代其生产曾达到高潮,约占全球太阳能电池总量的20%左右,但由于非晶硅太阳能电池转化效率

(发展战略)发展碲化镉薄膜太阳能电池的几个关键问题

发展碲化镉薄膜太阳能电池的几个关键问题 2009.4 ?碲化镉薄膜太阳能电池的发展日益受到重视。碲资源、电池成本、电池生产和使用对环境的影响等问题是碲化镉薄膜太阳能电池发展中受到很多人关注的问题。本文对此进行了分析讨论,最后分析了工业化规模生产碲化镉薄膜太阳能电池组件的关键技术。 引言 碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1㎡组件生产线的建设和大面积电池生产技术的研发。 成本估算 考虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni,碲化镉薄膜的厚度为5微米,转换效率为7%,1MW碲化镉薄膜太阳能电池所消耗的材料的成本如下表所示。 碲化镉薄膜太阳能电池的材料成本 可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。 消耗材料的成本还可以进一步降低,如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。因此,材料成本达到或低于每峰瓦5元人民币是可能的。

考虑工资、管理、电力和设备折旧等其他成本,碲化镉薄膜太阳能电池的成本大约是每峰瓦13.64元人民币或更低。因此,即使销售价格为每峰瓦20~22元人民币,约为晶体硅太阳能电池现在价格的60%,也能保证制造商有相当的利润空间。 由于碲化镉薄膜太阳能电池成本低,其发展对于解决我国西部地区分散居住人口的电力供应具有重要意义。 碲资源 碲是地球上的稀有元素,发展碲化镉薄膜太阳能电池面临的首要问题就是地球上碲的储藏量是否能满足碲化镉太阳能电池组件的工业化规模生产及应用。工业上,碲主要是从电解铜或冶炼锌的废料中回收得到。据相关报道,地球上有碲14.9万吨,其中中国有2.2万吨,美国有2.5万吨。 在美国碲化镉薄膜太阳能电池制造商First Solar年产量25MW的工厂中,300~340 公斤碲化镉即可以满足1MW太阳能电池的生产需要。考虑到碲的密度为6.25g/cm3,镉的密度为8.64g/cm3,则130~140公斤碲即可以满足1MW碲化镉薄膜太阳能电池的生产需要。 由以上数据可以知道,按现已探明储量,地球上的碲资源可以供100个年生产能力为100MW的生产线用100年。 环境影响 由于碲化镉薄膜太阳能电池含有重金属元素镉,使很多人担心碲化镉太阳能电池的生产和使用对环境的影响。多年来,一些公司和专家不愿步入碲化镉太阳能电池的开发和生产。那么,碲化镉薄膜太阳能电池的生产和使用中镉的排放究竟有多严重呢? 为此,美国布鲁克文国家实验室的科学家们专门研究了这个问题。他们系统研究了晶体硅太阳能电池、碲化镉太阳能电池与煤、石油、天然气等常规能源和核能的单位发电量的重金属排放量。在太阳能电池的分析中,考虑了将原始矿石加工得到制备太阳能电池所需材料、太阳能电池制备、太阳能电池的使用等全寿命周期过程。研究结果表明(见图1),石油的镉排放量是最高的,达到44.3g /GWh,媒次之,为3.7g /GWh。而太阳能电池的排放量均小于1g /GWh,其中又以碲化镉的镉排放量最低,为0.3 g / GWh。与天然气相同,硅太阳能电池的镉排放量大约是碲化镉太阳能电池的两倍。

中国薄膜太阳能电池生产厂商列表12资料

天津 S i 薄天津津能电池 科技有限公司 www.jnsolar.c a-Si/a-Si双结及 柔性电池,1.245m x Energ y Solar 技术来自南 开大学 25MW量产中

膜https://www.360docs.net/doc/4118193386.html,0.635m,Pm=40W,Vm =46V,Eff=5.5% 河北 S i 薄膜保定天威薄膜 光伏有限公司 a-si/uc-Si双结, 1.1m x 1.3m, Pm=125W,Eff=9.3% Oerli kon 天威保变的 控股子公司 CEO&CTO--- 麦耀华 50MW 6月试生 产成功, 预计8月 量产 S i 薄膜保定风帆光伏 能源有限公司 http://www.sa https://www.360docs.net/doc/4118193386.html,/ a-Si/a-Si双 结,1.245m x 0.635m,Pm=40W,Ef f=5.5% 美国 Ameli o Solar 公司 Turn- key线 由风帆股份 与美国 Amelio Solar公司 合资成立, 技术来自美 国Amelio 公司,Dr Zoltan Kiss 一期 5MW,二 期25MW 2009年5 月1日厂 房改造, 设备尚未 move in S i 薄膜新奥光伏新能 源有限公司(廊 坊) http://www.en https://www.360docs.net/doc/4118193386.html, a-si/uc-Si双结, 2.2m x 2.6m, Pm=458W,Vm=220V, Im=2.08A,Eff=8% AMAT turn- key CEO蔡洪秋, 总经理万克 家,北京研 发中心总经 理周民,北 美研究院院 长周德颂, 副院长郭铁 60MW 试生产成 功,6月通 过TCUV 认证 S i 薄膜常源光伏科技 有限公司(衡 水) http://www.ev https://www.360docs.net/doc/4118193386.html,/ a-Si单结,1.1m x 1.4m,Pm=100W, Vm=75V,Im=1.34A, Eff=6.5% ULVAC25MW 设备正在 move in 河南 S i 薄膜阿格斯新能源 有限公司(郑 州) http://www.ar https://www.360docs.net/doc/4118193386.html, a-Si单结,1.245m x 0.635m,Pm=43W, Vm=45.2V, Im=0.95A, Eff=5.5% 金太 阳集 团下 属公 司提 供设 备, EPV系 列,设 备投 资 CEO赵一辉 博士 25MW 设备调试 中

碲化镉太阳能电池

碲化镉 来自维基百科,自由百科全书 (重定向碲化镉) 碲化镉(CdTe)是一种结晶化合物,由镉和碲形成。它被用来作为红外光学窗口和太阳能电池材料。它通常是夹着硫化镉形成一个P-N结的光伏太阳能电池。通常情况下,CdTe电池使用N-I-P结构。 内容 1应用 2物理性质 2.1热性能 2.2光学和电子特性 3化学性质 4毒性 5可利用性 6参见 7参考 8外部链接 1应用 另见:碲化镉光伏特性 在制造薄膜太阳能电池中碲化镉是一个非常有用的材料。碲化镉薄膜电池是一个符合成本效益的太阳能电池设计,并且理论最高效率比硅电池的高。由于碲化镉太阳能电池的吸收谱峰值接近太阳发射光谱峰值,所以其理论最高效率比较高。此外,CdTe电池在高温条件下的使用效果比硅电池更好。 碲化镉可以与汞形成合金,此合金是一种多功能红外探测器材料(碲镉汞)。碲化镉掺杂少量锌的合金,可以制成一个很好的固态X射线和伽玛射线探测器(碲锌镉)。 碲化镉被用来作为红外,如光学窗口和镜头,但由于它具有毒性,所以限制了它的应用。红外光学材料早期使用的型号是销售商标名称为CdTe Irtran – 6的产品,但是现在它已经过时了。 碲化镉也用于制作电光调制器。在II - VI族化合物晶体的线性电光效应中具有较大的电光系数(R41 = R52 = R63 = 6.8 × 10-12 m / V)。 掺氯的碲化镉被用来制作X射线,γ射线,β粒子和α粒子辐射的探测器。碲化镉可以在室温下工作,因此可以制作成紧凑型核光谱学探测器。【1】用碲化镉制成的伽马射线和X射线探测器具有较高的性能,如高的原子数,大的能隙和高电子迁移率?1100 cm2/ V · s,使其具有较高的μτ(移动寿命),因此其具有高的电荷收集系数和良好的光谱分辨率。

碲化镉薄膜太阳能电池

碲化镉薄膜太阳能电池 SMM7月8日讯:“碲化镉薄膜太阳能电池能否腾飞?答案是肯定的。”这是中国海洋大学地质学教授、博士生导师曹志敏在7月8日举行的2010年全球稀有金属发展论坛上提出的观点。 光伏产业发展与太阳能电池的发展情况是本次论坛的一个重要议题。太阳能电池包括传统的晶体硅太阳能电池和多元化合物薄膜太阳能电池等部分。而多元化合物薄膜太阳能电池主要包括砷化镓III-V族化合物、硫化镉、碲化镉及铜锢硒薄膜电池等。 碲化镉市场份额提升,铜铟镓硒不变,晶体硅减少 当今全球光伏市场是以晶体硅太阳电池为主,约占90%以上。但是晶体硅电池生产材料成本高和高能耗,在能源价格不断上涨的趋势下,依靠规模效益降低成本基本没有多少空间。另外最近国家关于产能过剩和清洁生产的政策也使得发展低成本、新型薄膜太阳电池成为未来国际光伏产业的必然趋势。 铜铟硒(简称CIS或CIGS)薄膜太阳电池以其成本低、性能稳定、抗辐射能力强、光电转换效率目前是各种薄膜太阳电池之首,接近于目前市场主流产品晶体硅太阳电池转换效率,成本却是其1/3,被国际上称为下一时代最有前途的廉价太阳电池之一。但是铜铟硒薄膜太阳电池也有其缺点,比如技术多样,无标准工艺方法;工艺复杂,沉积速度慢等。 虽然能源行业业内人士多数一致认为:在近期未来,硅类太阳能电池将和铜铟镓硒薄膜太阳能电池共同主导市场。碲化镉太阳能电池已经连续风光了5年,应会停止持续增长的趋势,市场的预期也应降低。 但是曹志敏教授却持不同观点,他认为未来碲化镉太阳能电池将大有可为,会有属于自己的领地。未来太阳能电池的发展趋势为碲化镉太阳能电池份额将提高、铜铟镓硒薄膜太阳能电池份额保持不变,而晶体硅太阳能电池将减少。

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

发展碲化镉薄膜太阳能电池的几个关键问题

发展碲化镉薄膜太阳能电池的几个关键问题 2009.4 ?碲化镉薄膜太阳能电池的发展日益受到重视。碲资源、电池成本、电池生产和使用对环境的影响等问题是碲化镉薄膜太阳能电池发展中受到很多人关注的问题。本文对此进行了分析讨论,最后分析了工业化规模生产碲化镉薄膜太阳能电池组件的关键技术。? ?引言 ?碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1㎡组件生产线的建设和大面积电池生产技术的研发。 成本估算 考虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni,碲化镉薄膜的厚度为5微米,转换效率为7%,1MW碲化镉薄膜太阳能电池所消耗的材料的成本如下表所示。 碲化镉薄膜太阳能电池的材料成本? 可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。 消耗材料的成本还可以进一步降低,如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用 99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。因此,材料成本达到 或低于每峰瓦5元人民币是可能的。 考虑工资、管理、电力和设备折旧等其他成本,碲化镉薄膜太阳能电池的成本大约是每峰瓦13.64元人民币或更低。因此,即使销售价格为每峰瓦20~22元人民币,约为晶体硅太阳能电池现在价格的60%,也能保证制造商有相当的利润空间。

碲化镉薄膜太阳能电池及其溅射制备

3上海海事大学青年骨干教师培养项目(No.025063)  张榕:通信作者 Tel :021********* E 2mail :rongzhang @https://www.360docs.net/doc/4118193386.html, 碲化镉薄膜太阳能电池及其溅射制备3 张 榕1,周海平2,陈 红3 (1 上海海事大学基础科学部,上海200135;2 四川师范大学物理与电子工程学院,成都610066; 3 上海交通大学物理系凝聚态光谱与光电子物理实验室,上海200030) 摘要 简单综述了化合物半导体碲化镉太阳能电池的发展历史、基本结构和核心问题,在此基础上重点总结了 用溅射法制备的多晶碲化镉薄膜太阳能电池的优缺点、面临问题、发展现状,展望了它的发展趋势,并讨论了用溅射法制备渐变带隙碲化镉薄膜太阳能电池以提高转化效率的可能性。 关键词 碲化镉 薄膜太阳能电池 溅射法中图分类号:TM914.42 An Overvie w of CdT e Thin Film Solar Cells and R elevant Sputtering F abrication ZHAN G Rong 1,ZHOU Haiping 2,C H EN Hong 3 (1 Basic Science Department ,Shanghai Maritime University ,Shanghai 200135;2 Department of Physics and Electronic Engineering , Sichuan Normal University ,Chengdu 610066;3 Laboratory of Condensed Matter Spectroscopy and Opto 2electronic Physics , Department of Physics ,Shanghai Jiaotong University ,Shanghai 200030) Abstract This article firstly gives a brief overview to the development history ,basic structures and critical is 2 sues of compound semiconductor Cd Te 2based solar cells ,then sheds light on the advatages and disadvantages ,current status ,and trend of development of the sputtered polycrystalline Cd Te thin film solar cells.Finally ,it also discusses the possibility to fabricate graded 2bandgap Cd Te solar cells by using the sputtering method K ey w ords Cd Te ,thin film solar cells ,sputtering   0 引言 随着当今世界人口和经济的增长、能源资源的日益匮乏、环境的日益恶化以及人们对电能的需求量越来越大,太阳能的开发和利用已经在全球范围内掀起了热潮。这非常有利于生态环境的可持续发展,造福子孙后代,因此世界各国竞相投资研究开发太阳能电池。 太阳能电池是一种利用光生伏特效应将太阳光能直接转化为电能的器件。早在1839年,科学家们已经开始研究光生伏特效应,到20世纪40年代中期,太阳能电池的研制取得了重大突破,在单晶硅中发现了称之为Czochralski 的过程。1954年,美国贝尔实验室根据这个Czochralski 的过程成功研制了世界上第一块太阳能电池,能量转换效率达到4%。太阳能电池的问世,标志着太阳能开始借助人工器件直接转换为电能,这是世界能源业界的一次新的飞跃。 太阳能电池种类繁多,包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体电池和叠层太阳能电池等。 硅材料是目前太阳能电池材料(即光伏材料)的主流,这不仅因为硅在地壳中含量丰富,而且用它制成的电池转化效率相对较高。单晶硅太阳能电池在实验室里最高的转换效率接近25%,而规模生产的单晶硅太阳能电池,其效率为15%。但是单晶硅太阳能电池制作工艺繁琐,且单晶硅成本价格居高不下,大幅降低成本非常困难,无法实现太阳能发电的大规模普及。 随着新材料的不断开发和相关技术的发展,以其他材料为基础的太阳能电池愈来愈显示出诱人的前景。目前国际低成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、碲化镉(Cd Te )、铜铟硒(CuInSe 2)太阳能电池,Ⅲ2Ⅴ族化合物半导体高效太阳能电池,非晶硅及结晶硅混合型薄膜太阳能电池等方面。与单晶硅太阳能电池相比,除多晶硅、砷化镓、铜铟硒、碲化镉等外,其他材料的电池光电转化效率普遍未超过15%。尽管如此,硅材料仍不是最理想的光伏材料,这主要是因为硅是间接带隙半导体材料,其光学吸收系数较低,所以研究其他光伏材料成为当前的一种趋势。其中,Cd Te 和CuInSe 2被认为是两种非常有应用前景的光伏材料,目前已经取得一定的进展,但是要将它们大规模生产并与晶体硅太阳能电池抗衡还需要投入大量的人力物力进行研发。 Cd Te 是一种化合物半导体,在太阳能电池中一般作吸收层。由于它的直接带隙为1.45eV [1],最适合于光电能量转换, 因此使得约2 μm 厚的Cd Te 吸收层在其带隙以上的光学吸收率达到90%成为可能,允许的最高理论转换效率在大气质量AM1.5条件下高达27%[2]。Cd Te 容易沉积成大面积的薄膜,沉积速率也高。因此,Cd Te 薄膜太阳能电池的制造成本较低,是应用前景较好的一种新型太阳能电池,已成为美、德、日、意等国研发的主要对象。目前,已获得的最高效率为16.5%(1cm 2),电池模块效率达到11%(0.94m 2)[2~4]。然而,人们当前对Cd Te 太阳能电池的特点和发展趋势认识很零散,没有一个系统的、整体的了解。此外,人们对用溅射法制备的多晶碲化

[调研报告]全球薄膜及碲化镉薄膜太阳能电池市场报告

[调研报告]全球薄膜及碲化镉薄膜太阳能电池市场报告

2011-2015年全球薄膜及碲化镉薄膜太阳能电池市场深度调研及投资前景咨询报告 报告目录 第一章2009-2010年碲化镉薄膜太阳能电池产业概述 第一节太阳能电池简述 一、太阳能电池的定义 二、太阳能电池的分类 三、太阳能电池应用领域 第二节薄膜太阳能电池简述 一、薄膜太阳能电池的分类 二、薄膜太阳能电池的优势 三、碲化镉薄膜太阳能电池

第二章2011-2015年碲化镉薄膜太阳能电池行业经济环境分析 第一节我国经济发展环境分析 第二节行业相关政策、法规、标准 第三节全球金融危机对中国宏观经济的影响 第四节全球金融危机对薄膜太阳能电池行业的影响 第五节中国金融危机对薄膜太阳能电池行业的影响 第六节中国扩大内需保增长的政策解析 第七节2011-2015年薄膜太阳能电池行业未来发展运行环境分析 第三章2009-2010年全球碲化镉薄膜太阳能电池的发展 第一节2009-2010年全球薄膜太阳能电池产业总体概况 一、全球薄膜太阳能电池产业迅速发展 二、2009-2010年薄膜太阳能电池发展状况 三、三种薄膜太阳能电池进入规模生产 四、世界薄膜太阳能电池主要厂商发展情况

五、薄膜太阳能电池企业布局 六薄膜太阳能原料硅钾烷市场发展状况 第二节美国 一、美国西北大学提高有机薄膜太阳能电池效率 二、美国成功研制新型薄膜太阳能电池模型 三、MIT发现将薄膜太阳能电池转换效率提高50%的方法 四、Solar World在美国投建薄膜电池厂第三节日本 一、日本试制200mm的有机薄膜太阳能电池子模块 二、大日本印刷和郡士将上市新型薄膜太阳能电池 三、大日本网屏将与岐阜大学联合开发微结晶硅薄膜的评测技术 第四节其它国家 一、英国发现制造薄膜太阳能电池的新技术 二、德国联邦环保署支持薄膜太阳能电池的研究

碲化镉的点缺陷

碲化镉的点缺陷 摘要: 碲化镉作为化合物半导体材料,其本身可以用于- γ和X射线探测器、电阻器将、通讯设备和薄膜太阳能电池。其中,作为所谓的第三代太阳能电池,碲化镉薄膜太阳能电池已经有公司投入了产业化生产。但是,作为化合物半导体材料,点缺陷对其的影响很大,很可能引入非化学计量比,使得其性能发生改变。因此,化合物半导体的点缺陷对于其自身性能的影响十分大,要想是碲化镉真正的得到广泛的应用,就必须对其点缺陷进行全面的研究。本文简单介绍了碲化镉的本征点缺陷和外来点缺陷以及他们的相互作用。 关键字:碲化镉,点缺陷,形成能 前言: 碲化镉在室温具有1.46eV的禁带宽度,却其是直接带隙的半导体材料。因此,碲化镉作为太阳能电池器件的材料可以拥有高的吸收效率和能量转换效率。除此之外,碲化镉的碲和镉的相对原子序数比较大,因此碲化镉可以制作在室温下工作的- γ和X射线的探测器。因此,碲化镉是一种很有前景的Ⅱ-Ⅵ族化合物半导体。但是,碲化镉中经常含有本征点缺陷和杂质缺陷,形成载流子复合中心,减少非平衡载流子寿命,降低器件质量。因此,为了获得高质量的器件,对于碲化镉的缺陷的研究是必不可少的。 要想通过气相法在基体上生长出高质量的复合材料,就一定需要适宜的生长环境,抑制缺陷的形成和扩散以及获得相对快速的的生长

速度。要想实现前面所诉的两点,就要限制材料生长的条件,包括温度、分压、掺杂等。因此,这样生成的复合材料虽说满足了抑制缺陷和生长速度快这两个方面,但是最终的产物将很可能不能满足器件的需要,因此需要在生长过程的后面加上热处理的步骤。 点缺陷在很大一个范围内影响着半导体材料的性能,因此对于半导体来说,点缺陷是一个十分重要的。然而,即使人们投入了大量的精力来研究半导体中的点缺陷,却还是有很多很难理解的问题没有被解决。特别是在化合物半导体中,由于本征缺陷的存在,使得化合物半导体很容易出现非本征化学计量比,使得为掺杂的化合物半导体也能表现出N型或P型半导体的特性,这使得点缺陷在化合物半导体中起到的作用更加复杂而难以研究。在晶体生长后面的热处理步骤中,就很容易产生大量的点缺陷,影响化合物半导体的电学性能。 这篇综述从热力学上概述了半导体复合材料的缺陷结构,并从试验方法上阐述了如何控制半导体复合材料的缺陷结构。文章分为两个部分,第一个部分讲的是在热平衡条件在的点缺陷,并从基本原理出发解释缺陷的统计分布、实验研究和热力学评价。第二部分讲的是在非热力学平衡条件下的点缺陷以及点缺陷的扩散。 平衡状态下的点缺陷: 对于平衡态下点缺陷的研究逐渐形成了一个基本原则,即聚焦与缺陷性能以及要对造成材料偏离平衡态的动力学和其过程要有一个初步的了解。

碲化镉薄膜太阳能电池生产线在成都建成投产

松下将于2012年量产负极材料采用 硅系合金的锂离子充电电池 松下2009年12月25日宣布,负极材料采用硅系合金的锂离子充电电池即将达到实用水平。此次开发的是笔记本电脑用标准的“18650”尺寸(直径18mm ×高65mm)单元,容量高达4.0Ah,将于2012年度开始量产。 松下通过将负极材料由原来的石墨更换为具有10倍以上理论容量的硅系合金,实现了高容量化。正极采用镍系材料。电压稍低,为3.4V,但电池容量达13.6Wh。体积能量密度达到800Wh/L。重量约为54g,重量能量密度为251. 9Wh/kg。 此外,该公司还透露,负极材料和原来一样仍采用石墨、正极材料实现高密度化、容量高达3.4A h的电池也将达到实用水平。该产品的电压为3.6V,电池容量为12.2Wh。体积能量密度为730Wh/L。重量约为46g,比采用硅系合金的电池略轻,重量能量密度高达265.2Wh/kg。据称该电池将于2011年度开始量产。 松下2009年12月18日还发布了18650尺寸的锂离子充电电池(参阅本站报道)。容量为3.1Ah,较现有的2.9A h产品实现了高容量化,现已开始量产。松下通过上述一系列发布展示了18650单元的发展蓝图。 章从福 摘碲化镉薄膜太阳能电池生产线在成都建成投产 据《中国电子报》2010年1月5日报道,日前,一条5兆瓦碲化镉薄膜太阳能电池生产线在成都市双流县建成并正式投产。据负责该项目建设的成都中光电阿波罗太阳能有限公司董事长兼总经理侯仁义介绍,这条生产线于2009年10月调试成功,并投入中试生产,是目前国内唯一的一条碲化镉薄膜太阳能电池生产线,拥有靶材制作等多项专利。侯仁义说:“这条生产线建成投产,将打破外国在该行业的垄断现状,对发展我国新型太阳能电池产业和四川光伏产业结构调整都将产生重要影响。” 碲化镉薄膜太阳能电池的制造成本低,目前已获得的最高效率为16%,是美、德、日、意等国家研究开发的主要对象。四川阿波罗太阳能科技有限责任公司通过3年多的努力,已制造出小面积电池,转换率达到11%,接近世界先进水平,大面积电池转换率接近7.5%。 40

美国FirstSolar公司碲化镉薄膜太阳电池

2010.3Vol.34No.3 新产品新技术 美国First Solar 公司碲化镉薄膜太阳电池 FirstSolar是全球最重要的碲化镉(CdTe)薄膜光伏组件制造商,它几乎可与整个产业划上等号,其以低生产成本与高转换效率,快速席卷薄膜太阳能市场,并且直接威胁结晶硅太阳电池的领导地位。与传统的晶硅技术相比,使用CdTe专利技术的太阳电池发电量更大,并拥有更低廉的生产成本。因为与其他薄膜技术(硅薄膜、CIGS)相比,CdTe薄膜技术制造工艺简单,设备成本占总成本的比例小,所以拥有更低的生产成本。 215 FirstSolar公司是世界领先的太阳能光伏组件制造商之一。1999年,FirstSolar在俄亥俄州匹兹堡市建设自己的第一条试生产线。到2002年,FirstSolar商用太阳电池组件的年产量已达1.5MW。在市场的巨大需求下,FirstSolar将其试生产线扩建为更自动化的生产线,2005年的产能已达25MW,至2009年公司产能已超过1GW。从玻璃到最终产品———太阳电池组件的生产时间少于2.5小时。公司通过独有的系统化复制过程CopySmart快速高效地增设新生产线,并能在最短时间内达到最高产能。有了CopySmart,FirstSolar在全球各地建设制造厂时便能以匹兹堡顶尖水平的工厂作为模板快速建立新生产线。 FirstSolar目前有三处生产基地,第一处为美国俄亥俄州匹兹堡市,于2005年开始生产;第二处为德国法兰克福,于2007年开始生产,德国厂成立时吸取美国厂建立时的经验,快速缩短生产线建造、产品试产至量 产的时间;第三处生产基地位于马来西亚Kulim,由于具有之前美国厂与德国厂的经验,使得生产线设好后,产能即可达到最大值,这也使得FirstSolar可以大规模量产压低单位成本。 FirstSolar近几年组件成本逐步下降,2005年每瓦1.59美元,至2008年第四季已经下降至每瓦0.98美元,已经低于每瓦一美元的重要关卡,相对于目前晶硅太阳电池组件每 瓦成本仍高于二美元、硅薄膜太阳电池组件每瓦成本高于1.5美元,因此FirstSolar太阳电池组件在产品单位价格上具有相当的竞争力。2009年6月,FirstSolar宣布:到2014年,公司会将每瓦的制造成本降至52~63美分。FirstSolar似乎已达成许多太阳能公司梦寐以求的目标:与发电成本一致,意即达到太阳能发电成本与传统电力成本相同。 FirstSolar最近几年生产线扩充的情况

关于碲化镉 (CdTe) 光伏 (PV) 系统环境概况

总结报告 关于碲化镉(CdTe) 光伏(PV) 系统环境概况 已发表的主要研究的同行评审 Arnulf J?ger-Waldau 欧盟委员会,联合研究中心总署(DG JRC) 环境和可持续发展协会,可再生能源部 Via Enrico Fermi 1; TP 405 I – 21020 Ispra, Italia 2005 年8 月,欧盟委员会联合研究中心(JRC)在柏林组织完成了一项同行评审。该评审由德国联邦环境部(BMU)主持,评审对象为已发表的关于碲化镉(CdTe) 光伏(PV) 系统环境概况的主要研究结果,由来自美国纽约布克海文(Brookhaven) 国家实验室(BNL)、芝加哥大学以及德国慕尼黑弗劳恩霍夫(Fraunhofer) 固态技术研究所等科研机构的研究员所著。该评审小组成员由BMU 和JRC 从欧洲大学中挑选出的在相关领域研究成果卓著的教授组成。这些教授的研究范围均为非碲化镉光伏技术领域(例如,硅基太阳能电池、硫族半导体和聚合物太阳能电池等),因此他们与碲化镉光伏技术没有特殊利益关系。此外,一些不参与投票的科学及公共政策专家也参与了本次评审,他们分别来自德国联邦环境部(BMU)、布克海文(Brookhaven) 国家实验室(BNL)、德国项目管理组织(PTJ)、欧盟委员会联合研究中心(JRC) 以及德国太阳能行业协会(BWS)。 在四位评审人员中,有三位对已发表的研究结果给予了高度评价。本次评审的总体

结论是,如果材料被回收再利用,且/或建立了寿命到期的报废体系和政策,那么碲化镉光伏技术的环境风险是极小的。在光伏组件的生命周期中,镉的排放量极低,大规模使用碲化镉光伏电池组件不会对公共健康和环境造成任何风险。另外,在使用寿命到期时对这些光伏组件进行回收再利用,就可以消弭所有剩余的环境隐患。总而言之,本次评审做出了以下评估和说明: ●镉是在锌的生产过程中生成的一种副产品,可以善加利用,也可以采用安全方 法使之隔离并储存起来,避免泄露到环境中。用于光伏技术中的碲化镉处于一种环保而稳定的形态,在正常使用过程中或可预见的事故中均不会将镉泄漏到环境中,因此这种使用镉的方法可被看作是目前最安全环保的。 ●如果使用碲化镉光伏系统替代传统的煤炭和石油发电厂,则在这一系统的整个 生命周期中(包括开采、精炼和提纯),镉的空气排放量将降低100-360 倍。 即使发生住宅火灾,可能产生的事故排放量也比煤炭和石油发电厂运行过程中的常规排放量低5个数量级。因此,比起光伏技术取代化石燃料所带来的巨大环境利益,碲化镉光伏技术本身所涉及的环境问题就显得微不足道了。 ●与传统的发电技术相比,光伏系统发电具有显著的环境优势。每一种光伏技术 都存在某些环境健康安全(EHS) 问题,但光伏行业采取了积极主动的态度对问题进行预防和控制。因此,这些问题不应该影响目前所有光伏技术的商业可行性。

相关文档
最新文档