既有钢-混组合梁桥常见病害分析及其加固策略.

既有钢-混组合梁桥常见病害分析及其加固策略.
既有钢-混组合梁桥常见病害分析及其加固策略.

既有钢一混组合梁桥常见病害分析及其加固策略 159

既有钢一混组合梁桥常见病害分析及其加固策略

黄侨1,2荣学亮2陆军3

(1.东南大学桥梁与隧道工程研究所南京210096;

2.哈尔滨工业大学桥梁工程研究所哈尔滨 150090;

3.苏州天狮建设监理有限公司苏州 215011

摘要:钢一混组合粱桥以其施工速度快,建筑高度小,抗震性能好等优点,在我国公路和城市桥梁建设中得到了广泛的应用。但是由于交通量和重型车辆的不断增加,空气、水汽、工业烟尘以及其他化学和污染物的环境作用,缺乏定期的养护维修等原因,既有钢一混组合梁桥在运营若干年后,出现了不同程度的病害问题。为保证该类桥梁的安全运营,延长其使用寿命,必须对该类型桥梁进行维修、加固。本文通过调研国内外既有钢一混组合梁桥的运营状况,总结、归纳了该类桥梁出现的几种常见病害, 并在病害成因分析的基础上,研究了该类桥梁的加固方法。并对几种不同的加固方式进行了对比分析,研究了各种加固方法的适用性。对症下药,几种加固方法相结合,变被动加固为主动加固的加固设计理念贯彻于本文的加固方法中。

关键词:钢一混组合梁桥病害加固方法体外预应力

1引言

钢一混组合梁桥是一种在公路尤其城市桥梁工程中应用较多的结构形式之一。该结构形式最早出现于 19世纪末20世纪初,经过几代工程师们近百年深入、细致、全面地研究和应用。自20世纪70年代开始快速发展。以法国为例,据该国1990~t993年建设的桥梁上部结构的统计分析,工字钢梁与混凝土桥梁构成的公路组合梁在跨长30--dlOm范围内最有竞争力,在60~80m跨长则有明显优势。组合粱的占有率达85%。在我国公路和城市桥梁中,组合梁的应用也取得了举世公认的进步,1993建成的上海杨浦大桥(跨径为 602m,2001建成的福建青州闽江大桥(跨径为

605m。其加劲梁均采用了钢一混组合结构,在同类型桥梁中位居世界前列。2005年我国首座波形钢腹板PC组合箱梁公路桥一泼河大桥建成通车(跨径4×30m,2006年建成通车的常州新运河平陵大桥为国内首例大跨度(主跨llOm钢一混凝土组合连续梁桥,2005年开工建设中的河南鄄城黄河大桥是目前世界上最长的波形钢腹板PC 组合箱梁桥(跨径58X50re。在城市立交桥建设中,钢-混组合梁也以其跨越能力大,建筑高度小,抗震性能好以及施工速度快等优点得到了广泛的应用,建成了以北京航天桥(主跨73m、朝阳桥(主跨64m、淮安市长征桥(跨径18.5m+30m+18.5m为代表的一批钢一混组合连续梁桥,取得了较好的技术经济效益。可以预期进入21世纪后,钢一混组合梁这种结构形式必将得到更大的发展。

2常见病害及成因分析

应该指出的是,国内外既有钢一混组合梁桥目前的运营状况较好,出现的问题也不算严重,但是未雨绸缪,随着该类型结构形式桥梁在国内的进一步推广使用,以及由于经济快速发展带来的对桥梁功能要求的提高。对其进行病害分析及加固策略研究也是必要的。根据已有文献资料的研究报道以及现场调研表明,既有钢混组合梁桥常出现以下几种病害。

既有钢一混组合梁桥常见病害分析及其加固策略I∞

采用直径13ram、长51ram的螺栓。CFRP板材的粘贴位置如?图5所示,通过加载试验后,得出如下结论:①使用CFRP加

固后的试验梁,强度增加最大可达45OA;②使用CFRP加固黼土扳后,试验梁的刚度也有显著的增加,当P=128kN时,加固后

的试验梁的跨中挠度仅为同样荷载作用下,控制梁跨中挠度

的25%;③加固材料CFRP的弹性模量不得小于被加固梁中

钢材的弹性模量。众多试验研究表明,采用碳纤维片材加固

钢一混组合梁桥可以有效的提高原桥地承载能力,减小主梁, 挠度。

812mm

l ‘‘‘-一T-.f一‘.’1

一钢粱 E 之爿图5CFRP板材加固组合粱示意图

3.3钢梁裂纹或锈蚀等缺陷的修补

’当钢梁出现裂纹进行修补时,如仅以焊接和增加盖板等将裂纹堵塞一下,是不能解决问题的。必须充分调查裂缝发生部位的钢材质量、焊接状态、应力状态、锈蚀状况和疲劳状态等,依据调查的结果采取对策。有时,为了改善材质,必须更换构件,为了改善应力状态,必须优化构造细节或变更结构。当钢梁发生锈蚀时, 必须及时除锈,并按钢结构的防腐要求进行防腐处理。

3.4混凝土桥面板更换

由于受到车辆局部荷载的反复作用及混凝土碳化、钢筋锈蚀,板抗弯能力相对较弱,钢一混凝土组合梁桥的桥面板使用寿命一般应低于其钢梁的使用寿命。当混凝土桥面板局部破裂或腐蚀严重时,需要局部或整体更换混凝土桥面板。在凿除混

凝土桥面板后应同时检查剪力连接件的使用情况,必要时可更换或增加剪力连接件数量后,再重新浇筑桥面板。

3.5更换剪力键

当发现梁端的混凝土桥面板与钢梁明显错位,表明剪力键已因疲劳或纵向剪力过大而失效。在此情况下,必须凿除混凝土桥面板,更换剪力键并重新浇筑混凝土桥面板。否则钢一混凝土组合梁将蜕化为钢一混凝土叠合梁,其挠度将明显增大、承载能力将大幅降低。

3.6钢板局部失稳的处理 . 对于局部失稳的钢板可采取局部更换钢板、局部粘贴或加焊钢板及箱内局部增加横向或纵向加劲肋的措施,以增加其局部稳定性。

4结语

(1既有钢一混组合梁桥最常见的,也是最可能出现的病害,其包括:钢梁构件由于锈蚀、疲劳、高应力集中及焊接残余应力等因素导致出现裂纹,而引起构件的脆性断裂;钢一混组合梁桥特有的构造和施工过程导致的组合连续梁桥负弯矩区桥面板开裂和桥面板纵向开裂;混凝土桥面板局部破损、腐蚀;剪力键剪断或疲劳破坏等。

(2已有研究表明,当既有钢一混组合梁桥承载能力不足,或荷载等级要求提高时,可以采用体外预应力或粘贴碳纤维片材的加固方法。这两种方法均可以有效地提高既有钢一混凝土组合梁桥的承载能力,一般情况下提高幅度可达到20%"--40%。

(3剪力键是保证钢梁和混凝土桥面板共同工作的关键所在,如果因其疲劳或承受过大的纵向剪力而破坏时,必须更换之。否则钢一混凝土组合梁的组合作用已不复存,并将蜕化为叠合梁,其承载能力将大幅降低。

(4钢一混凝土组合梁桥具有钢筋混凝土结构和钢结构的共性问题,例如混凝土桥面板开裂、破损和钢粱腐蚀、疲劳裂纹、鼓包等病害;同时也具有其独特的个性问题,例如剪力键的疲劳和剪断问题。在实际工程中须对具体的病害进行具体的分析,进而采取具有针对性的加固策略,以达到加固的目的。

l甜全国既有桥梁加固、改造与评价学术会议论文集参考文献[1][2][3][4][5][6][7]陈开利,王邦楣,林亚超.桥梁工程鉴定与加固手册.北京:人民交通出版社,2005.张劲泉,王文涛.桥梁检测与加固手册.北京:人民交通出版社,2007.黄侨.桥梁钢一混凝土组合结构设计原理.北京:人民交通出版社,2004.叶梅新,黄琼.钢结构事故研究.长沙铁道学院学报,2002,20(4):6—10.AI-Saidy,Klaiber,Wipf.RepairofSteelCompositeBeamswithCarbonFiber-ReinforcedPolymerPlates.JournalofCompositesforConstruction,2004,8(2):163—172.M.Tavakkolizadeh,H.Sadatmanesh.StrengtheningofSteel-ConcreteCompositeGirdersUsingCar—bonFiberReinforcedPolymersSheets.JournalofStructuralEngineering,2003,129(1):30-40.聂建国,温凌燕.体外预应力加固钢一混凝土连续组合粱的承载力分析.工程力学,2006,23(1):81—86。

常见桥梁病害的形式及成因

常见桥梁病害的形式及成因 桥连四海,路通八方,桥梁的兴建与畅通,促进了人类社会的文化和经济生活的繁荣与发展。但是桥梁一旦发生倒塌事故,就会带来巨大的损失和灾难。近些年,人们已经开始注意到了各种病害正在不同程度地侵扰着我国正在服役的30多万座既有桥梁。据统计,在我国存在安全隐患和耐久性问题的桥梁约占总数的50%,个别地方甚至超过了70%,在这些桥中危桥又占20%~30%,约有9597座。如何对这些既有桥梁做出正确的检测、评估及加固,目前理论上尚没有很好的解决办法,究其原因,主要是对病害及其发生机理缺乏系统、清楚的认识。 一、桥梁病害的主要形式 钢筋混凝土桥梁的病害主要有下列几种形式: 1、裂缝 裂缝是钢筋混凝土桥梁中最普遍、最常见的病害之一,不产生裂缝的桥梁几乎没有。而且裂缝往往是多种因素联合作用的结果。裂缝对钢筋混凝土桥梁的危害程度不一,严重的裂缝如贯穿缝、网裂等将会严重危及桥梁的安全运行。另外裂缝往往也会引起其它病害的发生与发展,如钢筋锈蚀、冻融破坏等,这些病害与裂缝形成恶性循环,会对桥梁的耐久性产生很大的危害。 2、混凝土碳化及钢筋锈蚀 混凝土碳化及钢筋锈蚀现象在钢筋混凝土桥梁中普遍存在。当混凝土炭化和钢筋锈蚀程度日渐严重后,桥梁必然会产生较多的顺筋裂缝,这会造成桥梁使用安全性降低和使用寿命缩短。 3、剥蚀 剥蚀是从混凝土的外观破坏形态着眼,对混凝土桥梁结构表面混凝土发生蜂窝麻面、露石、酥松起皮和剥落等病害的统称。根据不同的机理可分为冻融剥蚀、冲磨和空蚀、水质侵蚀、风化剥蚀等。 4、结构构造的破坏 在钢筋混凝土桥梁中,由于结构的关键部位构造不合理、施工中存在问题或年代久远等而引起的结构构造老化、失稳、变形过大等已在一定程度上影响了桥梁的安全运行。 5、地基不均匀沉降引起的破坏

桥梁常见病害原因分析及处置方法

桥梁常见病害 原因分析及处置方法

目录 目录 (1) 一、混凝土常见病害 (4) 1、剥落、露筋 (4) 2、蜂窝麻面 (5) 3、混凝土腐蚀 (5) 4、网状裂缝 (6) 二、上部承重构件 (6) 1、T梁斜向裂缝 (6) 2、T梁马蹄处及板梁梁底的纵向裂缝 (6) 3、梁底的横向裂缝 (7) 4、箱梁翼板横向裂缝 (8) 5、箱梁腹板纵向裂缝 (8) 三、上部一般构件 (9) 1、湿接缝腐蚀、脱落 (9) 2、横隔版 (10) 3、湿接板渗水腐蚀 ............................................................................................................... 10、 四、支座 (11) 1、老化变质、开裂 (11) 2、剪切变形、开裂(剪切超限) (11) 3、支座位置串动、脱空 (11) 五、桥墩 (12) 1、自基础向上的竖向裂缝 (12) 2、环向、水平裂缝 (12) 3、竖向裂缝 (12) 4、顺筋裂缝 (12) 六、桥台 (13) 1、自基础向上发展至台身的裂缝,下宽上窄的 (13) 2、台身的水平裂缝 (13) 3、台身前墙竖向贯通裂缝 (13) 4、挡块裂缝 (13) 七、墩台帽梁 (14) 1、自上而下的竖向裂缝以及顶部的纵向裂缝 (14) 2、自下而上的竖向裂缝以及底部的纵向裂缝 (14) 3、保护层过薄引起的表层开裂 (14) 4、自垫石向下发展的裂缝 (15) 八、基础 (15) 1、冲刷掏空 (15) 2、沉降 (15) 九、翼墙、耳墙 (15) 1、位移、倾斜 (15) 2、裂缝 (15)

桥梁监控测量方案

桥梁监控测量方案 导线控制测量、桥轴线测量控制、墩、台、桩定位测量、支座垫石施工放样和支座安装、桥面控制测量、高程控制测量 1、导线控制测量 利用设计单位提供的已知点,用全站仪(必要时用GPS)补测导线点,并形成三维导线控制网进行桥轴线平面位置控制。经环导闭合测量,角度闭合差、坐标闭合差均满足一级导线技术要求。 2、桥轴线测量控制 利用已知的控制点坐标及施工图提供的桥轴线控制点坐标,用坐标放线法进行各匝道桥桥轴线恢复测量。即以桥轴线长度作为一个边,而布置成闭合导线,再采用坐标法施放轴线上各点。 3、墩、台、桩定位测量 施工阶段测定桥轴线长度,目的就是为了建立起施工放样墩、台、桩的平面控制。墩、台、桩定位测量的内容就是准确定出桥墩、台、桩的中心位置和它的纵轴线。可根据设计单位提供的墩、台、桩设计坐标,按坐标反算求出坐标法的放样数据,用以施放墩、台、桩平面位置。同时采用坐标法,在不同曲线控制点、交点设站,直接测距,对施放的墩、台、桩位置进行复核验证。 (1)桩基础钻孔定位放样 根据设计图计算出每个桩基中心的放样数据,设计图纸中已给出的数据也应经过复核后方可使用。施工放样采用全站仪坐标法进行。 (2)承台施工放样 用全站仪坐标法放出承台轮廓线特征点,供安装模板用。通过吊线法和水平靠尺进行模板安装,安装完毕后,用全站仪测定模板四角顶口坐标,直至符合规范和设计要求。用水准仪进行承台顶面的高程放样,其精度应达到四等水准要求,用红油漆标示出高程相应位置。 (3)墩身放样 桥墩墩身形式多样,大型桥梁地般采用分离式矩形薄壁墩。墩身放样时,先在已浇筑承台的顶面上放出墩身轮廓线的特征点,供支模板用(首节模板要严格控制其平整度)。用全站仪测出模板顶面特征点的三维坐标,并与设计值相比较,

桥梁常见的病害分析及其防治措施

桥梁常见的病害分析及其防治措施 (重庆交通大学建筑与土木工程学院重庆 400074) 摘要:本文对引起桥梁病害的常见种类和主要成因以及相应的措施, 如下部结构、上部结构、混凝土、桥面铺装和裂缝等进行了具体的归纳和总结, 并对主要成因提出了相应的措施。对施工技术、桥梁运营期间的监测及养护工作有一定的指导意义。 关键词:桥梁;病害;成因;措施 Analysis of Bridge Common Diseases And Preventive Measures (Chongqing jiaotong University, Chongqing 400074, China) Abstract: In this paper, the main causes of common species and diseases caused by the bridge and the corresponding measures, as the Ministry of the structure, the upper structure, concrete, cracks, etc. deck pavement and concrete and summarized, and the main causes of the appropriate measures proposed . Of construction technology, operational monitoring and maintenance work during the bridge has some significance. Key words:Bridges; disease; causes; measures 0 引言 随着我国经济的迅速发展和经济的全球化,大力发展交通运输事业,建立四通八达的现代交通网络,这不仅有利于经济的进一步发展,同时对促进文化交流、加强民族团结、缩小地区差别、巩固国防等方面,也都有非常重要的意义。我国自改革开发以来,路、桥建设得到了飞速的发展,对改善人民的生活环境,改善投资环境,促进经济的腾飞,起到了关键性的作用[1]。桥梁是我国现代化建设的重要基础设施,在经济建设中发挥了促进作用。然而,随着大量桥梁服役年限的提高,在荷载和环境的共同作用下,各种各样的病害相继产生,对桥梁的安全运营造成了隐患。 1病害的概念 《公路工程结构可靠度设计统一标准》(GB厂r 50283—1999)规定公路工程结构必须满足下列功能要求: (1) 在正常施工和正常使用时,能承受可能出现的各种作用; (2) 在正常使用时,具有良好的工作性能; (3) 在正常维护下,具有足够的耐久性能; (4) 在预计的偶然事件发生时及发生后,仍能保持必需的整体稳定性。 凡由于人为的(勘察、设计、施工、使用等)或自然的(地质、风雨、冰冻等)原因,使桥梁结构出现不符合上述规范和标准要求的一些问题和现象统称桥梁结构的病害[2]。 2 桥梁常见病害分析 2.1下部墩台及基础的病害 基础的缺陷和病害主要表现为:(1)基础的缺陷和病害主要表现为:承载力不足而使基础均匀沉陷;基础的滑移和倾斜,以及基底局部冲空(如图1);础结构物的异常应力和开裂。

桥梁监控方案参考

桥梁监控方案参考 Document number:BGCG-0857-BTDO-0089-2022

目录

XXXX连续箱梁桥施工监控方案 一、工程概况 ……。主箱梁预应力采用纵、横、竖三向预应力体系。主梁采用C50混凝士,按照悬臂现浇法施工。下部采用板式墩身,钻孔灌注桩基础。 本桥采用节段悬臂灌注法施工。先由0#段对称向两侧悬臂施工,形成单“T”,先合拢边跨,再合拢中跨,完成梁部施工。主梁最大悬臂施工长度64m,分成18个悬臂段,边跨直线段长22.85m,再边墩旁搭设支架现浇施工。 桥梁设计设计时速100km/h;设计荷载取按公路——I 级的倍,温度作用、汽车制动力及冲击力按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。 二、施工控制的目的、意义 对于分节段悬臂浇筑施工的预应力混凝土连续梁桥来说,从开工到成桥要经过一个复杂的施工过程,结构要经过多次体系转换,结构内力和变形亦随之不断发生变化,并决定成桥后结构的受力及线形。由于各种因素的直接和间接影响,使得实际桥梁在施工过程中的每一状态几乎不可能与设计状态完全一致,施工控制就是在施工过程中根据施工监测所得的结构参数真实值进行施工阶段计算,确定出每个悬臂浇筑节段的立模标高,并在施工过程中根据施工监测的成果对

误差进行分析、预测和对下一立模标高进行调整,以此来保证施工沿着预定轨道(能达到成桥设计目标的施工路径)进行,从而保证主梁合拢段两悬臂端标高的相对偏差不大于规定值(±15mm),成桥后主梁各控制点的标高与设计值最大相差控制在30mm以内,成桥后主梁各控制截面的内力与设计值最大相差控制在10%以内。 总之,桥梁施工控制的目的就是保证施工过程中主桥结构的安全、桥梁顺利合拢、桥梁成桥受力状态及合拢后桥面线形良好。三、施工监控方法和依据 本桥采用悬臂施工,属于典型的自架设施工方法。由于连续梁桥在施工过程中的已成结构(悬臂梁段)几何状态(平面、立面)是无法事后调整的,所以,施工控制主要采用事前预测和事中控制法,主要体现在施工控制结构仿真分析、施工监测(包括结构变形与应力监测)、施工误差分析与后续施工状态预测、梁段施工立模标高提供等几个方面。 (一)施工控制方法 大跨度连续梁桥,悬臂施工中每个节段的受力状态达不到设计所确定的理想目标的重要原因是计算模型中计算参数的取值问题,主要包括混凝土弹性模量、材料的容重、徐变系数和预应力张拉力与施工中实际情况有一定的差距以及环境温度、临时荷载的影响。要得到比较准确的控制调整量,必须根据施工中实测到的结构反应来修正计算

桥梁常见病害原因及技术处理方法

桥梁常见病害原因及处理方法 混凝土梁式上部结构常见病害原因及处理方法 混凝土梁桥 病害类型 病害原因技术处理方法 蜂窝、麻面;剥落、掉角;空洞或孔洞施工工艺控制不严所致。集料的级配、混凝土 配合比设计不合理,使集料之间有较大的空隙, 混凝土拌合物和易性欠佳,影响混凝土施工操 作,使拌合不均匀,运输时间较长易分层离析, 浇筑时不易捣实。 凿除表面松散混凝土,采用环氧树脂小 石子混凝土或膨胀水泥混凝土等材料 采用灌注、挤压、涂抹等方法修复。 露筋 保护层垫块设置不牢固,振捣时垫块移位造成 钢筋紧贴模板,形成露筋。采用环氧树脂小石子混凝土恢复或增加混凝土保护层。 钢筋锈蚀保护层受到破坏或保护层厚度不足,在周围有 害环境作用下产生,钢筋锈蚀产生的裂缝均沿 钢筋方向。 凿除锈蚀钢筋表层混凝土,涂刷渗透性 阻锈剂;采用环氧树脂小石子混凝土或 膨胀水泥混凝土等材料采用灌注、挤 压、涂抹等方法修复;混凝土表层采用 丙烯酸或环氧树脂等涂料进行防护。 跨中变形;构件变形;结构 位移主要由荷载引起,随着汽车技术的发展单车质 量有逐渐增大的趋势,特别是一些私自改装车 辆,单车重量远远超过设计荷载。 加强对结构变形的监测,若变形进一步 发展,则采取相应的加固措施。 非结构性裂 缝温度变化、混凝土收缩、地基不均匀沉降,等 因素引起变形,当此变形得不到满足时,在结 构构件内部产生自应力,当此自应力超过混凝 土允许拉应力时,产生裂缝。 采用环氧树脂或水泥浆表面封闭处理。 结构性裂缝由外荷载产生的裂缝,其裂缝分布规律与外力 荷载作用相对应,预示结构承载能力不足或外 力荷载过大。 1)小于0.15mm的裂缝采用甲凝(粘 度小,有很好的渗透性,易于灌入细微 的裂缝)表面封闭处理; 2)对于数量较多、宽度在0.1mm~ 0.15mm的裂缝,采用环氧树自动低压 渗注法处理,环氧树脂粘度大,需掺入 适量稀释剂,提高流动性; 3)大于0.15mm的裂缝,采用水泥浆 灌注。 4)对于超过规范限值的裂缝,除灌浆 处理外,应加强定期观测,必要时采用 粘贴钢板或碳纤维布进行加固处理。

组合梁桥的发展与应用

组合梁桥的发展与应用 钢和混凝土是建造桥梁的主要结构材料,这两种材料在物理和力学性能上具有不同的优势和劣势,如果只采用其中一类材料建造桥梁,其结构性能往往受到材料性能的制约而有所不足。通过某种方式将钢材与混凝土组合在一起共同工作,可以充分发挥不同材料的优势,扬长避短,从而为桥梁工程师提供了更广阔的创作空间。钢-混凝土组合梁桥在很多情况下具有良好的综合技术经济效益和社会效益。例如,组合梁桥相对于混凝土桥上部结构高度较低、自重轻、地震作用小,相应使得结构的延性提高、基础造价降低。同时,组合梁桥便于工厂化生产、现场安装质量高、施工费用低、施工速度快,并可以适用于传统砖石及混凝土结构难以应用的情况。相对于钢桥,钢-混凝土组合桥将钢梁与混凝土桥面板组合后,截面惯性矩和抗弯承载力均显著提高,混凝土桥面板对钢梁稳定性的增强使得钢材强度可以充分发挥。由焊接抗剪栓钉所增加的费用要明显低于减少用钢量所节省的费用,从而可以降低造价。国外的研究表明,对于跨度超过18m的桥梁,组合桥在综合效益上具有一定优势。例如,法国统计指出,当跨径为30m至110m,特别是60m至80m范围内,钢-混凝土组合桥的单位面积造价要低于混凝土桥18%。在这一跨度范围内,法国近年建造的桥梁中有85%都采用了组合技术。目前,欧美等国跨径在15m以下的小跨度桥梁多采用钢筋混凝土梁桥,15m~25m跨径则用预应力混凝土梁桥,25m~60m跨径往往采用钢-混凝土组合梁桥。钢梁和桁架梁则一般用于大跨径桥梁。而在大跨度的斜拉桥中,采用组合桥面也可以获得很高的经济效益。通常情况下,钢梁主要承担斜拉桥的桥面弯矩,混凝土桥面板则主要承担轴向力。 我国桥梁过去多采用钢筋混凝土和预应力混凝土桥以及圬工拱桥等结构形式。随着道路等级的不断提高和建设规模的扩大,桥梁呈现出跨径不断增大、桥型不断丰富、结构不断轻型化的发展趋势,同时对桥梁建设的经济性也越来越重视。在这种背景和需求条件下,这些传统桥梁结构形式在许多情况下已经不能满足设计、建造和使用的要求。近年来,钢%混凝土组合结构桥梁在我国的应我国桥梁过去多采用钢筋混凝土和预应力混凝土桥以及圬工拱桥等结构形式。随着道路等级的不断提高和建设规模的扩大,桥梁呈现出跨径不断增大、桥型不断丰富结构不断轻型化的发展趋势,同时对桥梁建设的经济性也越来越重视。在这种背景和需求条件下,这些传统桥梁结构形式在许多情况下已经不能满足设计、建造和使用的要求。近年来,钢%混凝土组合结构桥梁在我国的应用实践表明,它兼有钢桥和混凝土桥的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,将成为桥梁结构 体系的重要发展方向之一。2组合结构桥梁的研究及应用2.1钢-混凝土组合梁桥的基本理论和设计方法组合梁最初的计算方法是基于弹性理论的换算截面法。这种方法假设钢材与混凝土均为理想弹性体,两者连接可靠,完全共同变形,通过弹性模量比将两种材料换算成一种 材料进行计算。目前,换算截面法仍是对组合桥进行弹性分析和设计的基本方法。考虑到混凝土是一种弹塑性材料,钢材是理想的弹塑性材料,计算构件或结构的极限承载力时,在能够 保证塑性变形充分发展的前提下,有时需要考虑塑性发展带来承载力的提高。1951年美国的N.M.Newmark等人提出了求解组合梁交界面剪力的微分方程解法。这种方法假设材料均为弹性、抗剪连接件的荷载-滑移曲线为线性关系,通过求解微分方程得到组合梁的挠曲线。国内外对钢-混凝土组合梁的研究表明,当连接件的数量达到完全抗剪连接时,连接件数量增加 对组合梁的极限强度几乎没有影响;当连接件的数量少到一定程度后,组合梁的极限强度开始降低,直到最后只有钢梁本身提供的承载力1975年R.P.Johnson 根据前人的研究提出了简化的分析方法,提出部分抗剪连接组合梁的极限抗弯承载力可根据完全抗剪连接和纯钢梁 的极限抗弯承载力按连接件数进行线性插值而确定。 随着有限元理论的发展,有限元法被用于钢- 混凝土组合桥梁的研究。由于两种材料组合所引起的复杂性,有限元分析中重点研究的内容为:采用合理的二维或三维混凝土本构

既有钢-混组合梁桥常见病害分析及其加固策略.

既有钢一混组合梁桥常见病害分析及其加固策略 159 既有钢一混组合梁桥常见病害分析及其加固策略 黄侨1,2荣学亮2陆军3 (1.东南大学桥梁与隧道工程研究所南京210096; 2.哈尔滨工业大学桥梁工程研究所哈尔滨 150090; 3.苏州天狮建设监理有限公司苏州 215011 摘要:钢一混组合粱桥以其施工速度快,建筑高度小,抗震性能好等优点,在我国公路和城市桥梁建设中得到了广泛的应用。但是由于交通量和重型车辆的不断增加,空气、水汽、工业烟尘以及其他化学和污染物的环境作用,缺乏定期的养护维修等原因,既有钢一混组合梁桥在运营若干年后,出现了不同程度的病害问题。为保证该类桥梁的安全运营,延长其使用寿命,必须对该类型桥梁进行维修、加固。本文通过调研国内外既有钢一混组合梁桥的运营状况,总结、归纳了该类桥梁出现的几种常见病害, 并在病害成因分析的基础上,研究了该类桥梁的加固方法。并对几种不同的加固方式进行了对比分析,研究了各种加固方法的适用性。对症下药,几种加固方法相结合,变被动加固为主动加固的加固设计理念贯彻于本文的加固方法中。 关键词:钢一混组合梁桥病害加固方法体外预应力 1引言 钢一混组合梁桥是一种在公路尤其城市桥梁工程中应用较多的结构形式之一。该结构形式最早出现于 19世纪末20世纪初,经过几代工程师们近百年深入、细致、全面地研究和应用。自20世纪70年代开始快速发展。以法国为例,据该国1990~t993年建设的桥梁上部结构的统计分析,工字钢梁与混凝土桥梁构成的公路组合梁在跨长30--dlOm范围内最有竞争力,在60~80m跨长则有明显优势。组合粱的占有率达85%。在我国公路和城市桥梁中,组合梁的应用也取得了举世公认的进步,1993建成的上海杨浦大桥(跨径为 602m,2001建成的福建青州闽江大桥(跨径为

钢-混凝土组合梁计算原理及截面设计

钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来的一种新型结构型式。它主要通过在钢梁和混凝土翼缘板之间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。 钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自重,减小地震作用,减小截面尺寸,增加有效使用空间,节省支模工序和模板,缩短施工周期,增加梁的延性等。同钢梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。 近年来,钢-混凝土组合梁在我国城市立交桥梁及建筑结构中已得到了越来越广泛的应用,并且正朝着大跨方向发展。钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,是未来结构体系的主要发展方向之一。 计算原理 在钢-混凝土组合梁弹性分析中,采用以下假定: 1、钢材与混凝土均为理想的弹性体。 2、钢筋混凝土翼缘板与钢梁之间有可靠的连接交互作用,相对滑移很小,可以忽略不计。

3、平截面假定依然成立。 4、不考虑混凝土翼缘板中的钢筋(该假设只在正弯矩承载力计算时成立,负弯矩承载力计算式需考虑钢筋作用[1])。 钢-混凝土组合梁弹性分析采用换算截面法。(a)表示换算前截面,(b)表示换算后截面。换算截面法的基本原理是:混凝土翼缘板按照总力不变及应变相同条件,换算成弹性模量为Es、应力为бs的与钢等价的换算截面面积。具体计算时,为了混凝土截面重心高度换算前后保持不变,换算时混凝土翼缘板厚度不变而仅将翼缘板有效翼缘宽度be除以α E(钢材弹性模量与混凝土弹性模量的比值。 求得等价的钢梁截面后,可以按照材料力学的方法来计算截面的抗弯承载力。设换算后截面的惯性矩为 I换算,换算截面形心轴距离钢梁底部为y 换算,组合梁总高为y换算作用在截面上的弯矩为M,而组合梁挠度的计算,则按照换算截面惯性矩计算组合梁截面刚度后,再由结构力学的方法计算梁的挠度。 截面设计 根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86),对钢-混凝土组合梁进行了设计。如图4所示,为该工程选用的组合梁截面图。钢梁选为Q345B钢,混凝土翼缘板用 C40混凝土,剪力连接件采用[10槽钢。组合梁总高为1650mm,高跨比约为31.5。组合梁截面换算惯性矩为8.576×1010mm^4,而纯钢梁的截面惯性矩只有5.228×10 10mm^4,组合梁截面惯性矩是纯钢梁的1.64倍,大大提高了组合梁的刚度,减小了组合梁在荷载作用下的挠度

组合梁桥常见病害分析及加固策略研究

组合梁桥常见病害分析及加固策略研究 SQ0901******* 刘芳摘要:本文通过调研国内外钢一混组合梁桥的运营状况,总结、归纳了该类桥梁出现的几种常见病害,并在病害成因分析的基础上,研究了该类桥梁的加固方法。并对几种不同的加固方式进行了对比分析,研究了各种加固方法的适用性。 关键词:组合梁桥;病害;加固方法 Abstract:This paper studies operating conditions of mix of steel bridge beam both at home and abroad. We summ up and conclud several common diseases of such bridge, and,study of the strengthening methods based on the analysis the cause disease . Comparing the consolidation of several different ways and studying the applicability of various strengthening methods. Keywords: Combination bridge, Diseases, Reinforcement method 1引言 钢一混组合梁桥是一种在公路尤其城市桥梁工程中应用较多的结构形式之一。该结构形式最早出现于19世纪末20世纪初,经过几代工程师们近百年深入、细致、全面地研究和应用。自20世纪70年代开始快速发展。以法国为例,据该国1990~t993年建设的桥梁上部结构的统计分析,工字钢梁与混凝土桥梁构成的公路组合梁在跨长30--11Om范围内最有竞争力,在60~80m跨长则有明显优势。组合粱的占有率达85%。在我国公路和城市桥梁中,组合梁的应用也取得了举世公认的进步,1993建成的上海杨浦大桥(跨径为602m),2001建成的福建青州闽江大桥(跨径为605m)。其加劲梁均采用了钢一混组合结构,在同类型桥梁中位居世界前列。2005年我国首座波形钢腹板PC组合箱梁公路桥一泼河大桥建成通车(跨径4×30m),2006年建成通车的常州新运河平陵大桥为国内首例大跨度(主跨llOm)钢一混凝土组合连续梁桥,2005年开工建设中的河南鄄城黄河大桥是目前世界上最长的波形钢腹板PC组合箱梁桥(跨径58X50m)。在城市立交桥建设中,钢-混组合梁也以其跨越能力大,建筑高度小,抗震性能好以及施工速度快等优点得到了广泛的应用,建成了以北京航天桥(主跨73m)、朝阳桥(主跨64m)、淮安市长征桥(跨径18.5m+30m+18.5m)为代表的一批钢一混组合连续梁桥,取得了较好的技术经济效益。可以预期进入21世纪后,钢一混组合梁这种结构形式必将得到更大的

连续梁线形监控方案

1 工程概况 1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。,采用一联三孔(60+112+60)m的预应力混凝土双线连续箱梁跨越,梁全长233.5m。S241省道路面宽度为15米,公路交叉里程K13+747。桥型布置如图1-1所示。 图1-1 (60+112+60)m连续梁桥型布置图 (1)下部结构 本连续梁10#、13#边墩基础采用8-φ1.5m钻孔灌注桩,桩长分别为20.5m、15.0m,11#主墩基础采用12-φ1.8m钻孔灌注桩,桩长为15.0m,12#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为13.0m;10#、13#边墩承台尺寸:12.4×6.5×3m,边墩高度:10#墩10米;13#墩13.5米;11#主墩尺寸:14.0×10.3×4.0m,12#主墩尺寸:14.0×11.3×4.0m,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m、13.5m,11#、12#主墩高9.0m、12.0m。 (2)梁部结构 箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。中支点处梁高9.017m,边支点处梁高5.017m。边支点中心线至梁端0.75m,梁缝分界线至梁端0.1m,边支座横桥向中心距离6.0m,中支座横桥向中心距离6.0m。桥面防护墙内侧净宽7.6m,桥梁宽12.6m,桥梁建筑总宽12.9m,底板宽7.0m。顶板厚度43.5-73.5cm,腹板厚度50cm~95cm,底板厚度50cm~90cm,腹、底板厚度均按折线变化。在梁体边支点、中支点共设4个横隔板,隔板中部设有孔洞,供检查人员通过。在0#段中跨梁侧底板处设φ1.0m进人洞,作为梁部桥墩检查通道。 梁体分11#、12#墩2个对称T构,单个T构分13个悬臂浇筑段,1(1')#段到4(4')#节段长度3.0m,5(5')#段到9(9')#节段长度3.5m,10(10')#节段到13(13')#节段长度 4.0m,14#边跨合龙段、14'#中跨合龙段节段长度均为 2.0m;0#段节段长度19.0m,重量1833.51t,15#边跨现浇段节段长3.75m,重量274t。连续梁悬臂段采用挂

钢筋砼T梁桥的病害成因分析

钢筋砼T梁桥的病害成因分析 摘要:由于钢筋砼T型梁预制、安装技术简单,便于施工等特点,目前应用较广,但T梁间混凝土接缝容易出现漏水、钢筋锈蚀等现象,导致桥面铺装损坏、单梁受力等病害,本文结合徒骇河大桥的病害检测,分析T型组合梁桥的病害成因。 关键词:T型梁桥桥梁病害成因分析 1 概述 徒骇河大桥位于京台高速公路德州段,跨径布置12×25m,设计荷载:汽—超20级、挂—120。上部结构为预应力混凝土组合T梁,预制T梁采用50号混凝土,现浇桥面板采用40号混凝土;板式橡胶支座;下部结构为钢筋混凝土桩柱式墩台。 该桥处于国道主干线—京福高速公路上,于1997年建成通车,桥上交通繁忙,车流量大,特别是近年国民经济的高速发展,车流量增加很快,桥上车流量已近饱和。严重超载车辆的总重、轴重大于设计规范规定的相应值,在桥梁、路面结构中产生的内力(应力)达到或超过其疲劳承载力,使桥梁、路面过早损坏。由于该桥桥面板、桥面铺装损坏严重,于2002年对损坏的部分桥面板拆除后重新浇筑混凝土,桥面铺装改造为钢筋混凝土结构。但桥面铺装又已经严重损坏,出现了大面积开裂,多处出现坑洞,养护任务十分繁重,且存在安全隐患。 2 桥梁病害检测分析 2.1 桥梁病害 2003年5月,山东省桥梁检测中心对该桥进行了定期检查,部分支座变形、开裂,左幅7孔4#T梁马蹄两侧纵向开裂,2002年加固时横隔板粘贴钢板的结构胶开裂,全桥桥面铺装开裂、磨耗严重,左幅2#伸缩缝有跳车现象。按《公路桥涵养护技术规范》的方法对该桥进行评价,该桥总体评分为87分,评定该桥为二类桥,说明该桥工作状况良好。 2.2 荷载试验结果分析 由于该桥T梁间混凝土接缝漏水、钢筋锈蚀,桥面板有纵向裂缝,桥面铺装局部损坏等,为确保桥梁安全,2004年7月山东省交通建设工程检测中心对该桥进行了静载试验。试验选取右幅第2、第3跨进行,试验荷载效率为1.13,分3级加载,试验车列布置及各级荷载加载方式见图2.2—1。 2.2.1 挠度

钢-混凝土组合梁结构计算

钢-混凝土组合梁 结构计算书 编制单位: 计算: 复核: 审查: 2009年3月

目录 1. 设计资料 (1) 2. 计算方法 (2) 2.1 规范标准 (2) 2.2 换算原理 (2) 2.3 计算方法 (3) 3. 不设临时支撑_计算结果 (3) 3.1 组合梁法向应力及剪应力结果 (4) 3.2 施工阶段钢梁竖向挠度结果 (6) 3.3 结论 (7) 3.4 计算过程(附件) (7) 4.设置临时支撑_有限元分析计算 (7) 4.1 有限于建模 (7) 4.2 施工及使用阶段结构内力 (9) 4.2.1 施工阶段结构内力 (10) 4.2.2 使用阶段结构内力 (11) 4.3 组合梁截面应力 (13) 4.3.1 截面应力汇总 (13) 4.3.2 截面应力组合 (15) 4.4 恒载作用竖向挠度 (16) 4.4.1 施工阶段竖向挠度 (16) 4.4.2 使用阶段恒载作用竖向挠度 (16) 4.5 结论 (16)

钢-混凝土组合梁结构计算 1. 设计资料 钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。 图 1 横向布置 (cm) 图 2 桥梁立面 (cm) 钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸

图 3 钢梁标准构造(mm) 2. 计算方法 2.1 规范标准 现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。 计算依据: 1.《钢结构设计规范》(GB 50017-2003) 2.《铁路桥梁钢结构设计规范》(TB 10002.2-2005) 3.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4.《钢-混凝土组合梁设计原理》(第二版).朱聘儒.北京:中国建筑工业出版 社,2006 5.《公路桥涵钢结构及木结构设计规范》(JTJ 025-86) 2.2 换算原理 根据总力不变及应变相同的等效条件,将混凝土翼板换算成与钢等效的换算截面;换算过程中要求混凝土翼板截面形心在换算前后保持不变,翼板面积换算转化为翼板宽度的换算。 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第5.1.16条,组合梁混凝土桥面

挂篮悬浇连续梁桥的施工监控

第1题 施工监测一般要求什么时间进行 A.早晨日出之前 B.晚上太阳落山之后 C.没有要求随时都可以测 D.根据施工的进度确定 答案:A 您的答案:A 题目分数:7 此题得分:7.0 批注: 第2题 临时锚固一般何时拆除 A.全桥合拢之后 B.边跨合拢之后 C.中跨合拢之前 D.边跨合拢之前 答案:B 您的答案:B 题目分数:7 此题得分:7.0 批注: 第3题 挂篮一般由哪个单位设计? A.设计单位 B.监控单位 C.施工单位 D.业主委托第三方 答案:C 您的答案:C 题目分数:7 此题得分:7.0 批注: 第4题 立模标高的精度是多少? A.?5mm B.?10mm C.?2mm D.-2mm,+5mm

答案:A 您的答案:A 题目分数:7 此题得分:7.0 批注: 第5题 立模标高中的预拱度数值是如何确定的 A.施工监控单位自己计算确定 B.由设计单位提供的数值确定 C.根据经验确定 D.施工监控单位计算后请设计单位确认后确定 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第6题 桥梁施工监控工作开展过程中需要和哪些单位联系 A.建设单位 B.设计单位 C.监理单位 D.施工单位 E.质监站 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第7题 挂篮预压的目的是什么? A.验证设计 B.消除非弹性变形 C.获取荷载-变形曲线 D.检验临时锚固的性能 答案:A,B,C 您的答案:A,B,C 题目分数:7 此题得分:7.0 批注:

第8题 施工控制的工作内容有哪些? A.有限元分析计算 B.通过立模指令指导现场施工 C.对施工监测数据进行分析,对现场的安全状况进行分析,及时预警 D.有异常情况时,及时组织各参建方共同商讨解决方案 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第9题 施工监测的内容有哪些? A.梁体的应力 B.挂篮预压的变形观测 C.温度监测 D.梁体的变形观测 E.主墩的沉降观测 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:7 此题得分:7.0 批注: 第10题 关于合拢段施工哪些说法是正确的? A.边跨合拢段施工时可以不进行配重 B.未来避免混凝土开裂,中跨预应力张拉要快,不宜进行分批张拉 C.合拢段施工的时机宜选择在一天当中温度最低的时段 D.中跨合拢段预应力张拉前主墩墩顶的支座的临时锚固要解除 E.边跨合拢段施工结束后,可以解除主墩的临时锚固 答案:D,E 您的答案:D,E 题目分数:7 此题得分:7.0 批注: 第11题 挂篮有哪几个部分组成?

悬浇梁桥施工监控

施工监控的意义、原则、方法和依据 2.1施工监控的意义 桥梁悬臂施工中,由于施工荷载的变化、新浇筑混凝土重量的误差、结构弹性模量的变化、挂篮的重量和移动的位置、温度的变化、结构体系调整以及混凝土的收缩与徐变等均会影响结构的变形和内力,而这众多的因素在设计阶段是无法准确确定的,这些因素的改变均可能引起桥梁结构线形与内力的改变,影响施工质量,甚至危及桥梁安全。为了使施工能按照设计意图进行,确保施工安全并最终达到设计的理想状态,通过对箱梁实施施工全过程的跟踪监控监测,对控制参数进行实时调整,以确保施工中结构的安全、箱梁最终线形平顺、内力分布合理,使成桥状态的外形和内力符合设计要求,确保桥梁施工安全和正常运营。 对于悬臂施工的预应力混凝土连续梁结构来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段的结构仿真分析,确定出每个悬臂浇筑阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测下一节段立模标高及进行相应的调整,以此来保证成桥后桥面线形、合龙段两悬臂端标高的相对偏差不大于规定值。同时监测平面线形是否满足有关规范的要求,并在施工过程中监测结构应变是否在设计及规范允许的范围内,保证结构安全。 施工监控的意义主要体现在以下几个方面: 1)设计图纸的要求是施工的目标,在为实现设计目标而必须经历的施工过程中,通过施工监控,可对施工状态进行实时识别(监测)、调整(纠偏)、预测,使施工处于有效的控制之中,确保设计目标安全、顺利实现是至关重要的。 2)通过对桥梁施工过程中的结构受力、变形及稳定进行监测控制,使施工中的结构处于最优状态。施工监控是施工质量控制体系的重要组成部分,是保证桥梁建设质量的重要手段,是对桥梁建设质量的宏观调控,是桥梁施工质量控制的补充与前提。 3)监控单位配合监理,辅助业主,指导施工,解决桥梁施工质量控制过程中的关键技术问题。 4)通过施工监控,可取得在成桥后无法得到的桥梁部分“参数”,建立档案,为后期桥梁的管理与养护,提供依据。 5)将施工监控与桥梁荷载试验结合起来,可以得到仅靠荷载试验无法取得的桥梁恒

轨道双线预应力混凝土连续梁桥施工监控方案

轨道双线预应力混凝土连续梁桥施工 监控方案

西南交通大学 SOUTHWEST JIAOTONG UNIVERSIT Y 新建铁路怀邵衡线 怀化至衡阳段客货共线 (60+100+60)m有咋轨道双线预应力混凝土 连续梁桥施工监控方案 西南交通大学峨眉校区

二O—五年五月

文档仅供参考目录 1 工程概况................... 2 监控的目的、原则、方法及主要工作. ................ 2.1 监控目的.................. 2.2 监控原则.................. 2.3 控制方法.................. 2.4 主要工作.................. 3 施工监控内容................. 3.1 施工监控主要依据. ......................... 3.2 仿真分析计算、施工阶段及控制工况划分..... 3.3 基础资料及试验数据的收集........... 3.4 施工过程结构变位、温度及裂缝观测........ 3.5 施工过程中结构应力—应变测量......... 3.6 精度控制及预警系统.............. 3.7 拟投入本项目主要设备仪器一览表........ 4 施工控制的管理体系. ............................ 4.1 监控实施中的总体要求............. 4.2 施工监控控制体系............... 4.3 施工监控的组织体系.............. 4.4 施工监控体系中的信息采集........... 4.5 施工监控中的实时监测体系及结构安全预报体系错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

常见桥梁病害及处理

常见桥梁病害及处理 桥梁作为公路建筑的一种形式,使用非常便捷,在人们生活中占比越来越大,设计及施工技艺也愈发成熟,同时也面临着更高的质量要求。因其特殊的结构形式,一旦发生质量问题,如倒塌、倾覆和较大变形,将会带来巨大的安全隐患及经济损失。 桥梁病害的主要形式 1.裂缝。 2.混凝土碳化及钢筋锈蚀。 3.剥蚀。 4.伸缩缝损坏。 5.支座破坏。 6.桥梁墩台基础的病害。 (1)基础结构:基础不均匀沉降;基础的滑移和倾斜,以及基底局部冲空;基础结构物的异常应力和开裂等; (2)墩、台身:各种水平、竖向和网状裂缝;混凝土剥落、空洞和老化;钢筋外露、锈蚀;结构变形、移位等。 桥梁病害的主要原因 1.裂缝 混凝土浇筑后,在形成强度过程中,温度变化大,内部产生拉应力,在强度很低时就被拉裂;浇筑前水分失掉较快,如拆模过早,模板吸水或漏浆严重,混凝土泌水,水泥水化热高,凝结速度快,外界气候干燥等都容易造成混凝土开裂;混凝土浇筑后在硬化过程中会继续沉降,如遇到钢筋、预埋

件阻碍就会发生裂缝。裂缝当混凝土中拉应力大于其抗拉强度或拉应变大于其极限拉应变时,混凝土会产生裂缝。 2.混凝土碳化及钢筋锈蚀 混凝土的碳化是指混凝土中NaOH与渗透进混凝土中的CO2或其他酸性气体发生化学反应的过程。一般情况下混凝土呈碱性,在钢筋表面形成碱性薄膜,保护钢筋免遭酸性介质的侵蚀,起到了“钝化”保护作用。碳化的实质是混凝土的中性化,使混凝土的碱性降低,钝化膜破坏,在水分和其他有害介质侵入的情况下,钢筋就会发生锈蚀。 混凝土中钢筋腐蚀的首要条件是钝化膜破坏,混凝土的碳化及氯离子侵蚀都会造成覆盖钢筋表面的碱性钝化膜的破坏,加之有水分和氧的侵入,就可能引起钢筋的腐蚀。钢筋腐蚀伴有体积膨胀,使混凝土出现沿钢筋的纵向裂缝,造成钢筋与混凝土之间的粘结力破坏,钢筋截面面积减少,使结构构件的承载力降低,变形和裂缝增大等一系列不良后果,并随着时间的推移,腐蚀会逐渐恶化,最终可能导致结构的完全破坏。需要注意的是,上述所有侵蚀混凝土和钢筋的作用都需要有水作介质。另一方面,几乎所有的侵蚀作用对混凝土结构的破坏都与侵蚀作用引起的混凝土膨胀,最终导致混凝土的开裂有关。而且当混凝土结构开裂后,腐蚀速度将大幅加快,形成导致混凝土结构的耐久性进一步退化的恶化循环。 3.剥蚀 剥蚀根据不同的机理,可分为冻融剥蚀、冲磨和空蚀、水质侵蚀、风化剥蚀等。 冻融剥蚀是指在水饱和或潮湿状态下,由于温度正负变化,结构物的已

钢与混凝土组合梁的应用实例

工 程 技 术 中国新技术新产品- 121 - 一、工程概况 某钢结构框架厂房,两层,柱距6m,底层跨度6m,四跨,层高4.2m,二层两跨12m,层高3.9m,二层楼面采用钢梁混凝土板,设计楼面活荷载2t/m 2,无动力荷载,屋面采用轻型彩钢板。抗震设防烈度6度,0.05g,地震分组第二组,场地类别二类,地基比较均匀,土质良好。 二、工程设计方案 根据工程基本情况,拟定设计方案采用底层钢框架,上层门式刚架,楼面沿纵向设置次梁兼做横向刚架侧向支撑,次梁间距3m。次梁采用混凝土-钢梁组合结构,主刚架梁采用非组合连续钢梁。刚架采用PKPM-STS钢结构整体计算。 三、楼板的设计计算 压型钢板-混凝土做组合楼板时,钢板能作为板底受力钢筋,比非组合楼板更省材料,但是,施工中需要采用比较可靠地连接构造传递压型板与混凝土结合面的纵向剪力,并需要在压型板上涂刷防火涂料及后期保护性维护。因此本工程采用非组合型楼板,压型板仅作为混凝土的永久支撑使用,楼板按照普通楼板设计。 四、组合梁的设计 1 组合梁的设计计算原则 组合梁均按照极限状态设计准则进行,塑性设计法比弹性设计法计算简便,且考虑钢梁的塑性承载力,与实际情况更吻合,安全的同时更加经济,本工程采用塑性设计方法计算组合梁的承载力。 2 简支组合梁的受弯承载力计算 计算组合梁的受弯承载力需首先确定梁属于完全抗剪连接或部分抗剪连接,然后采用相应的公式计算其受弯承载力。对于简支梁,仅存在正弯矩区,钢梁与混凝土面之间的纵向剪力Vs取Af和behc1fc中的较小值,若抗剪连接件能完全抵抗此纵向剪力,抗剪件不会进入全截面塑性状态,钢梁与混凝土理论上无相对滑移,即完全抗剪连接;若抗剪连接件不能完全抵抗纵向剪力,抗剪连接件全面进入塑性状态后,钢梁与混凝土之间将会产生相对滑动,即部分抗剪连接。 3 组合梁的抗剪承载力计算 组合梁的全部竖向剪力,由钢梁的 腹板承受,按下式计算:V≤hwtwfv,对于连接节点处,梁端剪力还应考虑强剪系数1.3。 4 本工程组合梁截面的选取和计算工程材料:混凝土C30,钢梁钢材Q 345B ,因采用压型钢板,抗剪连接件采用圆柱头栓钉,性能等级4.6级, f=215N/mm 2 ,r=1.67。 (1)梁上荷载计算 恒载:上部楼板自重,及楼板面层gk1=(25×0.2+1.1)×3.0=18.6kN/m gk2=1kN/m(钢梁自重)活荷载:使用荷载20kN/m 2qk=20×3=60kN/m (2)单个栓钉抗剪承载力 压型钢板组合梁,栓钉的抗剪承载力需要考虑折减系数βv,本工程压型钢板板肋垂直于钢梁布置, 其中,bw——混凝土凸肋的平均宽度,当肋的上部宽度小于下部宽度时,区上部宽度;he——混凝土凸肋的高度;hd ——栓钉的高度;n0——梁截面肋中栓钉数,多于3个时,按3个计算。 本工程中,将压型板较宽凸肋朝下,bw=120,单排按2个栓钉考虑,凸肋高度he=60,栓钉高度hd=130,30≤hd-he=70≤75,满足构造要求。 (3)钢梁截面的初步选择 钢梁的抗剪全部由腹板承担,故可以根据支座剪力及板的高厚比限制估算钢梁的高度 支座剪力V=[(18.6+1)×1.2+60× 1.4]×3=322.56kN 腹板主次梁连接处考虑切肢削弱每侧45mm,节点连接处考虑强剪系数1.3,腹板按弹性高厚比控制,则有: [V]=(66tw-90)×tw×180≥1.3× 322.56×1000 hw≥6.5,取板厚tw=8mm 反算梁高度h0 (H0-90)×8×180≥1.3×322.56×1000H0≥381mm,初步取H0=400mm进行试算 根据构造要求及试算,满足使用阶段的强度及刚度要求下,钢梁截面H=450,上翼缘宽度160mm,厚度12mm,下翼缘宽度200mm,厚度8mmAs=6960mm 2。 混凝土翼板的有效宽度be=b0+b1+b2 其中,b0=130(压型板上部宽度)b1=b2=min(L/6,6×hc1,S/2) =min(6000/6,6×160,3000/2) =1000 b e =b 0+b 1+b 2=130+1000+1000 =2130mm A×f=6960×310=2157.6kN·m b e ×h c 1×f c =2130×160×14.3 =4873.44kN·m 因此,组合梁的纵向剪力Vs=Af=2157.6kN·m 抗剪连接件的设置: 根据构造,最终设置单排2M16栓钉(As=201mm 2),单个栓钉抗剪承载力βv×Nvc=1.0×251.34×201=50.53kN,按完全抗剪连接,需栓钉排数n=2157.6/(50.53×2)=22排,排间距S=3000/22=136mm,因板肋的间距为200mm,不能保证栓钉均位于板肋上,故不能满足要求,因此改用部分抗剪连接设计,栓钉间距S=200mm,均设于板肋间,经过计算,钢梁强度及刚度满足要求,实际栓钉排数n=3000/200-1=14排,满足完全抗剪连接50%的最小要求,且钢梁翼缘,腹板厚度均满足相应的高厚比及其它构造要求。 (4)组合梁与非组合梁的经济型比较 如果采用非组合梁,按简支梁计算,需采用H600×200×10×10截面钢梁,As=9800mm 2,相对节省钢材率(9800-6960)/9800=28.9%。 参考文献 [1]张作运,陈远椿,周廷坦.钢与混凝土组合梁设计[M].北京:中国建筑工业出版社. 钢与混凝土组合梁的应用实例 李蔚然 (中色科技股份有限公司,河南 洛阳 471039) 摘 要:组合梁是由钢梁、钢筋混凝土板及两者之间的剪切连接件组成整体而共同工作的一种结构形式。混凝土处于受压区,钢梁主要处于受拉区,两种不同材料都能充分发挥各自的长处,受力合理,节约材料。本文通过一个工程实例,介绍一些该结构形式的技术特点及设计过程中的一些计算及构造细节。关键词:压型钢板组合梁;设计计算;设计方案中图分类号:TU375 文献标识码:A DOI:10.13612/https://www.360docs.net/doc/413277575.html,tp.2016.01.111

相关文档
最新文档