《离散数学》作业

《离散数学》作业
《离散数学》作业

《离散数学》作业一、选择或填空

1.下列公式中哪些是永真式?( ) A.(┐P ∧Q)→(Q→?R) B.P→(Q→Q)

C.(P ∧Q)→P

D.P→(P ∨Q)

2.设全体域D 是正整数集合,确定下列命题的真值: A. ?x ?y (xy=y) ( ) B.

?x ?y(x+y=y) ( )

C. ?x ?y(x+y=x) ( )

D. ?x ?y(y=2x) ( )

3.有n 个结点的树,其结点度数之和是( )。

4.举出集合A 上的既是等价关系又是偏序关系的一个例子。( )

5.群的等幂元是( ),有( )个。

6.下面给出的集合中,哪一个不是前缀码( )。

A. {a ,ab ,110,a1b11}

B. {01,001,000,1}

C. {1,2,00,01,0210}

D. {12,11,101,002,0011} 7.下列哪些公式为永真蕴含式?( ) A.?Q=>Q →P B.?Q=>P →Q C.P=>P →Q D.?P ∧(P ∨Q)=>?P 8.设P :我生病,Q :我去学校,则下列命题可符号化为( )。 (1)若我生病,则我不去学校 (2) 当且仅当我生病时,我才不去学校 9.任一有向图中,度数为奇数的结点有( )个。 10.集合A 上的等价关系的三个性质是什么?( ) 11.群<A,*>的等幂元有( )个,是( ),零元有( )个。 12.一个图的欧拉回路是一条通过图中( )的回路。

13.设有下列公式,请问哪几个是永真蕴涵式?( ) A.P=>P ∧Q B. P ∧Q=>P C. P ∧Q=>P ∨Q D.P ∧(P→Q)=>Q E. (P→Q)=>P F. ?P ∧(P ∨Q)=>?P 14.判断下列命题哪几个为正确?( ) A. {Ф}∈{Ф,{{Ф}}} B. {Ф}?{Ф,{{Ф}}} C. Ф∈{{Ф}} D. Ф?{Ф} E. {a,b}∈{a,b,{a},{b}}

15.设a 是10阶群的生成元, 则a 4是( )阶元素,

a 3是( )阶元素。 16.设G 是一个哈密尔顿图,则G 一定是( )。 A. 欧拉图 B. 树 C. 平面图 D. 连通图 17.设G 是一棵树,则G 的生成树有( )棵。 A. 0 B. 1 C. 2 D. 不能确定

18.设无向图G 有16条边且每个顶点的度数都是2,则图G 有( )个顶点。 A. 10 B. 4 C. 8 D. 16

19.A,B,C是三个集合,则下列哪几个推理正确: A. A ?B ,B ?C=> A ?C B. A ?B ,B ?C=>

A∈B C. A∈B,B∈C=> A∈C 20.设S={1,2,3,4},A上的关系R={〈1,2〉,〈2,1〉,〈2,3〉,〈3,4〉},求(1)R R (2) R -1 。 21.一棵无向树的顶点数n 与边数m 关系是( )。 22.

设A={3,6,9},A 上的二元运算*定义为:a*b=min{a ,b},则在独异点中,单位元是( ),零元是( )。 23.设G 是有n 个结点m 条边的连通平面图,且有k 个

面,则k 等于: A. m-n+2 B. n-m-2 C. n+m-2 D. m+n+2。

24.设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点。 A. 10 B. 4 C. 8 D. 12 25、A ,B ,C 是三个集合,则下列哪个推理正确?( ) (1) A ?B ,B ?C ? A ?C (2) A ?B ,B ?C ? A ∈B (3) A ∈B ,B ∈C ? A ∈C 26、判断下列命题哪个正确?( ) (1) {Ф}∈{Ф,{{Ф}}} (2)

{Ф}?{Ф,{{Ф}} (3) Ф∈{{Ф}} (4) Ф={Ф} 27、设T 是一棵树,则T 是一个( ). (1) 欧拉图 (2) 哈密尔顿图 (3) 连

通图 28、下列公式中哪个不是蕴涵式?( ) (1) P ?P ∧Q (2) P ∧Q ?P

(3) P ∧Q ?P ∨Q (4) P ∧(P →Q)?Q

39、下面给出的集合中,哪一个不是前缀码( ). (1) {a ,ab ,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 30 6阶有限群的任何子群一定不是( ). (1) 2阶 (2) 3 阶 (3) 4 阶 (4) 6 阶 31、在有n 个顶点的连通图中,其边数( ). (1) 最多有n-1条 (2) 至少有n-1 条 (3) 最多有n 条 (4) 至少有n 条 32、下列哪一种图不一定是树?( ) (1) 无简单回路的连通图 (2) 有n 个顶点n-1条边的连通图 (3) 每对顶点间都有通路的图 (4) 连通但删去一条边便不连通的图 33、下面给出的集合中,哪一个是前缀码?( ) (1) {0,10,110,101111} (2) {01,001,000,1} (3) {b ,c ,aa ,ab ,aba} (4) {1,11,101,001,0011} 34、有限布尔代数的元素的个数一定等于( ). (1) 偶数 (2) 奇数 (3) 4的倍数

(4) 2的正整数次幂

35、在自然数集N上,下列哪种运算是可结合的?( )

(1) a*b=a-b(2) a*b=max{a,b}(3) a*b=a+2b(4) a*b=|a-b|

36、判断下列命题哪个为真?( )

(1) A-B=B-A ?A=B (2)

空集是任何集合的真子集

(3) 空集只是非空集合的子集(4)

若A的一个元素属于B,则A=B

二、求下列各公式的主析取范式和主合取范式

1.P∨?Q

2.Q→( P∨?R)

3. P→Q

4.?(P→Q) ∨ (R∧P)

5.P∧Q

6 Q→(P∨?R)

7 (P→Q)∧(P→R)

三、证明

1.P∨Q,P→R, Q→S => R∨S

2.A→(C∨B),B→?A,D→?C => A→?D

3.P→Q,?Q∨R,?R,?S∨P=>?S

4.?B∨D,(E→?F)→?D,?E=>?B

5.A→(B→C),C→(?D∨E),?F→(D∧?E),A=>B→F 6、A→(B→C),C→(?D∨E),

?F→(D∧?E),A ?B→F.

7、?B∨D,(E→?F)→?D,?E ??B.

8、A→(C∨B),B→?A,D→?C ?

A→?D.

9、P→?Q,Q∨?R,R∧?S ??P.

四、设A,B,C是三个集合,证明

1.(A-B)∪(A-C)=A-(B∩C)

2.A∩B=A∩C,A∩B=A∩C,则C=B

3.A∩(B-C)=(A∩B)-(A∩C)

4.A-(B∪C)=(A-B)-C

5.(A-B)∩(A-C)=A-(B∪C)

五、证明

1.设e和0是关于A上二元运算*的单位元和零元,如果|A|>1,则e≠0。

2.任一图中度数为奇数的结点是偶数个。

3.设群<G,*>除单位元外每个元素的阶均为2,则<G,*>是交换群。

4.在一个连通简单无向平面图G=〈V,E,F〉中若|V|≥3,则 |E|≤3|V-6。

5.单位元有惟一逆元。

6.设是一个群,则对于a,b∈G,必有惟一的x ∈G,使得a*x=b。

7.设代数系统是一个群,则G除单位元以外无其它等幂元。

8.若连通简单无向平面图G有n个结点,m条边,k 个面,且每个面至少由k(k≥3)条边围成,则m≤k(n-2)/(k-2)。9.证明在元素不少于两个的群中不存在零元。

10.素数阶循环群的每个非单位元都是生成元。

11.设G=〈V,E〉是一个连通且|V|=|E|+1的图,则G 中有一个度为1的结点。

12.给定无向连通简单平面图G=,且|V|=6, |E|=12, 则对于任意f∈F, deg(f)=3。

13.证明在一个群中单位元是惟一的。

14.在一个群〈G,*〉中,若G中的元素a的阶是k,即| a |=k,则a-1的阶也是k。

15.若有n个结点的连通图中恰有n-1 条边,则图中至少有一个结点度数为1。

16、设e和0是关于A上二元运算*的单位元和

零元,如果|A|>1,则e≠0.

17、设T=是一棵树,若|V|>1,则T中

至少存在两片树叶.

18、若n阶连通图中恰有n-1 条边,则图中至

少有一个顶点度数为1.

19、证明对于连通无向简单平面图,当边数e<

30时,必存在度数≤4的顶点.

离散数学作业

第一章命题逻辑的基本概念 一、判断下列语句是否是命题,若是命题是复合命题则请将其符号化 (1)中国有四大发明。 (2)2是有理数。 (3)“请进!” (4)刘红和魏新是同学。 (5)a+b (6)你去图书馆吗? (7)如果买不到飞机票,我哪儿也不去。 (8)侈而惰者贫,而力而俭者富。(韩非:《韩非子?显学》) (9)火星上有生命。 (10)这朵玫瑰花多美丽啊! 二、将下列命题符号化,其中p:2<1,q:3<2 (1)只要2<1,就有3<2。 (2)如果2<1,则3≥2。 (3)只有2<1,才有3≥2。 (4)除非2<1,才有3≥2。 (5)除非2<1,否则3≥2。 (6)2<1仅当3<2。 三、将下列命题符号化 (1)小丽只能从筐里拿一个苹果或一个梨。 (2)王栋生于1992年或1993年。 - 1 -

四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。(1)p∨(q∧r) (2)(p?r)∧(﹁q∨s) (3)(?p∧?q∧r)?(p∧q∧﹁r) (4)(?r∧s)→(p∧?q) 五.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 六、用真值表判断下列公式的类型: (1) p∧(p→q)∧(p→?q) (2) (p∧r) ?(?p∧?q) (2)((p→q) ∧(q→r)) →(p→r) - 2 -

第二章命题逻辑等值演算 一、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 二、用等值演算法证明下面等值式 (1)(p→q)∧(p→r)?(p→(q∧r)) (2)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) - 3 -

离散数学 第1章 习题解答

习题 1. 下列句子中,哪些是命题哪些不是命题如果是命题,指出它的真值。 ⑴中国有四大发明。 ⑵计算机有空吗 ⑶不存在最大素数。 ⑷21+3<5。 ⑸老王是山东人或河北人。 ⑹2与3都是偶数。 ⑺小李在宿舍里。 ⑻这朵玫瑰花多美丽呀! ⑼请勿随地吐痰! ⑽圆的面积等于半径的平方乘以。 ⑾只有6是偶数,3才能是2的倍数。 ⑿雪是黑色的当且仅当太阳从东方升起。 ⒀如果天下大雨,他就乘班车上班。 解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。 2. 将下列复合命题分成若干原子命题。 ⑴李辛与李末是兄弟。 ⑵因为天气冷,所以我穿了羽绒服。 ⑶天正在下雨或湿度很高。 ⑷刘英与李进上山。 ⑸王强与刘威都学过法语。 ⑹如果你不看电影,那么我也不看电影。 ⑺我既不看电视也不外出,我在睡觉。 ⑻除非天下大雨,否则他不乘班车上班。 解:⑴本命题为原子命题; ⑵p:天气冷;q:我穿羽绒服; ⑶p:天在下雨;q:湿度很高; ⑷p:刘英上山;q:李进上山; ⑸p:王强学过法语;q:刘威学过法语; ⑹p:你看电影;q:我看电影; ⑺p:我看电视;q:我外出;r:我睡觉; ⑻p:天下大雨;q:他乘班车上班。 3. 将下列命题符号化。 ⑴他一面吃饭,一面听音乐。 ⑵3是素数或2是素数。 ⑶若地球上没有树木,则人类不能生存。

⑷8是偶数的充分必要条件是8能被3整除。 ⑸停机的原因在于语法错误或程序错误。 ⑹四边形ABCD是平行四边形当且仅当它的对边平行。 ⑺如果a和b是偶数,则a+b是偶数。 解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q ⑵p:3是素数;q:2是素数;原命题符号化为:p∨q ⑶p:地球上有树木;q:人类能生存;原命题符号化为:p→q ⑷p:8是偶数;q:8能被3整除;原命题符号化为:pq ⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p ⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:pq。 ⑺p:a是偶数;q:b是偶数;r:a+b是偶数;原命题符号化为:p∧q→r 4. 将下列命题符号化,并指出各复合命题的真值。 ⑴如果3+3=6,则雪是白的。 ⑵如果3+3≠6,则雪是白的。 ⑶如果3+3=6,则雪不是白的。 ⑷如果3+3≠6,则雪不是白的。 ⑸3是无理数当且仅当加拿大位于亚洲。 ⑹2+3=5的充要条件是3是无理数。(假定是10进制) ⑺若两圆O1,O2的面积相等,则它们的半径相等,反之亦然。 ⑻当王小红心情愉快时,她就唱歌,反之,当她唱歌时,一定心情愉快。 解:设p:3+3=6。q:雪是白的。 ⑴原命题符号化为:p→q;该命题是真命题。 ⑵原命题符号化为:p→q;该命题是真命题。 ⑶原命题符号化为:p→q;该命题是假命题。 ⑷原命题符号化为:p→q;该命题是真命题。 ⑸p:3是无理数;q:加拿大位于亚洲;原命题符号化为:pq;该命题是假命题。 ⑹p:2+3=5;q:3是无理数;原命题符号化为:pq;该命题是真命题。 ⑺p:两圆O1,O2的面积相等;q:两圆O1,O2的半径相等;原命题符号化为:pq;该命题是真命题。 ⑻p:王小红心情愉快;q:王小红唱歌;原命题符号化为:pq;该命题是真命题。 习题

离散数学

离散数学试题(A 卷答案) 一、(10分) (1)证明(P →Q )∧(Q →R )?(P →R ) (2)求(P ∨Q )→R 的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((P →Q )∧(Q →R ))→(P →R ) ??((?P ∨Q )∧(?Q ∨R ))∨(?P ∨R ) ?(P ∧?Q )∨(Q ∧?R )∨?P ∨R ?(P ∧?Q )∨((Q ∨?P ∨R )∧(?R ∨?P ∨R )) ?(P ∧?Q )∨(Q ∨?P ∨R ) ?(P ∨Q ∨?P ∨R )∧(?Q ∨Q ∨?P ∨R ) ?T 所以,(P →Q )∧(Q →R )?(P →R )。 (2)(P ∨Q )→R ??(P ∨Q )∨R ?(?P ∧?Q )∨R ?(?P ∨(Q ∧?Q )∨R )∧((P ∧?P )∨?Q ∨R ) ?(?P ∨Q ∨R )∧(?P ∨?Q ∨R )∧(P ∨?Q ∨R )∧(?P ∨?Q ∨R ) ?2M ∧4M ∧6M ?0m ∨1m ∨3m ∨5m 所以,其相应的成真赋值为000、001、011、101、111:成假赋值为:010、100、110。 二、(10分)分别找出使公式?x (P (x )→?y (Q (y )∧R (x ,y )))为真的解释和为假的解释。 解:设论域为{1,2}。 若P (1)=P (2)=T ,Q (1)=Q (2)=F ,R (1,1)=R (1,2)=R (2,1)=R (2,2)=F ,则 ?x (P (x )→?y (Q (y )∧R (x ,y ))) ??x (P (x )→((Q (1)∧R (x ,1))∨(Q (2)∧R (x ,2)))) ?(P (1)→((Q (1)∧R (1,1))∨(Q (2)∧R (1,2))))∧(P (2)→((Q (1)∧R (2,1))∨(Q (2)∧R (2,2)))) ?(T →((F ∧F)∨(F ∧F)))∧(T →((F ∧F)∨(F ∧F))) ?(T →F)∧(T →F) ?F 若P (1)=P (2)=T ,Q (1)=Q (2)=T ,R (1,1)=R (1,2)=R (2,1)=R (2,2)=T ,则 ?x (P (x )→?y (Q (y )∧R (x ,y ))) ??x (P (x )→((Q (1)∧R (x ,1))∨(Q (2)∧R (x ,2)))) ?(P (1)→((Q (1)∧R (1,1))∨(Q (2)∧R (1,2))))∧(P (2)→((Q (1)∧R (2,1))∨(Q (2)∧R (2,2)))) ?(T →((T ∧T)∨(T ∧T)))∧(T →((T ∧T)∨(T ∧T))) ?(T →T)∧(T →T) ?T

离散数学(大作业)与答案

一、请给出一个集合A,并给出A上既具有对称性,又具有反对称性的关系。(10分)解:A={1,2} R={(1,1),(2,2)} 二、请给出一个集合A,并给出A上既不具有对称性,又不具有反对称性的关系。(10分)集合A={1,2,3} A上关系{<1,2>,<2,1>,<1,3>},既不具有对称性,又不具有反对称性 三、设A={1,2},请给出A上的所有关系。(10分) 答:A上的所有关系: 空关系,{<1,1>,<1,2>,<2,1>,<2,2>} {<1,1>} {<1,2>} {<2,1>} {<2,2>} {<1,1>,<1,2>} {<1,1>,<2,1>} {<1,1>,<2,2>} {<1,2>,<2,1>} {<1,2>,<2,2>} {<2,1>,<2,2>} {<1,1>,<1,2>,<2,1>} {<1,1>,<1,2>,<2,2>}

{<1,2>,<2,1>,<2,2>} {<1,1>,<2,1>,<2,2>} 四、设A={1,2,3},问A 上一共有多少个不同的关系。(10分) 设A={1,2,3},A 上一共有2^(3^2)=2^9=512个不同的关系。 五、证明: 命题公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。(10分) 证明:设公式G 的合取范式为:G ’=G1∧G2∧…∧Gn 若公式G 恒真,则G ’恒真,即子句Gi ;i=1,2,…n 恒真 为其充要条件。 Gi 恒真则其必然有一个原子和它的否定同时出现在Gi 中,也就是说无论一个解释I 使这个原子为1或0 ,Gi 都取1值。 若不然,假设Gi 恒真,但每个原子和其否定都不同时出现在Gi 中。则可以给定一个解释I ,使带否定号的原子为1,不带否定号的原子为0,那么Gi 在解释I 下的取值为0。这与Gi 恒真矛盾。 因此,公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。 六、若G=(P ,L)是有限图,设P(G),L(G)的元数分别为m ,n 。证明:n ≤2m C ,其中2m C 表 示m 中取2的组合数。(10分) 证明:如果G=(P,L)为完全图,即对于任意的两点u 、v (u ≠v ),都有一条边uv ,则此时对于元数为m 的P(G),L(G)的元数取值最大为C m 2。因此,若G=(P,L)为一有限图,设P(G)的元数为m ,则有L(G)

离散数学第1章习题答案

#include #include #include #define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct { ElemType data[MAX_STACK_SIZE]; int top; } Stack; void InitStack(Stack *S) { S->top=-1; } int Push(Stack *S,ElemType x) { if(S->top==MAX_STACK_SIZE-1 ) { printf("\n Stack is full!"); return 0; } S->top++; S->data[S->top]=x; return 1; } int Empty(Stack *S) { return (S->top==-1); } int Pop(Stack *S,ElemType *x) { if(Empty(S)) { printf("\n Stack is free!"); return 0; } *x=S->data[S->top]; S->top--; return 1; } void conversion(int N) { int e; Stack *S=(Stack*)malloc(sizeof(Stack)); InitStack(S); while(N) { Push(S,N%2);

N=N/2; } while(!Empty(S)) { Pop(S,&e); printf("%d ",e); } } void main() { int n; printf("请输入待转换的值n:\n"); scanf ("%d",&n); conversion(n); }习题 1.判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题? (1)离散数学是计算机专业的一门必修课。 (2)李梅能歌善舞。 (3)这朵花真美丽! (4)3+2>6。 (5)只要我有时间,我就来看你。 (6)x=5。 (7)尽管他有病,但他仍坚持工作。 (8)太阳系外有宇宙人。 (9)小王和小张是同桌。 (10)不存在最大的素数。 解在上述10个句子中,(3)是感叹句,因此它不是命题。(6)虽然是陈述句,但它没有确定的值,因此它也不是命题。其余语句都是可判断真假的陈述句,所以都是命题。其中:(1)、(4) 、(8) 、(9) 、是简单命题,、(2) 、(5) 、(7)、(10) 是复合命题。 2.判断下列各式是否是命题公式,为什么? (1)(P→(P∨Q))。 (2)(?P→Q)→(Q→P)))。 (3)((?P→Q)→(Q→P))。 (4)(Q→R∧S)。 (5)(P∨QR)→S。 (6)((R→(Q→R)→(P→Q))。 解 (1)是命题公式。 (2)不是命题公式,因为括号不配对。 (3)是命题公式。 (4)是命题公式。

离散数学

离散数学 作业要求: (1)禁止用附件提交作业。附件提交的作业计0分。 (2)作业按题号顺序作答,乱序、不写题号等视情况扣分。 (3)选择题直接提交答案,不要抄题。 (4)卷面整洁,文字、符号以及图等要清晰可辨。 一、单选题(每题2分,共15小题) 1.集合}}}{{},{,{c b a A =,则下列不属于A 的子集的是( ) A.}}{{a B.}}{{b C.}}}{{{c D.}}{,{b a 2.设全集{1,2,...,9,10}U =的子集为A={偶数},B={奇数},则下列选项正确的是( ) A.A B =? B.A B =? C.A B U = D. 以上答案都不对 3.已知集合}4,3,2,1{=A , },,{c b a B =, }8,6,4,2,1{=C ,定义A 到B 的关系c)}(4,b),(3,a),(2,a),{(1,1=ρ,B 到C 的关系(c,1)}(b,6),{(a,4),2=ρ,则下列属于21ρρ的是( ) A.)8,1( B.)4,1( C.)6,2( D.)1,3( 4.集合}3,2,1{=A 上的关系)}3,1(),1,2(),2,1{(=R ,则R 具有( )

A.对称性 B.自反性 C.可传递性 D.以上说法都不对 5.集合{1,2,3}A =上的下列关系,是由A 到A 的函数的是( ) A.{(1,3),(2,3),(3,1)}f = B.{(1,2),(3,1)}g = C.{(1,1),(2,1),(3,2),(1,3)}h = D.{(1,3),(2,1),(2,2)}I = 6.集合},,{},3,2,1{c b a B A ==,则A 到B 的映射中,是单射的是( ) A.}b)b)(3,a)(2,(1,{ B.}b)b)(3,a)(1,(1,{ C.}c)b)(3,a)(2,(1,{ D.}b)b)(3,b)(2,(1,{ 7. 下面各集合都是N 的子集,( )集合在普通加法运算下是封闭的。 A.}16|{整除的幂可以被x x B.}5|{互质与x x C.}30|{的因子是x x D.}30|{

离散数学作业(2)

离散数学作业布置 第1次作业(P15) 1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 解:(1)p∨(q∧r)=0∨(0∧1)=0 (2)(p?r)∧(﹁q∨s)=(0?1)∧(1∨1)=0∧1 =0 (3)(﹁p∧﹁q∧r)?(p∧q∧﹁r)=(1∧1∧1)? (0∧0∧0)=0 (4)(r∧s)→(p∧q)=(0∧1)→(1∧0)=0→0=1 1.17 判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2 也是无理数。另外只有6能被2整除,6才能被4整除。” 解:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 1.19 用真值表判断下列公式的类型: (4)(p→q) →(﹁q→﹁p) (5)(p∧r) ? (﹁p∧﹁q) (6)((p→q) ∧(q→r)) →(p→r) 解:(4) p q p→q q p q→p (p→q)→( q→p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式,最后一列全为1 (5)公式类型为可满足式(方法如上例),最后一列至少有一个1 (6)公式类型为永真式(方法如上例,最后一列全为1)。 第2次作业(P38) 2.3 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ﹁(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 解:(1) ﹁(p∧q→q) ?﹁(﹁(p∧q) ∨q) ?(p∧q) ∧﹁q?p∧(q ∧﹁q) ? p∧0 ?0 所以公式类型为矛盾式 (2)(p→(p∨q))∨(p→r) ? (﹁p∨(p∨q))∨(﹁p∨r) ?﹁p∨p∨q∨r?1 所以公式类型为永真式 (3) (p∨q) → (p∧r) ?¬(p∨q) ∨ (p∧r) ? (¬p∧¬q) ∨(p∧r) 易见, 是可满足式, 但不是重言式. 成真赋值为: 000,001, 101, 111

离散数学知识点整理

离散数学 一、逻辑和证明 1.1命题逻辑 命题:是一个可以判断真假的陈述句。 联接词:∧、∨、→、?、?。记住“p仅当q”意思是“如果p,则q”,即p→。记住“q除非p”意思是“?p→q”。会考察条件语句翻译成汉语。 系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。 1.3命题等价式 逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。

谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如?x>0P(x)。 当论域中的元素可以一一列举,那么?xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。同理,?xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。 两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如?x(P(x)∧Q(x))和(?xP(x))∧(?xQ(x))。 量词表达式的否定:??xP(x) ??x?P(x),??xP(x) ??x?P(x)。 1.5量词嵌套 我们采用循环的思考方法。量词顺序的不同会影响结果。语句到嵌套量词语句的翻译,注意论域。嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。 1.6推理规则 一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。但有效论证

二、集合、函数、序列、与矩阵 2.1集合 ∈说的是元素与集合的关系,?说的是集合与集合的关系。常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。 A和B相等当仅当?x(x∈A?x∈B);A是B的子集当仅当?x(x∈A→x∈B);A是B的真子集当仅当?x(x∈A→x∈B)∧?x(x?A∧x∈B)。 幂集:集合元素的所有可能组合,肯定有?何它自身。如?的幂集就是{?},而{?}的幂集是{?,{?}}。 考虑A→B的函数关系,定义域、陪域(实值函数、整数值函数)、值域、像集(定义域的一个子集在值域的元素集合)。 一对一或者单射:B可能有多余的元素,但不重复指向。 映上或者满射:B中没有多余的元素,但可能重复指向。 一一对应或者双射:符合上述两种情况的函数关系。 反函数:如果是一一对应的就有反函数,否则没有。 合成函数:fοg(a)=f(g(a)),一般来说交换律不成立。 2.4序列 无限集分为:一组是和自然数集合有相同基数,另一组是没有相同基数。前者是可数的,后者不可数。想要证明一个无限集是可数的只要证明它与自然数之间有一一对应的关系。 如果A和B是可数的,则A∪B也是可数的。

离散数学作业

命题逻辑的基本概念 一、单项选择题 1.下列语句中不是命题的有( ). A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗D.我要努力学习。 2. 下列语句是真命题为( ). A. 1+2=5当且仅当2是偶数 B. 如果1+2=3,则2是奇数 C. 如果1+2=5,则2是奇数 D. 你上网了吗 3. 设命题公式)(r q p ∧→?,则使公式取真值为1的p ,q ,r 赋值分别是 ( ) 0,0,1)D (0 ,1,0)C (1 ,0,0)B (0 ,0,0)A ( 4. 命题公式q q p →∨ )(为 ( ) (A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式 5. 设p:我将去市里,q :我有时间. 命题“我将去市里,仅当我有时间时”符号化为为( ) q p q p q p p q ?∨??→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( ) A. Q P ?→ ; B. Q P →?; C. P Q ?∧? ; D. )(Q P ∧? 二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化 (1)中国有四大发明。 (2)2是有理数。 (3)“请进!” (4)刘红和魏新是同学。 (5)a+b (6)如果买不到飞机票,我哪儿也不去。 (8)侈而惰者贫,而力而俭者富。(韩非:《韩非子显学》) (9)火星上有生命。 (10)这朵玫瑰花多美丽啊! 二、将下列命题符号化,其中p:2<1,q:3<2 (1)只要2<1,就有3<2。 (2)如果2<1,则32。 (3)只有2<1,才有32。 (4)除非2<1,才有32。 (5)除非2<1,否则32。

离散数学作业

离散数学作业 软件0943 张凌晨38 李成16 1.设S={1,2,3,4},定义S上的二元运算*如下: x*y=(xy) mod 5任意x,y属于S 求运算*的运算表. 解(xy) mod 5表示xy除以5的余数,所以运算表如下: 2.设*为Z+上的二元运算,任意x,y属于Z+, x*y=min(x,y),即x和y之中的较小数. (1)求4*6,7*3. (2)*在Z+上是否满足交换律、结合律和幂等律? (3)求*运算的单位元、零元及Z+中所有可逆元素的逆元.

解 (1)由题得:4*6=min(4,6)=4; 7*3=min(7,3)=3. (2)由题分析知: *运算是取x和y之中的较小数,即x和y调换位置不影响结果,所以*在Z+上满足交换律. *运算满足结合律,因为任意x,y属于Z+,有 (x*y)*z=min(x,y)*z=min(min(x,y),z) x*(y*z)=x*min(y,z)=min(x,min(y,z)) 无论x,y,z三数中哪个较小,*运算的最终结果都是较小的那个,所以满足结合律. *运算满足幂等律,因为在Z+上任意 x*x=min(x,x)=x (3)在Z+中最小的数字是1 任意x属于Z+,有 x*1=1=1*x 所以1是*运算的零元,*运算没有单位元,也没有可逆元素的逆元。

3.令S={a,b},S 上有四个二元运算:*,&,@和#,分别由下表确定. (1)这四个运算中哪些运算满足交换律、结合律、幂等律? (2)求每个运算的单位元、零元及所有可逆元素的逆元. 解 (1)*,&和@满足交换律;*,@和#满足结合律;#满足幂等律。 (2)*运算没有单位元和可逆元素,a 是零元;&运算的单位元为a ,没有零元,每个元素都是自己的逆元;@运算和#运算没有单位元, 零元和可逆元素.

离散数学答案(尹宝林版)第一章习题解答

第一章 命题逻辑 习题与解答 ⒈ 判断下列语句是否为命题,并讨论命题的真值。 ⑴ 2x - 3 = 0。 ⑵ 前进! ⑶ 如果8 + 7 > 20,则三角形有四条边。 ⑷ 请勿吸烟! ⑸ 你喜欢鲁迅的作品吗? ⑹ 如果太阳从西方升起,你就可以长生不老。 ⑺ 如果太阳从东方升起,你就可以长生不老。 解 ⑶,⑹,⑺表达命题,其中⑶,⑹表达真命题,⑺表达假命题。 ⒉ 将下列命题符号化: ⑴ 逻辑不是枯燥无味的。 ⑵ 我看见的既不是小张也不是老李。 ⑶ 他生于1963年或1964年。 ⑷ 只有不怕困难,才能战胜困难。 ⑸ 只要上街,我就去书店。 ⑹ 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。 ⑺ 如果林芳在家里,那么他不是在做作业就是在看电视。 ⑻ 三角形三条边相等是三个角相等的充分条件。 ⑼ 我进城的必要条件是我有时间。 ⑽ 他唱歌的充分必要条件是心情愉快。 ⑾ 小王总是在图书馆看书,除非他病了或者图书馆不开门。 解 ⑴ p :逻辑是枯燥无味的。 “逻辑不是枯燥无味的”符号化为 ?p 。 ⑵ p :我看见的是小张。q :我看见的是老李。 “我看见的既不是小张也不是老李”符号化为q p ?∧?。 ⑶ p :他生于1963年。q :他生于1964年。 “他生于1963年或1964年”符号化为p ⊕ q 。 ⑷ p :害怕困难。q :战胜困难。 “只有不怕困难,才能战胜困难”符号化为q → ? p 。 ⑸ p :我上街。q :我去书店。 “只要上街,我就去书店”符号化为p → q 。 ⑹ p :小杨晚上做完了作业。q :小杨晚上没有其它事情。 r :小杨晚上看电视。s :小杨晚上听音乐。 “如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐”符号化为s r q p ∨→∧。 ⑺ p :林芳在家里。q :林芳做作业。r :林芳看电视。 “如果林芳在家里,那么他不是在做作业就是在看电视”符号化为r q p ∨→。 ⑻ p :三角形三条边相等。q :三角形三个角相等。

华南理工离散数学作业题2017版

华南理工大学网络教育学院 2014–2015学年度第一学期 《离散数学》作业 (解答必须手写体上传,否则酌情扣分) 1.设命题公式为?Q∧(P→Q)→?P。 (1)求此命题公式的真值表; (2)求此命题公式的析取范式; (3)判断该命题公式的类型。 解:(1)真值表如下: P Q ?Q P →Q ?Q∧(P→Q)?P ?Q∧(P→Q)→?P 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 (2)?Q∧(P→Q)→?P??(?Q∧(?P∨ Q)) ∨? P ?( Q∨? (?P∨ Q)) ∨? P ?? ( ?P∨ Q) ∨ (Q∨?P) ?1(析取范式) ?(?P∧? Q) ∨ (?P∧ Q) ∨ (P∧? Q) ∨(P∧ Q)(主析取范式) (3)该公式为重言式 2.用直接证法证明 前提:P∨Q,P→R,Q→S 结论:S∨R 解:(1)?S P (2)Q →S P (3) ? Q (1)(2) (4)P∨ Q P

(5)P (3)(4) (6) P → R P (7)R (5)(6) (8)?S→ R (1)(7) 即SVR得证 3.在一阶逻辑中构造下面推理的证明 每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。 令F(x):x喜欢步行。G(x):x喜欢坐汽车。H(x):x喜欢骑自行车。 解:前题:?x (F (x) →?G(x)), ?x (G (x) ∨H (x)) ? x ?H (x) 结论:? x ?F (x) 证:(1)? x ?F (x) p (2) ?H (x) ES(1) (3) ?x (G (x) ∨H (x))P (4)G(c) vH(c)US(3) (5)G(c) T(2,4)I (6)?x (F (x) →?G(x)), p (7)F (c) →?G(c) US(6) (8) ?F (c) T(5,7)I (9)( ? x) ?F (x) EG(8) 4.用直接证法证明: 前提:(?x)(C(x)→W(x)∧R(x)),(?x)(C(x)∧Q(x)) 结论:(?x)(Q(x)∧R(x))。 证: (1)(?x)(C(x)∧Q(x))P (2) C (c) ∧Q(c)ES(1) (3)(?x)(C(x)→W(x)∧R(x))P

离散数学作业答案一

离散数学作业7 离散数学数理逻辑部分形成性考核书 面作业 本课程形成性考核书面作业共3次,内容主要分别就是集合论部分、图论部分、数理逻辑部分的综合练习,基本上就是按照考试的题型(除单项选择题外)安排练习题目,目的就是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业就是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”与“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值就是 T 或1 . 2.设P :她生病了,Q :她出差了.R :我同意她不参加学习、 则命题“如果她生病或出差了,我就同意她不参加学习”符号化的结果为 (P ∨Q)→R . 3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式就是 )()(R Q P R Q P ?∧∧∨∧∧ . 4.设P (x ):x 就是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ))()((x Q x P x ∧? . 5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 ))()(())()((b B a B b A a A ∧∨∨ . 6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(?x )A (x ) 的真值为 F 或0 . 7.谓词命题公式(?x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(?x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x . 三、公式翻译题 1.请将语句“今天就是天晴”翻译成命题公式. P 。,P 则今天是天晴设答:: 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. Q 。P ;,Q P ∧则小李去旅游小王去旅游设答::: 3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式. Q 。P ;,Q P →则我去滑雪明天下雪设答;:: 4.请将语句“她去旅游,仅当她有时间.”翻译成命题公式.

离散数学部分概念和公式总结(考试专用)

命题:称能判断真假的陈述句为命题。 命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。 命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。若指定的一组值使A的值为真,则称成真赋值。真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。 命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。 (2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。 (3)若A至少存在一组赋值是成真赋值,则A是可满足式。 主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。 主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。 命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B是等值的,记作A<=>B。 约束变元和自由变元:在合式公式?x A和?x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。 前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。集合的基本运算:并、交、差、相对补和对称差运算。 笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。 二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。特殊关系:(1)、空关系:Φ(2)全域关系:EA={ | x∈A ∧y∈A }= A×A (3)恒等关系:IA={ | x∈A} (4)小于等于关系:LA={| x, y∈A∧x≤y∈A },A ? R (5)整除关系:R? ={| x,y∈ψ∧x ? y} ,ψ是集合族 二元关系的运算:设R是二元关系, (1)R中所有有序对的第一元素构成的集合称为R的定义域dom R = { x |?y(∈R)} (2)R中所有有序对的第二元素构成的集合称为R的值域ranR = {y |?x(∈R)} (3)R的定义域和值域的并集称为R的域fld R= dom R∪ran R 二元关系的性质:自反性,反自反性,对称性,反对称性,传递性。 等价关系:如果集合A上的二元关系R是自反的,对称的和传递的,那么称R是等价关系。设R是A上的等价关系,x , y是A的任意元素,记作x~y。 等价类:设R是A上的等价关系,对任意的?x∈A,令[x]R={ y| y∈A∧x R y },称[x]R 为x关于R的等价类。 偏序关系:设R是集合A上的二元关系,如果R是自反的,反对称的和传递的,那么称R 为A上的偏序,记作≤;称序偶< A ,R >为偏序集合。 函数的性质:设f: A→B, (1)若ran f = B,则称f 是满射(到上)的。 (2)若?y∈ ran f 都存在唯一的x∈A 使得f(x)=y,则称f 是单射(——)的。 (3)若f既是满射又是单射的,则称f是双射(——到上)的。

离散数学作业答案完整版

离散数学作业答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

离散数学集合论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数 理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题 目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识 点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地 完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答 过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在03任务界 面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)- A B P(B )={{3},{1,3},{2,3},{1,2,3}},A? B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} . 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} ∈ y x∈ y < > = {B , , x , 2 y A x 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素{,} ,则新得到的关系就具有对 称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自反闭 包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>} . 二、判断说明题(判断下列各题,并说明理由.)

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学

计算机专业通知:计算机资料就是同学们网上学习的阶段测试和简答练习等资料,请同学们打印下来复习,如有新的资料更新会通知大家!(以下资料只是网上一部分) 离散数学 一、单项选择题 1、(p∨(q∧r))→(p∧q∧r)的主析取范式是:(B ) A. ∑(0,1) B. ∑(0,1,7) C. ∑(0,7) D. ∑(1,7) 2、下列是真命题的是(A ) A. 2是素数 B. 2+3=6 C. 雪是黑色的 D. 3能被2整除 3、设P:我们划船,Q:我们跳舞,命题“我们不能既划船又跳舞”符号化为(B ) A. P Q B. ┐(P∧Q) C. ┐P∧┐Q D. ┐P∧Q 4、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真 (A) A. 自然数 B. 实数 C. 复数 D. 前面三者均成立 5、当P的真值是1,Q的真值是1 R的真值是0,下列复合命题中真值为0的是(D ) A. (PvQ)→R B. R→(P ? Q) C. (PvR) →Q D. (P ?R)??Q 6、设A={1,2,3},则下列说法正确的是(C ) A. R={<1,1>,<2,2>,<3,3>,<1,2>}在A上是反自反的 B. R={<2,3>,<3,2>}在A上是自反的 C. R={<1,2>,<2,1>,<3,3>在A上是对称的 D. R={<1,2>,<1,3>}在A上是对称的 7、下面关于集合的表示中,正确的是(B ). A. φ=0 B. φ∈{φ} C. φ∈φ D. φ∈{a,b} 8、设A={?},B=P(P(A)),以下不正确的式子是()(分数:1分) A. .{{? },{{? }},{?,{? }}}包含于B B. {{{? }}}包含于B C. {{?,{? }}}包括于B D. {{? },{{?,{? }}}}包含于B 标准答案是:D。您的答案是: 9、六阶群的子群的阶数可以是()。(分数:1分) A. 1,2,5 B. 2,4 C. 3,6,7 D. 2,3 标准答案是:D。您的答案是: 10、设G是n个结点、m条边和r个面的连通平面图,则m等于()。(分数:1分) A. n+r-2 B. n-r+2 C. n-r-2 D. n+r+2 标准答案是:A。您的答案是:

离散数学(一)

离散数学(一) 一、数理逻辑和代数系统部分基本要求(35分左右) ①理解命题的定义及否定,合取,析取,蕴含,等价等五种联结词的定义(联结词的完 备集和真值函数不做要求)。 ②理解合式公式的定义,理解重言式,矛盾式及可满足式的概念,能熟练将命题符号化。 ③理解等值式的定义,能熟练进行等值演算,理解主析取式和主合取式的定义。 ④能熟练用真值表法和等值演算发求命题公式的主范式及判断公式的类型(特别是会求 主范式)。 ⑤熟练掌握在自然推理系统中进行推理的几种方法:(1)直接证明法,(2)附加前提法, (3)归谬法。 ⑥理解个体词、谓词、量词的概念(在一阶逻辑中能正确地将命题符号化)。 ⑦理解一阶逻辑中合式公式的定义,理解约束变元和指导变元的概念;理解一阶逻辑中 永真式、矛盾式及可满足式的定义;理解一阶逻辑中的等值式的概念,掌握置换规则,替换规则及代替规则。 ⑧理解半群的定义和性质,理解、独异点、群和子群的概念。【掌握子群判定,理解阿 贝尔群的定义、性质,理解循环群的定义掌握其结构,理解陪集与拉格朗日定理,考试不做要求】。 ⑨理解前束范式的概念,掌握前束范式的求法;熟练使用量词的消去和引入规则,熟练 掌握一阶逻辑推理的推理理论。 二、二元关系的基本要求(30分左右)(集合与函数不做要求) 1.掌握子集、空集、幂集等等概念,熟练进行集合的交,并,补,对称差等运算【能利用集 合的恒等式及定义证明两个集合相等。(考试不要求)】 A 的性质。 2、理解集合A,B的笛卡儿积的定义,B 3、掌握二元关系的三种表达方式,掌握关系的求逆和关系的复合运算以及运算的性质。 4、理解闭包的定义,掌握其画法;理解关系的自反性、反自反性、对称性、反对称性、传 递性的概念,理解等价关系、划分、等价类及商集的概念。 5、理解偏序集的概念,熟练掌握哈斯图的画法,并会求集合的最大最小元,极大极小元, 上确界,下确界。 6. 理解函数概念、单射、满射、双射的定义及性质,掌握函数的复合与求逆。(考试不要求)

相关文档
最新文档