量子理论的发展

量子理论的发展
量子理论的发展

§6 量子理论的发展

背景

玻尔理论成功地解释了原子的稳定性及氢原子光谱的规律性。为人们认识微观世界和建立近代量子理论打下了基础。

但玻尔理论是经典与量子的混合物,存在着许多不协调。如它既保留了经典的确定性轨道,又假定量子化条件来限制电子的运动。它不能解释稍微复杂的问题,正是这些困难,迎来了物理学的大革命。

1.量子力学:研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。2.线索:

德布罗意→薛定谔→薛定谔波动方程

海森堡→波恩,提出矩阵力学→→→→量子力学

3.代表人物:

玻尔、泡利、索末菲、海森堡、G·P·汤姆逊、戴维森、等

一德布罗意波的提出

1.德布罗意(Louis Victorde Broglie,1892~1989)

法国物理学家。1892年8月15日生于下塞纳的迪耶普。出身贵族。1910年获巴黎大学文学学士学位,1913年获理学硕士学位。第一次世界大战期间,在埃菲尔铁塔上的军用无线电报站服役。战后一方面参与他哥哥的物理实验工作,一方面拜朗之万为师,研究与量子有关的理论物理问题,攻读博士学位。

1923年9~10月间,连续在《法国科学院通报》上发表三篇短文:《辐射─波和量子》、《光学─光量子、衍射和干涉》、《物理学─量子、气体动理论及费马原理》,在1924年通过的博士论文《量子论研究》中提出了德布罗意波(相波)理论。1927年由美国贝尔实验室的戴维孙(C.J.Davisson)、革未(L.H.Germer)及英国的汤姆孙(G.P.Thomson)通过电子衍射实验证实,1929年获诺贝尔物理学奖,成为第一个以学位论文获得诺贝尔奖金的学者。1932年任巴黎大学物理教授,1933年被选为法国科学院院士。1942年任该院常任秘书,1962年退休,1987年3月去世,享年95岁。主要著作有:《波动力学导论》,《物质和光:新物理学》,《物理学中的革命》,《海森伯不确定关系和波动力学的概率诠释》等。

2.思维过程

德布罗意是爱因斯坦光量子假说的追随者,但他深感爱因斯坦地光量子理论并没有使从牛顿-惠更斯时代起就存在的光的微粒说和波动说的分歧得到解决,只不过是使光的微粒说又重新抬头而已。

因此他战后重新开始理论物理学的研究时,就把自己工作的重点放在用统一的理论描述光的行为,即想给光量子假说再披上一件波动的外衣,同时希望能把这一结论推广到实物粒子上。

德布罗意在获得诺贝尔奖的演讲《电子的波动性》中说:人们无法理解,为什么对于光来说,需要两种相互矛盾的学说,即波动说和微粒说。为什么原子中的电子只有可能进行某些运动,而按经典概念它应当有无穷多的运动。……

当我开始思考这些困难时,主要有两个问题吸引着我。第一个问题是,不能认为光量子理论是令人满意的,因为它是用ω=hν这个关系式来确定光微粒的能量,其中包含着频率ν。可是纯粹的粒子理论不包含任何定义频率的因素。对于光来说,单是这个理由就需要同时引进粒子的概念和周期的概念。另一个问题是,确定原子中电子的稳定运动涉及到整数,而至今物理学中涉及整数的只有干涉现象和本征振动现象。这使我想到,不能用简单的微粒来描述电子本身,而应当赋予它们以周期的概念。

于是我得出指导我进行研究的全部概念,对于物质和辐射,尤其是光,需要同时引进微粒概念和波动概念。

3.物质波假设的提出

1924年,德布罗意在博士论文中提出:不仅光具有波粒二象性,一切实物粒子(如电子、原子、分子等)也都具有波粒二象性;具有确定动量P 和确定能量 E 的实物粒子相当于频率为ν和波长为λ的波,二者之间的关系如同光子和光波的关系一样,满足:

这种和实物粒子相联系的波称为德布罗意波或物质波。

德布罗意在论文中提出如下预言:“从很小的孔穿过的电子束能够呈现衍射现象,这或许就是人们能借以寻找关于我们的想法的实验证据的方向。”

但德布罗意的论文当时并没有受到重视,他希望用实验来检验他的理论的建议,也未得到实验物理学家的响应。

①他曾向道维耶先生提过建议,请他用电子进行实验以获得衍射和干涉现象,但道维耶正忙于其他工作,没有按照他的建议去做;

②德布罗意的导师也认为他的思想大胆的近乎荒唐,不知该如何评价他论文,于是将论文的副本寄给了爱因斯坦,爱因斯坦认为德布罗意理论体现了光子和物质微粒之间的对称性,并称赞德布罗意“已揭开了巨大帷幕的一角”。

4.德布罗意波的实验验证

X 射线照在晶体上可以产生衍射,如果物质波理论正确,那么电子打在晶体上也能观察电子衍射。

(1)戴维孙-革末实验(1927)

电子束在晶体表面散射实验时,观察到了和X射线在晶体表面衍射相类似的衍射现象,从而证实了电子具有波动性。

戴维森实验装置原理图

C.J.戴维森与G.P.革末电子衍射现象的发现缘于一次偶然事故,1925年4月,他们在进行高真空条件下镍对电子的散射实验(粒子性行为)时液态空气瓶爆裂,真空装置被打破,镍靶被进入的空气严重氧化。经过长时间加热镍靶并改进实验装置后再重新实验,发现散射电子的角分布完全发生了改变。出现了同X射线衍射相似的图样。后经查寻原因发现,是因为在对镍靶加热过程中,多晶镍重新结晶成几块较大的单晶体的缘故。但当时并不知道这一现象的本质就是电子衍射。

1926年夏C.J.戴维森到英国牛津参加一次科学会议,获悉德布罗意理论,这才想到上述现象可能就是德布罗意波。

回到美国后,马上又重新做实验,并于1927年公布了实验结果,完全证实了德布罗意理论。

(2)电子衍射实验2

1927年G.P.汤姆逊(J.J.汤姆逊之子)也独立完成了电子衍射实验。但他是在德布罗意理论启发下自觉进行实验的。他采用了高能电子束穿过细晶体粉末或薄金属片做透射实验,很快得到了衍射环,并计算出了相应的波长。

G.P.汤姆逊与C.J.戴维森共获1937 年诺贝尔物理学奖。

3、约恩逊(1960)

电子的单缝、双缝、三缝和四缝衍射实验图象

单缝衍射双缝衍射三缝衍射四缝衍射

量子围栏(Quantum Corral)中的驻波

1993年克罗米(M·F·Corrie)等人用扫描电子显微镜技术,把铜(111)表面上的铁原子排列

成半径为7.13nm的圆环性量子围栏,并观测量到了围栏内的同心圆柱状驻波,直接证实了物质波的存在.

物质波被广泛用作探索手段.例核反应产生的中子( =0.1nm)可作为晶体探测器.

二波动力学的建立

1.薛定谔简介(E.Schr?dinger, 1887~1961)

奥地利理论物理学家,波动力学的创始人。薛定谔1887年生于维也纳。1906~1910年,在维也纳大学物理系学习。1910年获得博士学位。毕业后,在维也纳大学第二物理研究所工作。第一次世界大战期间,他服役于一个炮兵要塞,利用闲暇研究理论物理学。战后回到第二物理研究所。1920年移居耶拿,担任M.维恩的物理实验室助手。1921年,薛定谔受聘到瑞士苏黎士大学任数学物理学教授,在那里工作了6年。1927年接替普朗克任柏林大学理论物理学教授。同年当选为普鲁士科学院院士。1933年受德国纳粹党徒的迫害,离开苏黎士到英国任牛津大学物理学教授。同年和狄拉克一起荣获诺贝尔物理学奖。

1936年回到奥地利的格拉兹,1938年奥地利沦陷,薛定谔在格拉兹再度受到纳粹的迫害,于9月1日仅“带了一只小小皮箱”逃往爱尔兰的都柏林,在都柏林高级研究所,成为理论物理学的领导。在那里,他逗留了17年。在此期间,他继续从事科学研究,并发表了许多论文。1956年,他回到奥地利,成为维也纳大学物理系的名誉教授。奥地利政府给了他极大的荣誉,设立了以他的名字命名的国家奖金,并把第一次奖金授予他本人。

1957年薛定谔接受了德国高级荣誉勋章。他还被许多大学和科学团体授予荣誉学位,其中包括英国伦敦皇家学会、柏林普鲁士科学院、奥地利科学院等。1961年1月4日,在奥地利的阿尔卑巴赫山村病逝。

2.与爱因斯坦的讨论

1925年前后,爱因斯坦正在研究气体理论,刚完成《单原子理想气体的量子理论》论文,但文中存在一个饽论。他收到德布罗意的博士论文后,发现这一饽论可以用德布罗意的理论很好的解决,于是续写了一篇论文《单原子理想气体的量子理论Ⅱ》,于1925年发表。薛定谔当时也在研究气体理论,他对爱因斯坦的论文很不理解,认为有错,于1925年2月5日写信给爱因斯坦进行讨论。爱因斯坦在回信中建议他仔细研究德布罗意的博士论文,这促使了薛定谔对德布罗意物质波思想的极大关注,并迅速掌握了德布罗意的新思想。到薛定谔发表波动力学之前,薛定谔与爱因斯坦之间共同通了九封信。在1926年4月23日薛定谔给爱因斯坦的一封信中他说:“如果不是你的关于气体简并的第二篇论文把德布罗意的思想摆在我面前,单靠我个人的力量,这个波动力学是根本无法建立起来的。”

3.德布罗意思想的影响

1925年,著名物理学家德拜主持了一个瑞士联邦技术学院与苏黎世大学联合物理学讨论会,他指定由薛定谔报告德布罗意理论。当薛定谔介绍完之后,德拜评论说,讨论波动而没有一个波动方程,太幼稚了。几个星期以后,在另一次报告会上,薛定谔说:“我的同事德拜说,要有一个波动方程,好,我已经找到了。”这次讨论会,实际上就是薛定谔事业的开端。

1926年上半年,薛定谔以《作为本征值问题的量子化》为总题目,连续发表了六篇论文,系统的阐明了他的新理论。他运用玻尔原子理论、矩阵力学、爱因斯坦波粒二相性思想和德布罗意物质波理论的内容,致力于用波函数来描述微观客体在时空中的定态运动变化,建立相应的波动方程,并求解得到与实验相符的结果,创立了波动力学体系。

4.波动力学的建立

在1926年1月份发表的论文中,他引入了波函数的概念,建立了氢原子的定态薛定谔

方程:

02222=??

? ??++?ψψr e E K m 其中K=h/2π,根据边界条件,E 只能取某些确定值这个方程才有稳定解,从而得出E 的本征值为:

,,,,其中3212224

2=-=n h

n me E n π 这样量子化就成了薛定谔方程的自然结果。由此得出量子化是本征值的问题的结论。从而取代了认为规定的玻尔-索末菲量子化条件。

在1926年发表的第二篇论文中,薛定谔建立了更为一般的含时间的薛定谔方程,并讨论了它的解。

在5、6月份发表的《量子化的本征值问题》的第三、第四篇论文中,薛定谔详细叙述了与时间无关的微扰理论(定态微扰)和含时微扰的微分方程。完成了波动力学的建立。 由于薛定谔方程是在不发生实物粒子的产生泯灭,且实物粒子的速度远小于光速两个假设的基础上建立的,因而是非相对论性的理论。

5.波函数Ψ的物理意义

薛定谔认为,波函数Ψ代表着电荷在实际空间中的连续分布,并定义ΨΨ*为电荷分布的“权重函数”,而电荷P=e ΨΨ*。他认为波包就是粒子最密集的地方。但这种波包的数学形式(波函数)会随时间无限扩展,因而波包会在极短的时间内消失,不符合实物粒子的稳定性。

1926年6月,玻恩在题为《散射过程中的量子力学》的论文中,提出了波函数的统计解释:在空间某点找到粒子的几率,正比于该点波函数Ψ的平方。

这种解释的提出也是受益于爱因斯坦的启发,玻恩后来回忆到:“爱因斯坦的观点又一次引导了我。他曾经把光波的振幅解释为光子出现的几率密度……。”

由于有了玻恩的诠释,波动力学才为物理学家们普遍接受,玻恩也因量子力学方面的基本研究,特别是波函数的统计解释,和德国物理学家W·博思分享了1954年的诺贝尔物理学奖。

三 矩阵力学的创立

在矩阵力学的建立中,海森堡于1925年首先取得突破性成果,后来由海森堡、波恩和约当三人共同完成。

1.海森堡的贡献

德国物理学家,1901年出生于维尔斯堡的一个教师家庭,1920年进入慕尼黑大学物理系,师从索末菲攻读理论物理学,第一学期就在解释反常塞曼效应时首先引入了半量子数,第二学期结合听《液体力学》课程,写出了有关涡流的论文,深得其师赏识。 1922年6月,海森堡亦随同索末菲参加了玻尔的一次系列演讲,海森堡的提问引起了玻尔的注意。

1923年考取博士,先后跟随玻恩和玻尔学习,并在他们的指导下,研究量子伦。海森堡曾经说过:“在索莫菲那里学了物理,玻恩那里学了数学,玻尔那里学了哲学。”

海森堡1925年7月创建矩阵力学,1927年提出测不准关系,同年任莱比锡大学理论物理学教授,1941年任柏林大学物理学教授和威廉皇家物理研究所所长。因创立量子力学获1932年诺贝尔物理学奖,1976年2月1日在慕尼黑的家中去世。

海森堡认为,理论必须建立在实验中可观察量的基础上,他“相信应该不考虑原子里有电子轨道的问题,而应该只用和谱线强度相联系的频率和振幅来处理……。”

他同时认为,玻尔的对应原理----经典物理学规律和量子物理学规律间存在一种有启发价值的形式类比,是一条重要的指导原则。“力图创立一种与经典力学形式体系尽可能密切对应的量子力学形式体系”。

1925年7月,海森堡写了《关于运动学和力学关系的量子论新释》,在文中,他按照经典力学中用振幅和频率表示坐标的方法,得出量子论的x 表达式:

∑=α

ωt )m ,n (j m ,n e A )t (x

在量子论中,频率可由玻尔的跃迁定则 h ν=E n -E n-m 给出。海森堡提出,用数集{A n,m e jω(n,m)t }表示坐标X(t)。这样,如果用A 表示X(t),B 表示Y(t),那么X(t)和Y(t)的乘积C 与A 、B 的关系就是:∑=m ,n m ,n m ,n B A C

他认为n 是原子定态的量子数,光谱频率ω和振幅A 是原子现象的可观察量。

这个关系被称为海森堡乘法规则。(注意:在量子论中AB 和BA 不一定相等)由此奠定了矩阵力学的基础。

海森堡的数学方法,当时对大多数物理学家并不熟悉,包括海森堡本人也没有把握,他说:“xy 不等于yx 这一事实,当时对我来说是很讨厌的。我认为在整个方案中这是唯一的困难,否则我将非常快活。”后来海森堡把论文交给了玻恩,请他决定有无发表的价值。波恩经过几天的思考后,将论文推荐到《物理纪事》予以发表。玻恩后来回忆说:“当时海森堡的乘法规则使我不安,经过八天的苦思冥想,我回忆起在布莱斯劳大学时我从老师罗森斯(Rosanes)教授学到过的代数理论。”这就是70年前被创立的矩阵演算,所以海森堡的理论就被称为“矩阵力学”。

2.玻恩的工作

随即波恩运用海森堡的矩阵方法为海森堡的理论建立严密的数学基础,当时海森堡已去英国剑桥访问,玻恩找了年轻数学家约当作助手,于同年9月发表《关于量子力学Ⅰ》。

在论文中,他们采用海森堡的形式,不仅把坐标q 用矩阵表示,把动量p 也用矩阵表示,首次给矩阵力学以严格的表述。他们从量子化条件出发,运用对应原理,得到了p 和q 的对易关系:I i

h qp pq π2=

-(I---单位矩阵),并称这一关系为“准确量子条件”。随后他们把它当作理论体系的基本出发点,运用它去处理谐振子和非谐振子的有关问题,得到了与海森堡相同的结果。

1925年11月,海森堡、玻恩和约当合作完成了论文《关于量子力学Ⅱ》。论文中,他们将结果推广到多自由度和有简并的情况,系统的论述了本征值问题,建立了定态微扰和含时间微扰的基础,讨论了角动量、谱线强度和选择定则,奠定了以矩阵形式表示的量子力学的基础理论。

3.波动力学和矩阵力学的等价性

对立:随着波动力学和矩阵力学的创立,在同一研究领域出现了两个形式完全不同、但同样有效的量子理论。开始时,两种理论的创立者对对方的理论都抱有排斥甚至敌视的态度。海森堡给泡利的信中写到:“我越是思考薛定谔理论的物理内容,就越感到憎恨。”同样,薛定谔对矩阵力学也很反感,他说;“这种超越代数的方法简直无法想象,它如果不使我拒绝的话,至少使我气馁。”

等价:后来薛定谔认真钻研了矩阵力学,于1926年4月发表了《关于海森堡-玻恩-约当的量子力学与我的波动力学之间的关系》,从数学上证明了两种理论的等价性:海森堡的矩阵可以由薛定谔的本征函数构成,反之亦然。5月,薛定谔写信给狄拉克,说明了两种理论的一致性。

两种理论都是以微观粒子具有波粒二相性这一实验事实为基础,通过与经典理论的类比而建立起来的。后来,把矩阵力学和波动力学合在一起,统称为量子力学。

4.狄拉克和泡利的工作

狄拉克得知这一新的量子力学后,用了几个星期即发表了多篇文章。由于狄拉克熟悉哈密顿力学,他发现这一新量子力学中的对易关系,形式上与经典力学中的泊松括号相当。在1925年11月发表的论文《量子力学的基本方程》中,狄拉克运用泊松括号和对应原理,很简单的把经典力学方程改造为量子力学方程,并引进了狄拉克符号,从而建立了相对论性量子力学。同时为粒子物理和量子电动力学奠定了基础,因此狄拉克与薛定谔共获1933年诺贝尔物理奖。

1926年1月,在论文《量子力学和氢原子的初步研究》中,狄拉克建立了一种代数方法,并将它用于氢原子光谱,推导出了巴尔末公式。

与此同时,泡利也成功的运用矩阵力学的方法解决了氢原子能级,得到了巴尔末公式和斯塔克效应,并求出旧量子论无法解决的交叉电场中氢原子光谱的问题。

四玻尔与爱因斯坦的争论

量子力学建立以后,对于量子力学的物理解释和哲学意义,一直存在着严重的分歧和激烈的争论。许多著名物理学家、哲学家、实验物理学家、数学家等都卷入了这场争论。争论之深刻、广泛,在科学史上是罕见的。在这其中,以玻尔和爱因斯坦之间的争论最为引人注目。

1.量子力学的哥本哈根学派的诠释

1921年玻尔在丹麦哥本哈根创建了理论物理研究所(1965年改名为玻尔研究所)。并很快成为当时国际上公认的物理研究中心。逐渐形成了以玻尔为核心、以哥本哈根的名字命名的学派。对量子力学的创立和发展做出了杰出贡献,代表人物有玻尔、海森堡、泡利和玻恩等。海森堡的“测不准关系”和玻尔的“互补原理”构成了哥本哈根学派诠释量子力学的两大主要支柱。1927年后,逐渐为大多数物理学家所接受。因此被人们称为量子力学的“正统”解释。

①波函数的几率诠释:在微观领域里,力学的因果律和决定论都遭到了破坏。在相同的实验条件下,可以发生各种不可预测个体量子过程,每次测量都会由于观测仪器与客体之间不可控制的相互作用而引进新的实验条件,使通常情况下的因果链被打断。所以在量子力学中,人们必须放弃力学意义上的因果律和决定论,而把几率性看成是本质的。

②测不准关系:1927年,海森堡在论文《量子论中运动学和动力学的可观测内容》中,提出了著名的“测不准原理”。为了说明他的测不准原理,海森堡设计了一个理想实验:用一个γ射线显微镜观测一个电子。由于显微镜的分辨率受光波波长的限制,为了精确确定电子的位置,应该使用波长短的光,而波长越短,光子的动量越大,根据康普顿散射,引起电子动量的变化就越大。因此电子的位置愈准确,就愈难确定电子的动量。反之亦然。

海森堡认为,微观粒子既不是经典的粒子,也不是经典的波;当人们用宏观仪器观测微观粒子时,就会发生观测仪器对微观粒子行为的干扰,使人们无法准确掌握微观粒子的原来面貌;而这种干扰是无法控制和避免的,就像盲人想知道雪花的形状和构造。通过仔细分析,海森堡得出电子坐标的不确定程度Δx和动量的不确定程度Δp遵从:Δx·Δp~h;同样,能量和时间这种正则共轭物理量也遵从测不准关系,海森堡认为“这种不确定性,正是量子力学中出现统计关系的根本原因”。

③互补原理:海森堡认为,测不准关系的存在,表明了位置和动量、时间和能量这些经典概念在微观领域的适用界限;玻尔则认为这一原理并不表明粒子语言和波动语言的不适用性,只是表明同时应用它们既是不可能的,但又必须同等应用它们才能对物理现象提供完备的描述。也就是说,微观粒子具有波粒二相性,正是用经典语言描述微观客体的结果,但经

典理论中波和粒子这两种图象却不能同时存在,它们是相互排斥的,并且,无论是那一种图象都不能向我们提供微观客体的完整描述;只有把这两种图象结合起来、相互补充,才能提供微观客体的完整描述。这就是玻尔的互补原理。这种互补概念适用与整个物理学,甚至成为一种哲学原理。

哥本哈根学派的主要思想和观点大致可概括为四个方面:

①可观察量是建立理论的基础和依据。

②量子跃迁是量子力学的最基本概念。

③描述微观客体的波函数是一种几率波,粒子出现的几率由波幅的平方所决定。

④从实验中所观察到微观现象,满足测不准关系和互补原理。

2.爱因斯坦的观点

以爱因斯坦为首的另一部分物理学家,如薛定谔、德布罗意等对哥本哈根学派的观点提出了质疑。主要表现在两方面:

①因果性还是几率波?早在1920年1月27日,爱因斯坦针对泡利反对连续区理论的观点表示了他自己对“完全的因果性”的信念。1924年4月爱因斯坦给玻恩夫妇的信中,他针对玻尔关于辐射的波动在本质上是几率波的假设而评论说:“玻尔关于辐射的意见是很有趣的。但是,我决不愿意被迫放弃严格的因果性,将对它进行更强有力的保卫。我觉得完全不能容忍这样的想法,即认为电子受到辐射的照射,不仅它的跳跃时刻,而且它的方向都由它自己的自由意志去选择。”

②量子力学仅可建立在可观察量的基础上?爱因斯坦对这一观点也提出异议。1926年春天,他在海森堡的一次谈话中,提出了“是理论决定我们能够观察到的东西”的观点。3.论战的爆发

①序幕:1926年9月,薛定谔应玻尔的邀请,到哥本哈根介绍他的波动力学。在结束时,薛定谔提出应该放弃量子跃迁的概念,而代之以三维空间的波来描述微观客体的行为。即以传统的连续性观念,代替量子力学理论中的间断性观念。薛定谔的这一想法一提出来,立即遭到玻尔的强烈反对。这一争论可以看做是爱因斯坦和玻尔争论的序幕。

②玻尔的互补原理:1927年9月,在意大利科摩召开的一次纪念意大利科学家伏打逝世一百周年的会上,玻尔第一次提出了“互补原理”。这篇演说不仅用物理学语言,而且还用了大量的哲学语言。这使科学家们感到震惊。薛定谔和老厄不赞成玻尔的观点,尤其是不同意把物理学建立在测不准关系或其他不确定的统计解释上。

③论战开始:几个星期后,1927年10月在布鲁塞尔召开了第五次索尔维会议。会议主题是“电子和光子”。在玻恩和海森堡做关于矩阵力学的报告时指出:“我们主张量子力学是一种完备的理论,它的基本物理假说和数学假说是不能进一步被修改的。”这番话无疑是向不同意见提出了挑战。接着玻尔阐述了他的“互补原理”,重复了他在科摩会议上的观点。由于爱因斯坦一直对量子力学的统计解释感到不满,他曾在1926年12月给玻恩写信时说:“上帝不是在掷子”,当玻恩问到爱因斯坦的意见时,爱因斯坦表示赞同量子力学的系综几率解释,但不赞成把量子力学看成是单个过程的完备理论的观点。(爱因斯坦对测不准关系和量子力学的几率解释极为不满,认为这是由于量子力学主要的描述方式不完备造成的,所以只能得出不确定的结果。)爱因斯坦的发言掀起了波浪,也从此引发了他和玻尔之间就量子力学诠释问题的公开争论。

④爱因斯坦的单缝衍射实验:爱因斯坦提出了一个“单缝衍射”理想实验,来说明自己的观点。如图所示。一束电子射向遮光屏S,通过小孔O在半球面胶片P上得到衍射图像。这可用两个观点进行解释:

第一种观点认为,“同德布罗意---薛定谔波相对应的,不是一个电子,而是一团分布在空间中的电子云”;|Ψ2|表示在被观察的那一部分空间电子云中,一个粒子存在的几率。“量

子论对于任何单个过程是什么也没有说,它只是给出关于一个相对说来无限多个基元的集合的知识”;

第二种观点认为,“量子论力图完备的描述某些单个过程。落到S上的每个粒子,不是由位置和速度来表征,而是用一个…德布罗意---薛定谔波束来描写的。这个波束经受了衍射之后,它的一部分落到胶片P上。” |Ψ2|表示在所考察的时刻一个特定粒子存在于所给地方的几率。“这样,量子论是研究一个单个过程,并且力图充分的描述全部的事实和规律性。”

爱因斯坦认为,第二种观点包含了第一种观点的全部结果,但相反的论断却不能成立,这是同相对性的假设相矛盾的。

接着他具体阐述了反对第二种观点的看法:“如果认为,|Ψ2|是简单地给出了在被观察的胶片上的某一部分在给定的时刻某个粒子存在的几率,那么,由此就必须得出这样的结论:一个同一的基元过程在胶片的第二个或者更多个地方起作用。然而,认为对应于|Ψ2|的,是表示一定粒子存在于完全确定的地方的几率,这样的一种解释就必须以完全特殊的超距作用为前提,而不允许连续分布在空间中并且同时在胶片的二个部分表现出自己的作用的波的存在。”

玻尔经过认真思考,指出:不能避免在测量时仪器对电子不可控制的相互作用,即电子与狭缝边沿的相互作用。

⑤双缝干涉实验:爱因斯坦又想出了一个类似托马斯·杨的双缝干涉实验,如图所示。如果让大量电子通过A、B,会在屏C上出现干涉条纹。若控制电子枪O,让它一个一个的发射电子,屏C上就会出现一个一个的亮点,并可测量他们的位置。如果分别关闭M或N,就可以知道电子是通过M还是N,从而可测出电子的准确路径。

由干涉条纹可计算电子波的波长,从而可精确确定电子的动量。否定了测不准关系。

玻尔经过认真思考后反驳说,如果关闭狭缝N和M中的任一个,实验状态就完全改变了,在双缝开启时出现的干涉现象就不再出现,实验回到了单缝状态,只不过先后通过了两条单狭缝,等于多了一次与狭缝相互作用的不确定因素。更重要的是,电子行为依赖于壁障上有没有另一条狭缝,即依赖于我们对实验的安排。这样,玻尔把爱因斯坦用来反驳互补原理的理想实验,反而变成了用互补原理说明波粒二相性的例子。

爱因斯坦并没有因为自己的质疑被玻尔化解而改变自己的看法,他说过一句充分表达内心信念的名言:“你相信掷子,我却相信客观存在的世界中的完备定律和秩序。”

4.争论的高潮

在1930年10月召开的第六届索尔维会议上,爱因斯坦与玻尔的争论达到一个高潮。会议主题是“物质的磁性”,不过关于量子力学的讨论却成了实际上的主要内容。起因是爱因斯坦提出了一个新的理想实验,试图从能量和时间这一对共轭变量的测量来否定测不准关系。

①“光子箱”实验:如图示。一个光子箱悬挂在上底座上,不消耗辐射能。箱壁上开一小孔C,并设有用计时装置控制的快门。箱子下面挂一重物G,整个箱子重量可由装在箱子外面的指针测定。在从快门打开到闭合的时间Δt里,只让一个光子飞出;Δt可通过计时装置精确测定;由于飞出一个光子而引起的整个箱子的质量改变Δm也可精确测定,由只能关系式即可计算出能量的变化ΔE。这样Δt和ΔE就可同时精确测定。测不准关系不再成立。

听了爱因斯坦“光子箱”的发言,据说当时玻尔“面色苍白,呆若木鸡”。面对这一严重挑战,玻尔经过一个不眠之夜的思考,终于找到了爱因斯坦的疏漏之处,第二天玻尔做了一个漂亮的回答。他指出,如果光子箱的重量是用弹簧秤来测量的,那么当光子飞出去而引起箱子的重量发生变化时,箱子必将沿重力方向发生运动。这时,即使重量的测量是准确的,但是由于箱子在重力场中发生了位置变化,箱子内的钟的快慢也将因广义相对论的红移效应而发生改变,从而使时间的测量产生一个不确定量。玻尔由此得出结论:用这种仪器作为精确测定光子能量的工具,将不能控制光子逸出的时间。

爱因斯坦精心设计的“光子箱”理想实验,不但没有难倒玻尔,反而成了测不准原理的一个绝好例证。爱因斯坦不得不承认玻尔的结论无可指责。

②“EPR佯谬”:第六届索尔维会议之后,爱因斯坦承认了海森堡的测不准原理和量子力学理论在逻辑上的自恰性,但是仍坚持认为量子力学是不完备的。1935年5月爱因斯坦和美国物理学家波多尔斯基(B.E.Podolsky)、罗森(N.Rosen)合作发表了《能认为量子力学对物理实在的描述是完备的吗?》,对量子力学完备性提出了有力的反驳,即“EPR佯谬”。文章在论述完“完备”理论的必要条件和鉴别“物理实在”的充分条件后认为:对于一对共扼物理量只能是:或者认为量子态Ψ对于实在的描述是不完备的;或者是对应于这两个不能对易的算符的物理量不能同时具有物理的实在性。

最后爱因斯坦等人得出结论:量子力学的波函数只能描述多粒子组成的体系(系综)的性质,而不能准确的描述单个体系(如粒子)的某些性质;但是一个完备性的理论应当能描述物理实在(包括单个体系)的每个要素的性质,所以不能认为量子力学理论描述是完备的。

③波尔对“EPR佯谬”的应答:波尔认为,不可能以毫不含糊的方式来确定EPR所指的那些物理量,因为物理量本身就同测量条件和方法紧密联系着,确定物理量的这些条件使EPR所做的关于“实在”的定义在本质上就含糊不清了。玻尔认为,任何量子力学测量结果的报道给我们的不是关于客体的状态,而是关于这个客体侵没在其中的整个实验场合。这个整体性特点,就保证了量子力学描述的完备性。

5.没有结尾的尾声

由于二次世界大战,争论平息了一个时期。直到1948年,爱因斯坦对EPR佯谬又做了一次深入的讨论。1949年玻尔也发表了《就原子物理学的认识论问题和爱因斯坦进行商榷》的长篇文章,但基本都属于“各说各的”的历史追述,而不像以前那样针锋相对的论战了。

这是一场真正的科学论战。爱因斯坦完全承认,统计性的量子理论为理论物理学代来了极其重大的进展;这个理论也是迄今为止唯一能把二相性以逻辑上令人满意的方式统一起来的理论。玻尔更是这样,据他的助手回忆,在每一个重大问题上,玻尔习惯上总是先考虑爱因斯坦是怎样想的;1962年11月18日玻尔逝世时,人们在他工作室的黑板上发现了两张草图,其中之一就是爱因斯坦的光子箱。

6.意义

爱因斯坦和玻尔的争论,使量子力学的意义不断得到澄清,一步步逐渐深入的揭示了量子力学的本质含义。这场争论也是量子力学发展的一个组成部分。这个争论的一个中心论题是:科学规律本质上是因果性的,还是概率性的?

这场争论并没有破坏他们的友谊,他们相互尊重,为后人树立了榜样。

当代物理学家惠勒(J.A.Wheeler)说:“我不知道哪里还会再出现两各更伟大的人物,在更高的合作水平上,针对一个更深刻的论题,进行一场为时更长的对话。”

关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。但是量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。

量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。

微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。

玻尔:谁如果在量子面前不感到震惊,他就不懂得现代物理学;同样如果谁不为此理论感到困惑,他也不是一个好的物理学家。

总之,量子力学冲破了经典物理的局限,迅速发展起来,成为我们研究微观世界的有力武器。普朗克、卢瑟福、玻尔、德布罗意、薛定谔、海森堡等科学家为追求真理而勇于探索的精神,成为我们学习的榜样。

思考题

1.普朗克是如何提出量子假设的?

2.简述光子概念的建立和确证过程。

3.玻尔是如何提出他的量子化原子结构模型的?这一理论的建立对量子理论的发展有何重大意义?

4.德布罗意是怎样提出物质波理论的?

5.海森伯等人建立矩阵力学的基本思考线索是怎样的?

6.简述薛定谔建立波动力学的主要过程。

7.玻尔与爱因斯坦关于量子力学完备性的争论主要是围绕那些问题进行的?

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

量子力学发展史

鬼话连篇:荒诞量子力学 原创2017-01-15小学僧老和山下的小学僧 先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:如果你第 一次学量子力学认为自己懂了,那说明你还没懂。” 为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从认识论'说起吧!中学僧请跳过,直接看后半篇。 人类为了生存,一直试图认识和解释这个世界。最早的认识论”充满了想象,后来逐渐演化成了宗教”,比如上帝创造了万物。过了一阵子,有些人发现这种认识论"不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考世界的本源是什么”、东西为什么往下掉”,如此云云。早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了哲学” 大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。 很长一段时间,大家就是这么靠拍脑袋研究世界。拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是伽利略”。伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是科学”的雏形,所以伽利略很伟大,属于一流伟大”这个范畴。 是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的无知”不是无知。 打个补丁,本文说的科学”是单纯的一门学科,而不是形容词。啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在科学' 就是真理”的代名词,很多地方可以把科学”和合理”两个词互换。你的做法很科学”,你的做法很合理”,这两句话有区别吗?再看英文版:你的做法很Scienee :这可就是语病了。本文说的科学”就是“Scienee, 是—门学科,而不是理:。

量子力学的发展及应用

量子力学论文题目: 量子力学发展历史及应用领域 学生姓名武术 专业电子科学与技术 学号_ 222009322072082 班级2009 级 2班 指导教师张济龙 成绩 _ 工程技术学院 2011年12 月

量子力学发展历史及应用领域 武术 西南大学工程技术学院,重庆 400716 摘要:量子力学发展至今已有一百年了,它发展的道路并不是一帆风顺的。这一百年虽是艰难的,但是辉煌的。此后,人们发现量子力学与现代科技的联系日益紧密,它的发展潜力是不能低估的。本文从两个部分逐次论述了量子力学的发展及应用。第一部分是量子力学的发展,这部分阐述了早期量子论。第二部分是量子力学的应用,这部分阐明了量子力学在固体物理和信息科学中的应用。 关键词:早期量子论;量子力学的发展;量子力学的应用 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。 建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学可谓是量子理论的第二次发展层次,第一次常称作早期量子论,第三次就是量子场论。本文除了论述这三个层次以外,又说了它在现代物理乃至现代物质科学中的地位,阐述了它应用的状况。 一.量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的

量子力学今后发展的真正出路在哪里

量子力学今后发展的真正出路在哪里? 司今(jiewaimuyu@https://www.360docs.net/doc/415300457.html,) 量子力学是研究质点自旋运动的力学,它不能放弃“波粒二象性”认识的根本原因在于:我们无法用经典粒子概念来解释光的“衍射、干涉”等具有波性的现象。 在经典粒子概念中,粒子就没有自旋和自旋磁场性,粒子通过的物质空间也没有磁场性。但现代物理学已证明,质子、中子、电子、光子等都具有自旋和自旋磁矩性,这说明它们已不同于经典粒子,它们具有自旋和磁场双重性;但量子力学在探讨光衍射现象时,倒是把光的这一本质性给忘记了,同时也忽略了由自旋粒子(如质子、中子、电子等)组成的窄缝空间也是一个磁场空间;试想,一个有自旋磁场的粒子通过一个有磁场的空间,这个粒子运动还会像经典粒子那样作直线运动吗? 如果我们认真地将粒子们的双重性与物质空间磁场性有机结合起来,我想,解决粒子“干涉、衍射”问题并不难,关键难得是我们将如何改造与舍弃我们现有的量子力学?如何补充与完善我们的经典物理学? 我们要始终牢记,微观世界的物体运动与宏观世界的物体运动存在本质区别,那就是在我们眼里和经典理论中,宏观物体运动是没有自旋与自旋场集于一身的物体;更要牢记,空间宏观物体的磁场对其他物体运动的影响要比微观世界小得多。 “波粒二象性”不是研究微观世界的真正出路,把握微观世界粒子的自旋与自旋磁场性及微观空间存在磁场性才是我们真正打开微观世界大门的一把金鈅匙。 我们必须抛弃“波粒二象性”思想,回归到创新的经典力学中来,这是量子力学今后发展必须付出的代价!但就目前来看,我们的物理学主流界能答应吗? 一个理论的正确与否关键在于可不可以通过实验验证,验证就要有一个清晰的模型图景;在宏观世界中,我们能够找到有“场与自旋”的物理模型就非“磁陀螺运动”莫属了,因此,我的“自旋场理论”就是从研究“磁陀螺在磁场中运动”开始的。 我认为,将来的量子力学必然是带有自旋磁场的质点运动与空间或物质自旋场有机结合的力学,这种结合是对牛顿质点力学与库伦“点荷”理论的回归;用研究、对待自旋磁陀螺的眼光来重新审视微观世界的那些“精灵们”,像牛顿力学体系那样,从“公理”出发,建立我们微观世界的真正物理理论体系,这样,我们的物理学才会真正走进微观世界的殿堂,才能真正走进量子大时代! 我期待着这一时刻的到来! 【附】:几种物理学体系的比较

量子力学的历史和发展

量子力学的历史和发展 量子论和相对论是现代物理学的两大基础理论。它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。量子论的创立经历了从旧量子论到量子力学的近30年的历程。量子力学产生以前的量子论通常称旧量子论。它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。 热辐射研究和普朗克能量子假说 十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。德国成为热辐射研究的发源地。所谓热辐射就是物体被加热时发出的电磁波。所有的热物体都会发出热辐射。凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。一个物体被加热从暗到发光,从发红光到黄光、蓝光直至白光。1859年,柏林大学教授基尔霍夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理想物体。1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐射性能可以看作一个黑体。实验表明这样的黑体所发射的辐射的能量密度只与它的温度和频率有关,而与它的形状及其组成的物质无关。黑体在任何给定的温度发射出特征频率的光谱。这光谱包括一切频率,但和频率相联系的强度却不同。怎样从理论上解释黑体能谱曲线是当时热辐射理论研究的根本问题。1896年,维恩根据热力学的普遍原理和一些特殊的假设提出一个黑体辐射能量按频率分布的公式,后来人们称它为维恩辐射定律。普朗克就在这时加入了热辐射研究者的行动。普朗克(1858—1947年)出身于一个书香门第之家,曾祖父和祖父曾在哥廷根大学任神学教授,伯父和父亲分别是哥廷根大学和基尔大学的法学教授。他出生在基尔,青年时期在慕尼黑度过。17岁进慕尼黑大学攻读数学和物理学,后来转到柏林大学受教于基尔

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

量子力学的产生与发展

量子力学的产生与发展 量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。 量子的诞生 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。1900年德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hV为最小单位,一份一份交换的。普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式。量子论就这样随着二十世纪开始由伟大的物理学家普朗克把它带到我们这个世界来。虽然在围绕原子论的争论过程中,玻尔兹曼(1844—1966年)在反驳唯能论时说过“怎么能说能量就不像原子那样分立存在呢?”这样的话,马赫(1838—1916年)曾经表明化学运动不连续性的观点,但真正把能量不连续的概念引入物理学的是普朗克。因为能量不连续的概念与古典物理学格格不入,物理学界对它最初的反映是冷淡的。物理学家们只承认普朗克公式是同实验一致的经验公式,不承认他的理论性的量子假说。普朗克本人也惴惴不安,因为他的量子假设是迫不得已的“孤注一掷的举动”。他本想在最后的结果中令h→0,但却发现根本办不到。他其后多年试图把量子假说纳入古典物理学框架之内,取消能量的不连续性,但从未成功。只有爱因斯坦最早认识到普朗克能量子概念在物理学中的革命意义。

著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 量子的青年时代 杂乱的数字以及有趣的台阶想法 从光谱学中,我们知道任何元素都产生特定的唯一谱线。这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了:ν=R(1/2^2 - 1/n^2) 1913年丹麦物理学家玻尔疑惑于卢瑟福原子行星模型的不稳定,建了一所“诺贝尔奖幼儿园”的卢瑟福向他推荐了这个公式。在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。一个大胆的想法在玻尔的脑中浮现出来:如同具有一定势能的人从某一层台阶上跳下来一样。台阶数“必须”是整数,就是我们的量子化条件。原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定

量子理论的发展

§6 量子理论的发展 背景 玻尔理论成功地解释了原子的稳定性及氢原子光谱的规律性。为人们认识微观世界和建立近代量子理论打下了基础。 但玻尔理论是经典与量子的混合物,存在着许多不协调。如它既保留了经典的确定性轨道,又假定量子化条件来限制电子的运动。它不能解释稍微复杂的问题,正是这些困难,迎来了物理学的大革命。 1.量子力学:研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。2.线索: 德布罗意→薛定谔→薛定谔波动方程 海森堡→波恩,提出矩阵力学→→→→量子力学 3.代表人物: 玻尔、泡利、索末菲、海森堡、G·P·汤姆逊、戴维森、等 一德布罗意波的提出 1.德布罗意(Louis Victorde Broglie,1892~1989) 法国物理学家。1892年8月15日生于下塞纳的迪耶普。出身贵族。1910年获巴黎大学文学学士学位,1913年获理学硕士学位。第一次世界大战期间,在埃菲尔铁塔上的军用无线电报站服役。战后一方面参与他哥哥的物理实验工作,一方面拜朗之万为师,研究与量子有关的理论物理问题,攻读博士学位。 1923年9~10月间,连续在《法国科学院通报》上发表三篇短文:《辐射─波和量子》、《光学─光量子、衍射和干涉》、《物理学─量子、气体动理论及费马原理》,在1924年通过的博士论文《量子论研究》中提出了德布罗意波(相波)理论。1927年由美国贝尔实验室的戴维孙(C.J.Davisson)、革未(L.H.Germer)及英国的汤姆孙(G.P.Thomson)通过电子衍射实验证实,1929年获诺贝尔物理学奖,成为第一个以学位论文获得诺贝尔奖金的学者。1932年任巴黎大学物理教授,1933年被选为法国科学院院士。1942年任该院常任秘书,1962年退休,1987年3月去世,享年95岁。主要著作有:《波动力学导论》,《物质和光:新物理学》,《物理学中的革命》,《海森伯不确定关系和波动力学的概率诠释》等。 2.思维过程 德布罗意是爱因斯坦光量子假说的追随者,但他深感爱因斯坦地光量子理论并没有使从牛顿-惠更斯时代起就存在的光的微粒说和波动说的分歧得到解决,只不过是使光的微粒说又重新抬头而已。 因此他战后重新开始理论物理学的研究时,就把自己工作的重点放在用统一的理论描述光的行为,即想给光量子假说再披上一件波动的外衣,同时希望能把这一结论推广到实物粒子上。 德布罗意在获得诺贝尔奖的演讲《电子的波动性》中说:人们无法理解,为什么对于光来说,需要两种相互矛盾的学说,即波动说和微粒说。为什么原子中的电子只有可能进行某些运动,而按经典概念它应当有无穷多的运动。…… 当我开始思考这些困难时,主要有两个问题吸引着我。第一个问题是,不能认为光量子理论是令人满意的,因为它是用ω=hν这个关系式来确定光微粒的能量,其中包含着频率ν。可是纯粹的粒子理论不包含任何定义频率的因素。对于光来说,单是这个理由就需要同时引进粒子的概念和周期的概念。另一个问题是,确定原子中电子的稳定运动涉及到整数,而至今物理学中涉及整数的只有干涉现象和本征振动现象。这使我想到,不能用简单的微粒来描述电子本身,而应当赋予它们以周期的概念。

量子力学在现实中的十大应用

数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途,譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种虽缓慢、成效却十分积极的积累过程中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界才变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书的引言中所述:“量子力学在哪?你不正沉浸于其中吗。” 陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息

量子理论发展史

量子理论发展史 20世纪初,Planck提出了能在全波段与观测结果符合的黑体辐射能量密度随频率分布的公式,即Planck公式。要从理论上导出Planck公式,需假定物体吸收或发射电磁辐射,只能以“量子”(quantum)的方式进行,每个“量子”的ε.由于能量不连续的概念在经典力学中是完全不容许的,所以尽管这能量为hv = 个假设能堆到出与实际观测极为符合的Planck公式,在相当长的时间内量子假设并未受到重视。 Einstein在用量子假设说明光电效应问题时提出了光量子概念,他认为辐射场就是由光量子组成,采用光量子概念后光电效应中的疑难迎刃而解。Einstein 和P.J.W.Debye进一步把能量不连续的概念应用于固体中原子的振动,成功解释了温度趋于零时固体比热容趋于零的现象。至此,物理学家们才开始重视能量不连续的概念,并用它来解决经典物理学中的其它疑难问题。比较突出的是原子结构与原子光谱的问题。 1896年,汤姆生提出原子结构的葡萄干面包模型,即正电荷均匀分布于原子中,电子以某种规则排列镶嵌其中。1911年,卢瑟福根据α粒子的散射实验提出了原子的有核模型:原子的正电荷及几乎全部质量集中于原子中心很小的区域,形成原子核,电子围绕原子核旋转。有核模型可以很好解释α粒子的大角度散射实验,但引来了两大问题:(1)原子的大小问题。在经典物理框架中思考卢瑟福的有核模型,找不到一个合理的特征长度。(2)原子的稳定性问题。电子围绕原子核的加速旋转运动。按照经典电动力学,电子将不断辐射能量而减速,轨道半径不断缩小,最后掉到原子核上,原子随之塌缩。但现实世界表明,原子稳定地存在于自然界。矛盾就这样尖锐地摆在面前,亟待解决。 此时,丹麦年轻的物理学家玻尔来到卢瑟福的的实验室,他深深为此矛盾吸引,在分析了这些矛盾后,玻尔深刻认识到原子世界必须背离经典电动力学。玻尔把作用量子h(quantum of action)引进卢瑟福模型,提出原子的量子论:一是原子的具有离散能量的定态概念,一是两个定态之间的量子跃迁概念和频率条件。[4]然而,玻尔理论应用到简单程度仅次于氢原子的氦原子时,结果与实验不符。对微观粒子的运动规律的探索显得紧迫。为了达到这个目的,1924年德布罗意在光有波粒二象性的启示下,提出了微观粒子也具有波粒二象性的假说。[5]提出了德布罗意关系,按照德布罗意关系,与自由粒子联系的波是一个平面波。1927年,戴维孙和革末的电子衍射实验证明了德布罗意假说的正确性。 量子力学理论在1923—1927年间建立起来。微观粒子的量子态用波函数来描述,Schrodinger 方程表示微观粒子波函数随时间变化的规律。海森堡的矩阵

量子力学发展历程

量子力学发展历程 摘要:量子理论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学;量子理论;矩阵力学;波动力学;测不准原理 量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学揭示了微观物质世界的基本规律,为原子物理、固体物理学、核物理学和粒子物理学奠定了基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质,光的吸收与辐射等等方面。从1900年到1913年量子论的早期提出,到经过许多科学家如玻恩、海森伯、玻尔等人的努力诠释,量子力学得到了进一步发展。后来遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的论战,至今尚未结束。 1 普朗克的能量子假设 普朗克在黑体辐射的维恩公式(u = b(λ^-5)(e^-a/λT))和瑞利公式(u = 8π(υ^2)kT / c^3)之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。 2光电效应和固体比热的研究 普朗克的出能量子假说具有划时代的意义,但是,不论是他本人还是同时代人当时对这一点都没有充分认识。爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.1905年,爱因斯坦在其论文《关于光的产生和转化的一个试探性观点》中,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。在那篇论文中,爱因斯坦总结了光学发展中微粒说和波动说长期争论的历史,提示了经典理论的困境,提出只要把光的能量看成不是连续的,而是一份一份地集中在一起,就可以作出合理的解释。与此同时,他还大胆地提出了光电方程,当时还没有足够的实验事实来支持他的理论,因此,爱因斯坦称之为“试探性观点”。但他的光量子理论并没有及时地得到人们的理解和支持,直到1916年,美国物理学家密立根对爱因斯坦的光电方程作出了全面的验证,光量子理论才开始得到人们的承认。1906年,爱因斯坦将普

量子理论的历史发展(第一卷、第一分册)P196

量子理论的历史发展(第一卷、第一分册)P196-201 几个月以后,在1909年9月21日,爱因斯坦在萨尔茨堡的第81届德国科学家大会(Natur forscherersammlung)上发表了一篇演讲,题为“Uber die Entwicklung userer Anschauungen uber das Wesen und die Konstitution der Strahlung(论我们关于辐射之本性及构造的概念的发展)”;在演讲中,在许多物理学家 和数学家面前重述了导致涨落公式(79)的那些主要论点(162)【(162)出席会议的人中包括:M.玻恩、J.埃尔斯特、P.爱波斯坦、J.夫兰克ph·夫兰克、J.冯·盖特勒、A.戈克尔、O.哈恩、W.霍尔瓦希、F.哈泽内尔、D.洪德罗斯、L.霍普夫、H.凯泽尔、R.拉登堡、M.冯·劳厄、L.迈特纳、E.迈耶、G·米、M·普朗克、F·赖歇、H·鲁本斯、C·谢弗、K·谢尔、E·冯·施韦德勒、H.西登托夫、A 索末菲、J.斯塔克、W.施托伊宾和W.佛克脱.(参阅赫尔曼,1969,P.71注17).】然后他就指出了一件事 实:“现在还不能表述一种数学的辐射理论,用来既描述[它的]波动结构又描述由[方程80]的]第一项推得的结构(量子结构)”(爱因斯坦,1909b,p.824).爱因斯坦也并没有这样一种统一的理论,但是他提出了下列的建议: 不过在我看来比什么都自然的一种图象[就是],光的电磁场的出现是和一些奇点联系着的,就象电子理论中静电场的出现一样。人们不能完全排除这样一种可能性:在这样一种理论中,电磁场的总能己可以看成是定域在这些奇点上的,正如在旧的超距作用理论中一样.我设想,譬如说每一个这样种奇点都被—个力场包围着、这个力场本质上具有平面波的特点,其振幅随着到奇点的距离的增大而减小.如果存在许多这样的奇点,它们之间的距离远小于一个奇点的力场的广延,则各力场将互相重在而共同形成一个波动着的力场,它和现有电磁理论意义下的波场只有很小的差别.我们当然用不着特别强调,只要这样一种图象还不能导致一种精确的理论,就不应该认为它有任何价值.我只是想用[这个例子]来说明,由于有”普朗克公式而必须指定给辐射的两种结构性质(波动结构和量子结构),不一定要被看成是彼此不相容的。(爱因斯坦,1909b,PP824-825(163)。【(163)爱因斯坦在他从前的论文中曾经指明上面说过的这些想法可以怎样实现;他在那里引用了——早先由普朗克和金斯观察到的——一个事实,即e2/c这个以此处e是电子的电量而c是真空中的光速】和作用量子具有相同的量纲,并可以用一个等式联系起来,二者差一个数量级为100的因子.他曾经论证说,“在我看来,从等式h=e2/c似乎就可以得出,[理论的]那种蕴涵[电的]基元量子的存在的同一修订,也必将导致辐射的的量子结构”(爱因斯坦,1909a,pp.192—193).这就

量子力学科普:量子力学发展史话

量子力学科普:量子力学发展史话 先说明,文章里有些东西具有伪真实性,但是文章的视角未尝不可当做反思,有些东西也未必是空穴来风。 故事发生在二十世纪初的法国。巴黎延续着千百年的灯红酒绿,香榭丽舍大道上散发着繁华和暧昧,红磨坊里弥漫着躁动与彷徨。 而在此时的巴黎,有一个年轻人,名字叫做德布罗意,从他的名字当中可以看出这是一个贵族,事实上德布罗意的父亲正是法国的一个伯爵,并且是正是一位当权的内阁部长。这样一个不愁吃不愁穿只是成天愁着如何打发时光的花花公子自然要找一个能消耗精力的东西来磨蹭掉那些无聊的日子,德布罗意则找到了一个很酷的“事业”——研究中世纪史。据说是因为中世纪史中有着很多神秘的东西吸引着这位年轻人。 时间一转就到了1919,这是一个科学界急剧动荡动着的年代。就在这一年,德布罗意突然移情别恋对物理产生了兴趣,尤其是感兴趣于当时正流行的量子论。具体来说就是感兴趣于一个在当时很酷的观点:光具有粒子性。这一观点早在十几年前由普朗克提出,而后被爱因斯坦用来解释了光电效应,但即便如此,也非常不见容于物理学界各大门派。 德布罗意倒并不见得对这一观点的物理思想有多了解,也许他的理解也仅仅就是理解到这个观点是在说“波就是粒子”。 或许是一时冲动,或许是因为年轻而摆酷,德布罗意来到了一派宗师朗之万门下读研究生。 从此,德布罗意走出了一道足以让让任何传奇都黯然失色的人生轨迹。 历史上德布罗意到底花了多少精力去读他的研究生也许已经很难说清,事实上

德布罗意在他的五年研究生生涯中几乎是一事无成。事实上也可以想象,一个此前对物理一窍不通的中世纪史爱好者很难真正的在物理上去做些什么。 白驹过隙般的五年转眼就过去了,德布罗意开始要为他的博士论文发愁了。其实德布罗意大约只是明白普朗克爱因斯坦那帮家伙一直在说什么波就是粒子,(事实上对于普朗克大约不能用“一直”二字,此时的普朗克已经完全抛弃自己当初的量子假设,又回到了经典的就框架。)而真正其中包含的物理,他能理解多少大约只有上帝清楚。 五年的尽头,也就是在1924,德布罗意终于提交了自己的博士论文。他的博士论文只有一页纸多一点,不过可以猜想这一页多一点的一份论文大约已经让德布罗意很头疼了,只可惜当时没有枪手可以雇来帮忙写博士论文。 他的博士论文只是说了一个猜想,既然波可以是粒子,那么反过来粒子也可以是波。 而进一步德布罗意提出波的波矢和角频率与粒子动量和能量的关系是: 动量=普朗克常数/波矢 能量=普朗克常数*角频率 这就是他的论文里提出的两个公式 而这两个公式的提出也完全是因为在爱因斯坦解释光电效应的时候提出光子的动量和能量与光的参数满足这一关系。 可以想象这样一个博士论文会得到怎样的回应。在对论文是否通过的投票之前,德布罗意的老板朗之万就事先得知论文评审委员会的六位教授中有三位已明确表态会投反对票。 本来在欧洲,一个学生苦读数年都拿不到学位是件很正常的事情,时至今日

量子力学发展重大事件

量子力学发展重大事件 1690年,惠更斯出版《光论》,波动说被正式提出 1704年,牛顿出版《光学》,微粒说成为主导(与胡可第一次微波大战) 1807年,杨整理了光方面的工作,提出了双缝干涉实验,波动说再一次登上舞台 1819年,菲涅尔证明光是一种横波 1856-1865,麦克斯韦建立电磁力学,光被解释为电磁波的一种1885年,巴尔末提出了氢原子光谱的经验公式 1887年,赫兹证实了麦克斯韦电磁理论,但他同时也发现了光电效应现象 1893年,黑体辐射的维恩公式被提出 1896年,贝克勒耳发现了放射性 1896年,发现了光谱的塞曼效应 1897年,J.J.汤姆逊发现了电子 1900年,普朗克提出了量子概念,以解决黑体问题 1905年,爱因斯坦提出了光量子的概念,解释了光电效应 1910年,α粒子散射实验 1911年,超导现象被发现 1913年,玻尔原子模型被提出 1915年,索末菲修改了玻尔模型,引入相对论,解释了塞曼效应和

斯塔克效应 1918年,玻尔的对应原理成型 1922年,斯特恩-格拉赫实验 1923年,康普顿完成了X射线散射实验,光的粒子性被证实 1923年,德布罗意提出物质波的概念 1924年,玻色-爱因斯坦统计被提出 1925年,泡利提出不相容原理 1925年,戴维逊和革末证实了电子的波动性 1925年,海森堡创立了矩阵力学,量子力学被建立 1925年,狄拉克提出q数 1925年,乌仑贝克和古德施密特发现了电子自旋 1926年,薛定谔创立了波动力学 1926年,波动力学和矩阵力学被证明等价 1926年,费米-狄拉克统计 1927年,G.P.汤姆逊证实了电子的波动性 1927年,海森堡提出不确定性原理 1927年,波恩作出了波函数的概率解释 1927年,科莫会议和第五届索尔维会议召开,互补原理成型 1928年,狄拉克提出了相对论化的电子波动方程,量子电动力学走出第一步 1930年,第6届索尔维会议召开,爱因斯坦提出光箱实验 1932年,反电子被发现

索末菲—量子力学史上一位重要的配角资料

阿诺德·索末菲 量子力学史上一位重要的配角 摘要:索末菲是20世纪卓越的理论物理学家之一,他把玻尔原子理论扩充到包括椭圆轨道理论和相对论精细结构理论,从而确立了他在量子力学发展史上的地位.他思想开放,乐于追踪最新观点,并把感悟到的最新思想的重要之处传达给学生;从而使他当之无愧地成为20世纪物理学界最伟大的导师之一. 关键词:索末菲,椭圆轨道,量子条件,玻尔—索末菲原子理论 中图分类号:文献标识码:A文献编号: 著名理论物理学家阿诺德·索末菲(Arnold Sommerfeld,1868~1951),是德国慕尼黑大学理论物理研究院院长,他对玻尔原子理论的扩充和他所著的《原子结构和光谱线》这部深具影响的教科书,牢固地确立了他作为量子论专家的声誉,被他的学生誉为“原子物理学的圣经”.在量子力学史上,他没有获得诺贝尔奖,只不过是一位重要的配角.他赢得量子力学三大重要学派领袖之一的声誉,并不是依靠他提出自己的新颖见解,而在于他在培养人才方面是无与伦比的,他有能把像海森伯、泡利这样的毛头小伙子精雕细琢成杰出科学家的神奇本领.爱因斯坦1922年很赞赏地说道:“我特别欣赏您培养出了如此众多的青年才俊.” 1索末菲的生平 1868年12月5日,索末菲生于东普鲁士的柯尼斯堡(K?nigsberg)(今俄罗斯的加里宁格勒),是中欧理论物理的发源地,德国成立的第一个数学和物理研究班就诞生在这里.中学时代索未菲和德国实验物理学家维恩(W.Wien)是同学,1886年进入柯尼斯堡大学数学教授林德曼(C.Lindemann)指导的数学——物理研究班主修数学,同当时许多别的数学家一样,索未菲运用汤姆逊(W.Thomson)(开尔文勋爵)的数学物理理论对麦克斯韦电磁场方程的进行了概述,并对应用数学产生了浓厚的兴趣.于是,他从林德曼的数论领域转变到汤姆逊的数学对物理学的应用研究,他研究过电子波的物理特性和关于旋转陀螺的理论,对于应用复变函数理论解决边界问题颇有造诣.1891年,他在康尼斯堡的数学物理教授沃尔克曼(P.V olkmann)的指导下,完成了数学物理方面的博士学位论文.1893~1894年在格廷根的矿物研究所担任数学家克莱因(F.Klein)的助手.1897年任克劳斯塔尔矿业学校的数学教授.1900年由克莱因推荐,在亚琛工业大学任工程力学教授.在此期间,他致力于把数学和工程力学联系起来,使工程力学有坚实的数学基础;这是克莱因一贯的主张.1906年起任慕尼黑大学理论物理学教授,不久主持建立了理论物理研究院并任院长. 1905年爱因斯坦(A.Einstein)的关于狭义相对论的论著发表以后,在1907年德国自然研究者大会上,索末菲曾为爱因斯坦的理论辩护,而且他在这个领域所做的工作,为后来的轫致辐射理论提供了理论基础.1913年,玻尔(N.Bohr)的原子模型理论成功地解释了氢原子的光谱线系以后,索末菲在以后三四年间,对玻尔原子理论作了进一步的扩充,他引入椭圆轨道、轨道的空间量子化等概念,成功地解释了氢原子光谱和重元素X 射线谱的精细结构以及正常塞曼效应;这些成果在早期量子论对微观世界的探索作出了重要的贡献.1919年,索末菲出版了《原子结构和光谱线》一书,并在他所主持的高年级学生理论研讨班上使用,引导学生理解物理学的最新发展;而且也使他自己的研究工作与当时物理学的发展一同前进.1929年,他又写成了《波动力学补篇》一书,两书都多次修订再版,这些名著成为好几代学习物理学学生的“圣经”.1940年索末菲在慕尼黑大学退体,在第二次世界大战中,索末菲开始致力于编写《理论物理学讲义》,计5卷,但在最后一卷尚未完全定稿时,1951年4月26日因车祸在慕尼黑逝世,此书由他的学生续完这一工作;这是与他的《原子结构和光谱线》相媲美的又一部著作. 2玻尔原子理论 1913年3月6日,玻尔结合了普朗克(M.Planck)的量子概念、里德伯-里兹(Rydberg-Ritz)组合原则和卢瑟福(E.Rutherford)关于原子的核式结构模型,阐述氢原子结构的半经典理论,并把他《关于原子构造和分子构造》的论文寄给了卢瑟福,不久分三部分在英国著名的刊物《哲学杂志(Philotophical Magazine)》上发表,

相关文档
最新文档