天然气水合物的研究进展

天然气水合物的研究进展
天然气水合物的研究进展

天然气水合物的研究进展

天然气水合物的研究进展

摘要:天然气水合物是一种继煤,石油与天然气等能源之后的新型能源物质,它被誉为21世纪最清洁的能源物质。本文章介绍了天然气水合物的概念以及形成条件,追溯了天然气水合物的发展历程。重点分析了国内外的研究情况,这为指导我国天然气水合物事业奠定了坚实的基础。天然气水合物的研究对于人类有着非比寻常的意义,还存在着一些难关有待于我们去探索。

关键词:天然气水合物进展能源物质意义探索

一、引言

1.1天然气水合物的概念

天然气水合物就是我们熟称的“可燃冰”或者固体“瓦斯”是因为它的外观像冰一样而且遇火燃烧。天然气水合物是天然气与水在一定的高亚低温条件下形成的类似冰状的结晶物质,其主要是分布在深海沉积物和陆域的永久冻土,岛屿的斜坡地带等地域。天然气水合物的研究起源于20世纪的一次科学考察中发现的矿产资源,虽然其成分与天然气相似但是较之更为纯净,开采时只需要将固体的“天然气水合物”升温减压就可以释放出大量的甲烷气体。天然气水合物作为一种新型的高效能源当之无愧的被誉为“21世纪最具有商业开发前景的战略资源”。

1.2天然气水合物的形成条件及优点

天然气水合物的分子结构式为CH4?8H2O,其分子结构就像一个一个由若干水分子组成的笼子。形成可燃冰有三个基本条件:温度,压力和原材料。首先需要低温的环境,天然气水合物在在0―10℃时生成,在超过20℃的温度时便会分解。其次需要高压的条件:在0℃时只需要30个大气压就可以满足可燃冰的生成然而在海洋深处,30个大气压是很容易满足的并且气压越大水合物越不容易分解。最后充足的气源是必不可少的。在海底深处经常会有很多有机物的沉淀,这些有机物质中含有丰富的碳,经过生物转化后可以产生充足的气源。

综上天然气水合物的生成条件可以发现由于海底地层的多孔介质性并且在温度,压力,气源都能满足的情况下可燃冰就会在介质的空隙中生成,所以我们在开采天然气水合物的时候主要在深海岛屿等地区。

二、国内天然气水合物的研究进展

2007年五月1日凌晨,中国在南海北部的首次采样成功,这一历史性的壮举证实了中国南海北部蕴藏丰富的天然气水合物资源,从而成为继美国日本印度之后的第四个国家级研发计划采到天然气水合物实物样品的国家,标志着中国天然气水合物调查研究水平已步入世界先进行列。相比于美国印度等国家我国天然气水合物资源调查与评价工作起步晚。我国于1999年在国家发展改革委、财政部等大力支持下,国土资源部整合了国内各方面优势力量正式启动天然气水合物资源调查。到目前为止,中国对海底天然气水合物的研究与勘查已取得一定进展,南海西沙海槽等海区发现的天然气水合物的标志表明中国海域分布有天然气水合物资源,值得我们开展进一步的工作;2005年4月14日,中国在北京举行中国地质博物馆收藏中国首次发现的天然气水合物碳酸盐岩标本仪式。

据国土资源部地质勘查司副司长车长波介绍:今后国土资源部将按照国家规划部署,全面组织实施我国海域、陆域天然气水合物资源勘查评价,通过加快天然气水合物勘查评价和重点靶区钻探取芯工作,开展天然气水合物成藏机理和富集规律等理论研究,加大天然气水合物试开采及环境评价等关键技术攻关力度,力争早日实现天然气水合物开发利用,以减缓我国的面临的环境污染问题,真正的实现资源的可持续发展。

三、国外天然气水合物的研究进展

在天然气水合物的研究方面,美国一直走在世界的前列也是世界上关于天然气水合物勘察与开采研究最活跃的国家。早在1968年美国就在布莱克海台开展了天然气水合物的调查,2002年美国研制的热激发法在加拿大Mallik的试验中取得成功。美国参议院通过的天然气水合物的研究与开发法案中决定大幅度的增加天然气水合物调查研究与开发,在2025年之前一定要论证海相甲烷水合物砂储层的

技术可行性和经济可开采性。

早在20世纪70年代就开始了陆地冻土带可燃冰的研究,2002年加拿大与日本,美国,德国,印度等合作实施的“Mallik天然气水合物探测井”的项目成功的进行了天然气水合物藏注热的开采,2004年加拿大又开展了天然气水合物开发的潜在利益研究。2008年再次进行了降压与注热联合开采的项目,成功的证明了注热和降压法可以实现天然气水合物矿藏的开发,这一成果开创了天然气水合物开发利用的又一里程碑,为将来的生产和商业应用奠定了基础。

日本是目前在天然气水合物研发方面比较先进的国家之一,该国的实力处于国际领先水平。日本与1999年和2004年两度实施南海海槽天然气水合物的钻探成功的获得了可燃冰的样本。之后两次参与加拿大三角洲水合物的研发试验有力的促进了天然气水合物钻探和测试技术的发展。目前在日本已经初步形成了天然气水合物层位测井,钻完井配套技术体系;2005年到2008年之间,日本再次勘察到大量的可燃冰样本,建立了天然气水合物模拟开采和沉积物机械特性研究装置,目前正在开展系统的开采研究工作。

德国在可燃冰的研究方面也是出于世界领先水平,该国尤其重视对天然气水合物环境影响的研究。20世纪90年代以来就和其他国家合作先后在东太平洋,西南太平洋等海域进行了可燃冰的研究。2000年德国正式公布了《地球工程学――地球系统;从地球认识到地球管理》的大型研究计划,这个计划预计2015年底完成。

四、意见及建议

1,我国南海地区具有得天独厚的地质条件,建议尽快这些地区的天然气水合物的调查研究工作,用更加先进的技术提高采收率,实现我国国民经济的快速发展,也同时响应国家的号召实现资源节约些环境友好型社会。

2,作为21世纪能源界的娇子,可燃冰的研究受到各国政府的高度重视,其调查研究成果日新月异,尤其美国印度德国等国家在这方面的研究处于世界领先水平,所以强烈建议我国政府以及科学家加强与这些国家的交流合作,及时了解到最新成果学习先进技术为我国的天然气水合物的调查勘探与开发事业做出伟大的贡献。

3,由于自然或者人为因素所引起的温度压力的变化均会使得可燃冰的分解,造成海底滑坡,生物灭亡和气候变暖等环境灾害,所以开展室内外天然气水合物钻采的研究已经迫在眉睫。

4,学习国外的管理经验成立专门的国家可燃冰研究机构,由政府机构和企业大学共同组成,这可以使得各个水合物研究机构相互配合相互交流,减少资源的浪费。据相关资料显示2007年我国已经在南海获取水合物样品各方面的研究已经证明水合物具有较大潜能,所以成立国家性水合物研究机构的时机已经成熟。

参考文献

[1]雷怀彦,王先彬,房玄,郑艳红。《天然气水合物研究现状与未来挑战》。沉积学报。1999年03期

[2]杨帆,李志平,张世浩《天然气水合物的研究现状与展望》。资源与产业2007年02期。

[3]李强,王焕新。《天然气水合物――一种巨大的潜在能源》。能源研究与利用。1996年03期

[4]金庆焕。天然气水合物――未来的新能源。中国工程科学。2000年11期

------------最新【精品】范文

天然气水合物典型特征综述

作者:樊浩 单位:中国石油辽河油田海南油气勘探分公司124010 作者简介:樊浩(1979-),男,湖北潜江市人,硕士,中级工程师,现从事海洋油气勘探。标题:天然气水合物典型特征综述 摘要:概述国内外天然气水合调查研究的勘探进展情况,详细地介绍判识天然气水合物的地球物理和地球化学特征。 关键词:天然气水合物;现状;特征 0 引言 天然气水合物, 也称“气体水合物”, 是由天然气与水分子在高压、低温条件下形成的一种固态结晶物质。由于天然气中80%~99.9%的成分是甲烷, 故也有人将天然气水合物称为甲烷水合物。天然气水合物多呈白色或浅灰色晶体, 外貌似冰状, 易点燃, 故也称其为“可燃冰”。在天然气水合物晶体化学结构中, 水分子构成笼型多面体格架, 以甲烷为主的气体分子包裹于其中。这是一种新型的潜在能源, 全球资源量达2.1×1015m3, 是煤炭、石油和天然气资源总量的两倍,具有巨大的能源潜力。因此, 世界各国尤其是各发达国家和能源短缺国家均高度重视天然气水合物的调查研究、开发和利用研究。 1 国内外天然气水合物勘探现状 1.1国外天然气水合物勘探历史及现状 天然产出的水合物矿藏首次在1965年发现于俄罗斯西西伯利亚永久冻土带麦索亚哈油气田。1972—1974年,美国、加拿大也在阿拉斯加、马更些三角洲冻土带的油气田区发现了大规模的水合物矿藏。同期,美国科学家在布莱克海岭所进行的地震探测中发现了“拟海底反射层(BSR)”。1979年,国际深海钻探计划(DSDP)第66、67航次在中美洲海槽危地马拉的钻孔岩芯中首次发现了海底水合物。此后,水合物的研究便成为DSDP和后续的大洋钻探计划(ODP)的一项重要任务,并相继在布莱克海岭、墨西哥湾、秘鲁—智利海沟、日本海东北部奥尻脊、南海海槽、北美洲西部近海—喀斯喀迪亚陆缘等地发现了BSR或水合物。德国在20世纪80年代中后期以联邦地学与资源研究中心、海洋地学研究中心为首的一些单位,结合大陆边缘等研究项目,开展了水合物的地震地球物理、气体地球化学调查。在各国科学家的努力下,海底水合物物化探异常或矿点的发现与日俱增,迄今已达80处。从1995年开始,日本、印度、美国、德国先后投巨资,实施了大规模的研究发展计划,韩国、俄国、加拿大、法国、英国、挪威、比利时、澳大利亚等国也正在制订计划或积极调查中。 1.2国内天然气水合物勘探历史及现状 与国外的发展历程相似, 中国天然气水合物也起始于实验室研究, 然后再扩展到资源调查领域。中国在1999年正式实施试验性调查前还经历了一段短暂的预研究阶段, 中国大洋矿产资源研究开发协会于1995年设立了“西太平洋气体水合物找矿前景与方法的调研”课题, 这是中国天然气水合物资源领域的第一个调研课题, 中国地质科学院矿产资源研究所等单位就天然气水合物在世界各大洋的分布特征及找矿方法进行了分析和总结, 并对西太平洋的找矿远景进行了初步评价。随后原地质矿产部于1997年设立了“中国海域天然气水合物勘测研究调研”课题, 国家863计划820主题也于1998年设立了“海底气体水合物资源勘查的关键技术”课题, 中国地质科学院矿产资源研究所、广州海洋地质调查局、中国科学院地质与地球物理研究所等单位对中国近海天然气水合物的成矿条件、调查方法、远景预测等方面进行了前期预研究, 为中国开展天然气水合物调查做好了资料和技术准备。 2 识别天然气水合物的标志特征 2.1地球物理标志 2.1.1 海底模拟反射层( BSR )来自水合物稳定带底面的反射也大致与海底平行,通常称为

国内天然气水合物相平衡研究进展

国内天然气水合物相平衡研究进展 摘要:分析了目前国内天然气水合物相平衡领域的五大主要研究热点,认为含醇类和电解质体系中天然气水合物的相平衡是研究中最活跃的领域,而多孔介质中天然气水合物的相平衡研究是未来天然气水合物相平衡研究的热点和难点问题。 关键词:天然气;水合物;相平衡;替代能源 Review of the Phase Equlibria on The Natura1 Gas Hydrate at home Abstract: According to the literature investigation at home,the five main researeh hot spots for the phase equllibria are analysed.The phase equilibria in aqueous solutions containing electrolytes and/or alcohol is the most active in all the research fields.While the Phase equilibria in natura1 Porous media is one of the essential hot spots and difficult problems during the phase equllibria researeh in future. Key words: natural gas;hydrate;phase equilibria ;alternative energy 1、前言 天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点,是21世纪继常规石油和天然气能源之后最具开发潜力的清洁能源,在未来能源结构中具有重要的战略地位。由于天然气水合物处于亚稳定状态,其相态转换的临界温度、压力和天然气水合物的组分直接制约着天然气水合物形成的最大深度和矿层厚度。天然气水合物的生成过程,实际上是一个天然气水合物—溶液—气体三相平衡变化的过程,任何能影响相平衡的因素都能影响天然气水合物的生成或分解过程[1]。因此,研究各种条件下天然气水合物—溶液—气体的三相平衡条件及其影响因素,可提供天然气水合物的生成或分解信息。因此,天然气水合物相平衡研究是天然气水合物勘探、开发和海洋环境保护研究中最基础和最重要的前沿问题。天然气水合物相平衡的研究主要是通过实验方法和数学预测手段确定天然气水合物的相平衡条件。随着透明耐高压材料的出现和相关实验测试技术的进步,科学家们对天然气水合物的相平衡条件的研究不断深入。 2、国内目前天然气水合物相平衡的主要五大研究热点 2.1 研究热点一:含醇类和电解质体系中天然气水合物的相平衡研究 长庆石油勘探局第三采油厂的严则龙(1997年)在长庆油田林5井采用井口注醇防止油管和地面管线天然气水合物堵塞,取得了良好的效果[2]。 中国石油大学(北京)梅东海和廖健等人:(1)(1997)在温度262.6~285.2K范围内分别测定了甲烷、二氧化碳和一种合成天然气在纯水、电解质水溶液以及甲醇水溶液中天然气水合物的平衡生成压力[3]。(2)(1998)对36个单一电解质水溶液体系及41个混合电解质水溶液体系中气体水合物的生成条件进行了预测。但对于二元以上的混合电解质水溶液体系,该模型的预测精度还有待改进[4];在温度260.8~281.5K和压力0.78~11.18MPa下,研究了含盐以及含盐和甲醇水溶液体系中的水合物平衡生成条件。认为无论对于单盐或多盐水溶液体系,甲醇对天然气水合物的生成均有显著的抑制作用;当溶液中甲醇增加至20%质量时,KCI 的抑制作用强于CaCl2[5];采用在Zuo一Golunesen一Guo水合物模型的基础上简化和改进的模型应用于含有盐和甲醇的水溶液体系中气体水合物生成条件的预测[6]。 华南理工大学的葛华才等人(2001)在模拟蓄冷空调的实验系统中研究了一元醇类添加

天然气水合物的研究与开发的论文

天然气水合物的研究与开发的论文 【摘要】人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 一、天然气水合物是人类未来能源的希望 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3he,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。氢能是清洁、高效的理想能源,燃烧耐仅产生水(h2o),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。天然气水合物的主要成分是甲烷(c4h)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。 天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。天然气水合物由水分子和燃气分子构戚,外层是水分子格架,核心是燃气分子(图1)。燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(c4h),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。据理论计算,1m3的天然气水合物可释放出164m3的甲烷气和m3的水。这种固体水合物只能存在于一定的温度和压力条件下,一般它要求温度低于0~10℃,压力高于10mpa,一旦温度升高或压力降低,甲烷气则会逸出,固体水合物便趋于崩解。 天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻±中。埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为×108亿m3,约合11万亿t(11×1012t)。数冀如此巨大的矿物能源是人类未来动力的希望。 二、天然气冰合物的研究现状 1.分布与环境效应 世界上绝大部分的天然气水合物分布在海洋里,储存在深水的海底沉积物中,只有极其少数的天然气水合物是分布在常年冰冻的陆地上。世界海洋里天然气水合物的资源量是陆地上的100倍以上。到目前为止,世界上已发现的海底天然气水合物主要分布区有大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、日本海、四国海槽、日本南海海槽、冲绳海槽、南

天然气水合物的研究进展

天然气水合物的研究进展 天然气水合物的研究进展 摘要:天然气水合物是一种继煤,石油与天然气等能源之后的新型能源物质,它被誉为21世纪最清洁的能源物质。本文章介绍了天然气水合物的概念以及形成条件,追溯了天然气水合物的发展历程。重点分析了国内外的研究情况,这为指导我国天然气水合物事业奠定了坚实的基础。天然气水合物的研究对于人类有着非比寻常的意义,还存在着一些难关有待于我们去探索。 关键词:天然气水合物进展能源物质意义探索 一、引言 1.1天然气水合物的概念 天然气水合物就是我们熟称的“可燃冰”或者固体“瓦斯”是因为它的外观像冰一样而且遇火燃烧。天然气水合物是天然气与水在一定的高亚低温条件下形成的类似冰状的结晶物质,其主要是分布在深海沉积物和陆域的永久冻土,岛屿的斜坡地带等地域。天然气水合物的研究起源于20世纪的一次科学考察中发现的矿产资源,虽然其成分与天然气相似但是较之更为纯净,开采时只需要将固体的“天然气水合物”升温减压就可以释放出大量的甲烷气体。天然气水合物作为一种新型的高效能源当之无愧的被誉为“21世纪最具有商业开发前景的战略资源”。 1.2天然气水合物的形成条件及优点 天然气水合物的分子结构式为CH4?8H2O,其分子结构就像一个一个由若干水分子组成的笼子。形成可燃冰有三个基本条件:温度,压力和原材料。首先需要低温的环境,天然气水合物在在0―10℃时生成,在超过20℃的温度时便会分解。其次需要高压的条件:在0℃时只需要30个大气压就可以满足可燃冰的生成然而在海洋深处,30个大气压是很容易满足的并且气压越大水合物越不容易分解。最后充足的气源是必不可少的。在海底深处经常会有很多有机物的沉淀,这些有机物质中含有丰富的碳,经过生物转化后可以产生充足的气源。

天然气水合物调查和研究现状

天然气水合物调查和研究现状 摘要:天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,本文简介了天然气水合物和各国对其合物资源调查和研究现状。 1 什么是天然气水合物 天然气水合物又称固态甲烷,它是由天然气与水所组成,呈固体状态,其外貌极象冰雪或固体酒精,点火即可燃烧,因此有人称其为”可燃冰”、”气冰”、”固体瓦斯”。天然气水合物的结晶格架主要由水分子构成,在不同的低温高压条件下,水分子结晶形成不同类型多面体的笼形结构。其分子式为MnH2O加表示甲烷等气体,n为水分子数)。天然气水会物的结构类型有:I、11和H型。I型为立方晶体结构、Ⅱ型为菱型晶体结构、H型为六方晶体结构。Ⅰ型天然气水合物在自然界颁最广,而Ⅱ及H型水合物更为稳定。它是在低温高压条件下,由水与天然气(主要是甲烷气,每平方米的天然气水会物可释放出164立方米甲烷和立方米的水)结合形成一种外观似水的白色结晶固体,主要存在于陆地上的永久冻土带和海洋沉积物中。 2 国际上天然气水合物资源调查、研究现状 随着世界上石油、天然气资源的日渐耗尽,各国的科学家正在致力于寻找新的接替能源。天然气水合物被称为ZI世纪具有商业开发前景的战略资源,正受到各国科学家和各国政府的重视。 自60年代开始,俄、美、巴德、英、加等许多发达国家,甚至一些发展中国家对其也极为重视,开展了大量的工作。 俄罗斯自60年代开始,先后在白令海、鄂霍茨克海、千岛海沟、黑海、里海等开展了天然气水合物调查,并发现有工业意义的矿体。即使近期经济比较困难,仍坚持在巴伦支海和鄂霍茨克海等海域进行调查或研究工作。位于西西伯利亚东北部的Messoyakha天然气水合物矿田已成功生产了17年。 美国科学家早在1934年首次在输气管道中发现了天然气水合物,它堵塞了管道,影响了气体的输送而开始了对水合物结构及形成条件的研究。随后美、加在加拉斯加北坡、马更些三角洲冻土带相继发现了大规模的水合物矿藏。70年代初英国地调所科学家在美国东海岸大陆边缘所进行的地震探测中发现了”似海底反射层”(Bottom Similating,Reflector,英文称 BSR)。紧接着于1974年又在深海钻探岩芯中获取天然气水合物样品,并释放出大量甲烷,证实了”似海底反射”与天然气水含物有关。1979年美国借助深海钻探计划(DSDP)和大洋钻探

天然气水合物开发现状及其环境问题

天然气水合物开发现状及其环境问题 天然气水合物开发现状及其环境问题 摘要:当今世界经济整体都在迅猛发展,随之而来的就是能源紧张以至于枯竭的地步,寻求高效清洁的新能源成为世界各国普遍追求的目标,进而天然气水合物就进入人们的主要关注目标。天然气水合物是目前世界上没有开发的可利用程度较高的潜在能源,其储藏量相当于全世界汽油和天然气资源的总和。天然气水合物在全球范围内分布广而储藏量又巨大,本身具有极大的开发前景,被认为是二十一世纪最理想的替代能源。无可置疑,天然气水合物是一种蕴含巨大价值的潜在能源,虽然天然气水合物的开发处于探索阶段,但是对这种新型能源的研究和开发具有相当大的意义。 关键词:天然气水合物开发现状环境问题 有关专家分析判定天然气水合物的形成是由于海洋板块之间的活动造成的。海洋板块之间相互运动,深海天然气随着板块的裂缝涌上来。在深海的高压的作用,温度相对较低的海水与之间产生化学反应,进一步形成天然气水合物,也就是所谓的甲烷水合物。但是由于开发天然气水合物的技术还不是很成熟,在开发的过程中会对环境产生一系列不良的影响,例如全球大气变暖、破坏的海洋生态平衡的和造成海底滑坡等环境问题。 一、对天然气水合物的基本情况 天然气水合物的可利用程度较高,而且是清洁新能源,因此,受到各国科学家的普遍关注,对于地球上的天然气水合物的储存也在量一直在讨论之中。早期科学家们根据天然气水合物形成所需要的条件,进一步来推断天然气水合物储存量,得出的结论就是天然气水合物储存量是全球石化以及天然气资源量的2倍,而且绝大多数分布在海洋之中。近年来在全球范围内实施海洋探索计划,有关研究者对天然气水合物储存量重新做了评估,评估表明,最新估算的储存量比早期的结论减少了将近一半。尽管是这样,天然气水合物的储存量还是很丰富的。资料表明,目前全球范围内的天然气水合物保守估计的储

天然气水合物发展历程

天然气水合物发展历程 1810年,首次在实验室发现天然气水合物。 1934年,前苏联在被堵塞的天然气输气管道里发现了天然气水合物。由于 水合物的形成,输气管道被堵塞。这一发现引起前苏联人对天然气水合物的重视。 1965年,前苏联首次在西西伯利亚永久冻土带发现天然气水合物矿藏,并 引起多国科学家的注意。 1970年,前苏联开始对该天然气水合物矿床进行商业开采。 1970年,国际深海钻探计划(DSDP)在美国东部大陆边缘的布莱克海台实施 深海钻探,在海底沉积物取心过程中,发现冰冷的沉积物岩心嘶嘶地冒着气泡,并达数小时。当时的海洋地质学家非常不解。后来才知道,气泡是水合物分解引起的,他们在海底取到的沉积物岩心其实含有水合物。 1971年,美国学者Stoll等人在深海钻探岩心中首次发现海洋天然气水合物,并正式提出“天然气水合物”概念。 1974年,前苏联在黑海1950米水深处发现了天然气水合物的冰状晶体样品。 1979年,DSDP第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24米的天然气水合物岩心,首次验证了海底天然气水合物矿藏的存在。 1981年,DSDP计划利用“格罗玛·挑战者号”钻探船也从海底取上了3英尺长的水合物岩心。 1992年,大洋钻探计划(ODP)第146航次在美国俄勒冈州西部大陆边缘Cascadia海台取得了天然气水合物岩心。 1995年,ODP第164航次在美国东部海域布莱克海台实施了一系列深海钻探,取得了大量水合物岩心,首次证明该矿藏具有商业开发价值。 1997年,大洋钻探计划考察队利用潜水艇在美国南卡罗来纳海上的布莱克 海台首次完成了水合物的直接测量和海底观察。同年,ODP在加拿大西海岸胡安-德夫卡洋中脊陆坡区实施了深海钻探,取得了天然气水合物岩心。至此,以美国为首的DSDP及其后继的ODP在10个深海地区发现了大规模天然气水合物聚集:秘鲁海沟陆坡、中美洲海沟陆坡(哥斯达黎加、危地马拉、墨西哥)、美国东南大西洋海域、美洲西部太平洋海域、日本的两个海域、阿拉斯加近海和墨西哥湾等海域。

天然气水化合物前沿研究(文献综述)

单位代码 学号1224150173 分类号 密级 论文 文献综述 2013 年 12月 22日

天然气水化合物前沿研究 摘要:天然气水合物又称“可燃冰”是公认的 21 世纪替代能源和清洁能源,开发利用潜力巨大。越来越多的科学家相信,未来洁净能源的最大一部分也许就藏在海底或高纬度永冻区。由于它的开发可能带来许多不可预测的风险,所以前期调查工作更为重要。可燃冰开采过程中存在难点问题,减压法和综合法是现有水合物开采技术中经济前景比较好的开采技术。 关键词天然气水合物;现状;趋势;问题 一、概述 现在地球能源危机成为大家遇到巨大困难之一,能源的争夺成为引发国家之间战争的重要因素。于是可燃冰作为一类非常规天然气资源,它的开采利用就显得十分重要。天然气水合物的定义:小分子气体(如甲烷至丁烷,氮,氧,二氧化碳,硫化氢等)和水在适当温度和压力下接触后形成的以甲烷为主(>90%)的笼状水合物,又叫“可燃冰”或“甲烷水合物”。[1-2-3]据估算全球的天然气水合物的储量约为2×1016m3成为剩余天然气储量的136倍。世界上天然气水合物所含的有机碳的总量,相当于全球已知煤、石油和天然气总量的2倍。而且分布状况很均匀,几乎遍布全球的各大洲。其主要成分是甲烷,燃烧后几乎没有污染,是一种绿色的新型清洁能源。根据我国海洋地质调查部门的调查,发现南海北部具有良好的可燃冰资源前景,并将南海可燃冰富集规律与开采基础研究纳入了 973计划,标志着中国对替代能源可燃冰重大基础研究已全面展开。目前,对可燃冰的研究发展已经引起了各国政府和能源专家的广泛关注。 二、天然气水化合物 天然气水合物,主要成分是甲烷与水分子,是由天然气与水在高压低温条件下结晶形成的具有笼状结构的似冰状结晶化合物,气体分子多以甲烷为主 ( >90%),所以也被称为甲烷水合物 (Methane Hydrates)。天然气水合物与天然气的成分相近似,且更为、纯净。简单地说,天然气水合物就是天然气(甲烷类,是细菌分解有机物和原油热解时所产生的)被包进水分子中,在海底低温和很高压力下形成的一种冰状的固态晶体。纯净的天然气水合物呈白色,形似冰雪,可以像固体酒精一样直接被点燃,因此,又被形象地称为“可燃冰”。具体地来

天然气水合物

化学选修3《物质结构与性质》P85选题2 天然气水合物 (一种潜在的能源) 天然气水合物——可燃冰 一、可燃冰相关概念 可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。 因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。 可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰 陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。 天然气水合物在全球的分布图 在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因

而其是一种重要的潜在未来资源。 笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。 天然气分子藏在水分子中 水分子笼是多种多样的 二、可燃冰的性质 可燃冰的物理性质: (1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。 (2)它可存在于零下,又可存在于零上温度环境。 (3)从所取得的岩心样品来看,气水合物可以以多种方式存在: ①占据大的岩石粒间孔隙; ②以球粒状散布于细粒岩石中; ③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。 可燃冰的化学性质: 1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因: (1)气水合物与冰、含气水合物层与冰层之间有明显的相似性: ①相同的组合状态的变化——流体转化为固体; ②均属放热过程,并产生很大的热效应——0℃融冰时需用的热量,0~20℃分解天然气 水合物时每克水需要~的热量; ③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%; ④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物; ⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层; ⑥含冰层与含水合物层的电导率都小于含水层; ⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 (2)天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子) 则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 2、经发现的天然气水合物结构有三种: 即结构 I 型、结构 II 型和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S 等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为

天然气水合物研究进展

《资源节约与环保》2012年第六期 论文与案例交流 1水合物晶体结构和性质 传统化石能源(煤、石油和天然气)的大量消耗带动了工业和社会的进步,然而对能源的过度依赖也使得全球陷入能源危机之中并积极发展替代能源。由于有技术及经济等众多壁垒的限制,使得清洁新能源大规模工业化利用尚需一定时日。因此,天然气水合物的开发利用被很多国家提上日程,近年来获得了突飞猛进的发展。有文章指出,天然气水合物的储量两倍于煤、石油和天然气总储量之和。因其主要成分为甲烷等各类可燃气体,是上等的优质燃料,若能合理有效地利用这些能源,无疑将会极大地缓解整个世界能源体系的危机现状。当前全球已经有79个国家发现了天然气水合物,而30多个国家相继开展了水合物的研究工作[1]。 2007年,中国在南海北部成功钻获天然气水合物实物样品,成为继美国、日本,印度之后世界上第四个通过国家级研发计划采到水合物实物样品的国家。 天然气水合物是由某些气体或它们的混合物与水在一定温度、压力条件下生成的一种半稳态的类似于致密冰雪的冰状笼型固体化合物,由水分子的几何晶格构成,晶格含有被轻烃或其他轻质气体(如氮气、二氧化碳)占据的空穴,一般在25℃以下有可能形成。水分子称为主体分子,而轻烃或其它轻质气体通常称为客体分子。由水分子通过氢键形成不同形式的刚性笼架晶格,每个笼架晶格中包含一个主要为甲烷的天然气分子,水分子与天然气分子之间通过范德华力相互吸引。在自然界中,水合物大多存在于大陆永久冻土带和海底沉积层中,其组成以甲烷为主,与天然气相似,故常称作天然气水合物,其中甲烷含量高达99%的天然气水合物又称为甲烷水合物。 已经发现的水合物类型共有三种 [1-6] :I 型、II 型和H 型。其 中结构Ⅰ型属于体心立方体结构,可由天然气小分子在深海 形成,其笼架晶格以各自的笼架体心堆砌排列。结构Ⅱ型属于金刚石立方结构,可由含分子大于乙烷小于戊烷的烃形成。结构I 型和结构II 型主要有小腔和大腔两种结构。结构H 型属于六面体结构,可由挥发油和汽油等大分子形成,结构H 型有小腔、中腔和大腔三种结构。腔体的大小不同,所能容纳的客体分子大小也不同。当各个腔体全部被占据时,三种类型的水合物有着大致相同的组分构成:85%的水和15%的客体分子(摩尔组分)。 天然气水合物的不同外观形式及其所能容纳的客体分子见图1。 水合物三种结构类型的孔腔大小尺寸划分标准及性质见表1。 天然气水合物研究进展 刘玉洁 (中国国际工程咨询公司,北京,100044) 摘 要:天然气水合物被发现的200多年来,普 遍被认 为是未来传统能源的替代,对其研究也成为热点。本文在研究前人大量文献的基础上,对天然气水合物研究成果进行了阐述,对影响水合物形成的影响因素及其抑制剂防治水合物危害的方法进行了分析,对进一步深入研究水合物系统知识具有一定指导作用。 关键词:天然气水合物传统能源替代抑制剂 图1天然气水合物结构示意图 注:51264代表笼结构由12个五面体和4个六面体组成。 表1三种水合物类型性质比较 水合物 结构I II H 孔腔小孔腔大孔腔小孔腔大孔腔小孔腔中等孔腔 大孔腔 表述方法512512625125126451243566351268单元格中孔腔数26168321平均孔腔半径 3.95 4.33 3.91 4.73 3.91 4.06 5.71调和数20 24 20 28 20 2036 单元格水分子数 4613634 注:调和数为孔腔边缘的氧原子数。 43

天然气水合物的研究与开发

天然气水合物的研究与开发 天然气水合物的研究与开发 作者: 金翔龙.方银霞(国家海洋局海底科学重点实验室) 收录来源: 中国新能源网人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3He,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。氢能是清洁 、高效的理想能源,燃烧耐仅产生水(H2O),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。天然气水合物的主要成分是甲烷(C4H)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。 天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。天然气水合物由水分子和燃气分

天然气水合物调查和研究现状

摘要 天然气水合物(gas hydrate)是一种白色固体结晶物质,它是由天然气与水所组成,呈固体状态,其外貌极象冰雪或固体酒精,点火即可燃烧,因此有人称其为“可燃冰”、“气冰”、“固体瓦斯”。随着世界上石油、天然气资源的日渐耗尽,各国的科学家正在致力于寻找新的接替能源。天然气水合物被称为21世纪具有商业开发前景的战略资源,正受到各国科学家和各国政府的重视。本文简介了天然气水合物和各国对其化合物物资源调查和研究现状。 关键词:天然气水合物;固态甲烷;资源调查;研究现状

目录 第一章概述 (1) 第二章什么是天然气水合物 (2) 第三章国际上天然气水合物资源调查、研究现状 (2) 第四章我国有关天然气水合物的研究、调查现状 (5) 第五章意见与建议 (7) 参考文献 (9) 致谢 (10)

第一章概述 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3He,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100~500万t)。氢能是清洁、高效的理想能源,燃烧O),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3耐仅产生水(H 2 H)和水,甲烷气燃烧十分以上,蕴藏量大。天然气水合物的主要成分是甲烷(C 4 干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能源的最佳候选。 天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻土中。埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为1.8×108亿m3,约合11万亿t(11×1012t)。数亿如此巨大的矿物能源是人类未来动力的希望。

天然气水合物研究历程及现状样本

天然气水合物研究历程及现状 1.世界天然气水合物研究历程回顾 从1810 年英国Davy在实验室首次发现气水合物和1888 年Villard人工合成天然气水合物后, 人类就再没有停止过对气水合物的研究和探索。在这将近2 的时间内, 全世界对天然气水合物的研究大致经历了 3 个阶段, 如表1-1[2]所示。 第一阶段是从1810 年到20 世纪30 年代初。( 18 , Davy 合成氯气水合物并于次年发表文章正式提出水合物一词。) 在这120 年中, 对气水合物的研究仅停留在实验室, 且争议颇多。 第二阶段是大致可看作是自1934年起始的。当年美国Hammerschmidt发表文章, 提出天然气输气管道堵塞与水合物有关, 从负面加深了对气水合物及其性质的研究。在这个阶段, 研究主题是工业条件下水合物的预报和清除、水合物生成阻化剂的研究和应用。 第三阶段是从上世纪60年代至今, 全球天然气水合物进入大范围勘探普查开发的格局。上世纪60 年代特罗费姆克等发现了天然气能够以固态形式存在于地壳中。特罗费姆克等的研究工作为世界上第一座天然气水合物矿田——麦索雅哈气田的发现、勘探与开发前期的准备工作提供了重要的理论依据, 从而大大拓宽了天然气地质学的研究领域。美国学者在上世纪70年代也开始重视气水合物研究, 并于1972年在阿拉斯加获得世界上首次确认的冰胶结永冻层中的气水合物实物。天然气水合物成藏理论预测的成功、测得成藏理论区气水合物地球物理, 地球化学异常, 以及经过钻探取得水合物实样, 这一系列的成果被认为是上世纪能源问题的重大发现。能够说, 从上世纪60 年代至今, 全球气水合物研究跨入了一个崭新的阶段——第三个阶段(把气水合物作为一种能源进行全面研究和实践开发的阶段) , 世界各地科学家对气水合物的类型及物化性质、自然赋存和成藏条件、资源评价、勘探开发手段以及气水合物与全球变化和海洋

天然气水合物发展史

Davy于1810年首次在伦敦皇家研究院实验室成功地合成了氯气水合物,引起了化学家们的极大关注,如法国Berthelot相Villard,美国Pauling等化学家在科学辩论的同时还进行了各种水合物合成实验,成功地合成了系列气水合物。本世纪初期30年代,人们发现输气管道内形成白色冰状固体填积物,并给天然气输送带来很大麻烦,石油地质学家和化学家便把主要的精力放在如何消除气水合物堵塞管道方面。直到60年代苏联在开发麦索亚哈气田时,首次在地层中发现了气水合物藏[4],人们才开始把气体水合物作为一种燃能研究。此后不久,在西伯利亚、马更些三角洲、北斯洛普、墨西哥湾、日本海、印度湾、中南海北坡等地相继发现了气水合物,这使人们意识到气水合物是一种全球性的物理—地质作用现象,便掀起了70年代以来空前的水合物研究热潮。 在石油即将耗尽的现代,科学家积极的寻找有效的替代能源,近年来在海中发现的大量天然气水合物固体,天然气水合物(natural gas hydrates)简称为气水合物(gas hydrates),是由主成分水分子组成似冰晶笼状架构,将气体分子等副成分包裹于结晶构造空隙中之一种非化学计量(non-stoichiometric)的笼形包合物结晶。所包合的气体分子组成可能有甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)、异丁烷(C4H10)、正丁烷(C4H10)、氮(N2)、二氧化碳(CO2)或硫化氢(H2S)等。自然界产出的气水合物所含气体分子组成常以甲烷为主,故也有些学者将气水合物通称为甲烷水合物(methane hydrate),而水合甲烷(methane hydrate),成了目前的当红替代能源研究目标之一。 布鲁克黑文国立实验室的化学教授马哈詹等人,13日在加利福尼亚州圣叠戈举行的美国化学学会全国会议上报告说,他们建造了一个能放在桌面的耐压、耐低温透明舱室。研究人员在这个实验舱中仿真海底环境,人工制造出水合甲烷。

天然气水合物综述

天然气水合物综述 杜娟,宋维源 辽宁工程技术大学力学与工程学院,辽宁阜新(123000) E-mail:https://www.360docs.net/doc/41520513.html,nlan@https://www.360docs.net/doc/41520513.html, 摘要:天然气水合物的研究目前在国内外已经成为研究的热点,本文综合了国内外关于天然气水合物的研究资料,对天然气水合物的5个主要研究内容:物理性质、研究历程、成因、赋存以及开发技术作了系统的、简要的阐述,并提出了天然气水合物研究的发展方向及研究趋势,文章对于以后的天然气水合物的研究者的研究可以作为一个较为全面的参考。 关键词:天然气水合物,物理性质,成因,研究进程,赋存,开发技术 中图分类号:TE5 现在人们普遍认为天然气水合物是自然界赐予人类21世纪的新型能源,天然气水合物在自然界大量存在,已经是不争的事实。但由于它属于非常规能源,且它的研究涉及到地球物理学、流体力学、地貌地质学等众多学科,因而天然气水合物的研究是一个复杂多变的过程,所以对它的研究必须是系统和具体的。此外,我国冻土总面积居世界第三位,海域辽阔,因此,研究天然气水合物是非常有必要的[1-2]。 1 天然气水合物的物理性质和分类 1.1 天然气水合物的物理性质 天然气水合物,又叫做“可燃冰”、“ 固体瓦斯”、“ 气冰”、英文名为Natural Gas Hydrates(以下简称为NGH)。通常是在特定的高压(﹥0.6 Mpa)低温(﹤300K)条件下由天然气和水形成的类冰状非化学剂量型笼型化合物[3]。形成NGH的主要气体是甲烷,当甲烷含量超过气体总量的99.9%时又可称为甲烷水合物。NGH的分子式可以表示为CH4·n(H2O),从理论上讲,n值可以是5.75或者 5.67,但是实际上一般为6.3~6.6 [4]。在这种化合物中,水分子(主体分子)通过氢键作用形成具有一定尺寸空穴的晶格主体,较小的气体分子(客体分子)则包容在空穴中,主客体分子之间则由范德华力来相互作用,从而形成温压变化易分解、遇火可燃烧的外观雪花或松散的冰状的固态化合物。 NGH最基本的特点是空的水合物晶格就像一个高效的分子水平的气体存储器,其独特的晶体结构和空间构架决定了它独特的高浓集气体的能力,即标准状态下,1m3水合物可存储160~180m3的天然气和0.8 m3的水,其密度一般在0.8~1.0 g/cm3之间 [5-6]。 1.2 天然气水合物的分类 只有小分子气体才能形成水合物,分子大于丁烷分子的气体通常不会形成水合物。当尺度较小的客体分子(直径0.4nm),如甲烷或二氧化碳等在适当的温度(﹤300K)和适度的压力(﹥0.6MPa)下与水分子空穴相接处,则客体分子被禁闭,从而形成NGH。各种尺度的客体分子占据不同的水分子空穴,根据客体分子的尺度及单个水合物分子的外形,将其分为以下三种国际认可的NGH类型 [7-9]:Ⅰ型,客体分子直径0.4~0.55nm,外形立方体结构,在自然界分布最为广泛,这种结构的晶穴里只能填充甲烷、乙烷小分子烃以及二氧化碳、硫化氢、氮气等非烃分子; Ⅱ型,客体分子直径0.6~0.7nm,外形菱形立方结构,多数存在于人工环境,这种结构除了能容纳Ⅰ型客体分子之外,还可以容纳丙烷、异丁烷等较大分子的烃类气体分子。

天然气水合物发展方向

天然气水合物发展方向 摘要:天然气水合物是冰状结晶固体,水和光的天然气混合形成甲烷,二氧化碳,乙烷,丙烷和丁烷。甲烷是其他沉积物中烃类气体的主要组成部分。天然气水合物是未来重要能源中最具潜力的一种。甲烷天然气水合物正日益被视为一个潜在的能源资源,在大陆架下方以及陆上的永久冻土带可以发现大量的资源储备。虽然天然气水合物具有巨大的开发价值,但其面临的问题也很多。如开采难度大,破坏环境等。如今首要的任务,就是研发新的开采技术从而解决一些列问题。 关键词:天然气水合物环境污染室效应开采技术 一、天然气水合物研究现状 美国、德国、日本、俄罗斯等发达国家对天然气水合物的研究较为广泛。尤其日本对于天然气水合物,尤其是海底的天然气水合物研究表现出了异乎寻常的热情,在1995 年专门成立了甲烷水合物开发促进委员会,并制定了5 年的研究开发计划,在5年间投入了150亿日元,而且全世界天然气水合物的3口探井中,就有两口是以日本石油公司为首的多国石油公司钻探的,而作为经济强国的美国在1998年通过了一个投资2亿、为期10年的天然气水合物研究与资源开发计划,目的是为了研究布莱克海台天然气水合物中甲烷资源的巨大潜力。德国则一方面靠国际合作,一方面在国家项目支持上,主要针对大陆斜坡力学稳定性的问题,研究因甲烷水合物的失稳作用引发的脱气过程[4]。 中国是世界上最大的发展中海洋国家,能源短缺十分突出。中国的油气资源供需差距很大,1993年中国已从油气输出国转变为净进口国,1999年进口石油4000多万吨,2000年进口石油近7000万吨,预计2010石油缺口可达2亿吨。因此急需开发新能源以满足中国经济的高速发展。 二、天然气水合物的重要性 天然气水合物或甲烷水合物可以产生甲烷。海洋沉积物中天然气水合物的存在是第一次地震观测假设的基础上。天然气水合物代表世界上最大的未开发的能源之一,据估计,有可能满足全球能源下一步千年的需求。天然气水合物可能未来最重要的能源资源之一。甲烷天然气水合物越来越多地被视为一个潜在的能源资源,它最为人们关注的是它可能成为未来的最重要的能源以及它在气候变化中所扮演的角色。从能源资源的角度来看,大量的天然气水合物估计超过50 % 的所有在地球上的化石燃料储备。未来的能源来源是什么?一些科学家相信甲烷水合物是答案之一。在地球上,其全球丰度和分布表明他们可能会成为能源未来的资源。随着能源需求和消耗的增加,天然气水合物可作为潜在未来的能源需求的重要资源。 三、全球气候的变化以及天然气水合物对它的影响

天然气水合物技术现状及发展

天然气水合物技术现状及发展 摘要:全球变暖和能源消耗加剧已成为目前我们面临的两大课题。文章从天然气水化合物的生产方法及发展进行研究。探讨天然气水化合物的可发展性。 关键词:NGH(天然气水合物)加工方法发展 Abstract: global warming and energy consumption has become a problem which we faced by two major issues. This article from the natural gas production methods of water chemical compounds and development of the research. Discusses the natural gas water compounds can be development. Keywords: NGH (natural gas hydrate) processing method development 中图分类号:U473.2+4 文献标识码:A文章编号: 天然气是一种储量丰富的能源,价格比石油便宜,燃烧清洁,是一种绿色能源。在航运的舞台上,一个急切的信号表明:天然气贸易迅速发展促进了LNG船定单的空前增长。但天然气是不可再生资源,并且LNG生产过程相对昂贵。例如船舶行业中单艘LNG船的建造价格目前超过两亿美元,这些都是我们考虑的因素。有意思的是,据估计,世界上可开采的天然气有超过一半以上已被探明,但还有大量未开采的。在世界上任何角落都能发现或多或少的天然气水合物(NGH)储量。NGH本质上仅仅由水分子和气体分子组成的固体结晶体物质。水分子形成一种点阵晶体格架,燃气分子则填充于点阵结构间的空穴中,学术上称为做笼形结构。实际上这种结构是气水合物以雪、冰的形式存在依赖条件。NGH往往分布于寒冷的永冻土中(储量极其少)或深水的海底沉积物中(储量较多)。甲烷、丙烷和其他气体填充于笼形结构间中。气水合物可以释放大量普通的甲烷,产生巨大的能量。估计大约有100,000到270,000,000 兆立方尺的天然气水合物广泛分布在全世界。事实上全球NHG储量数超过已知天然气储量数的观点被普认同,甚至已经有一些研究认为它是无穷尽的能源资源, 因此科学家们正在探索新能源的展之路。所有的声音听起来都充满着美好和希望, 但事实是现在这些资源并没有进行商业开采,这是因为NGH开采工艺的难题未能解决。然而,NGH的探索中有一种新的关注:发展和生产被称为”非原产地的” 或人工合成的NGH。 现在全世界估计大约40-60%天然气储量被定义” 难开采”的,或者换句话说, 许多零散、产量不大的气田由于远离现有的输送管道和开采。而天然气的开采和输送初期投资非常大, 从经济上考虑开采是不可行的。相对于需要在-162℃的低温条件下生产储存液化天然气(LNG)而言,人工合成NGH开采费用

相关文档
最新文档