抽象代数基础2.6整环的因子分解教案

抽象代数基础2.6整环的因子分解教案
抽象代数基础2.6整环的因子分解教案

《抽象代数基础》教案

授课时间第30 次课

《抽象代数基础》教案

从近世代数看数系扩充

从近世代数看数系的扩充现行中小学数学教材中,关于数的概念的发展历程如下: N0 正分数Q+ 负分数 Q 无理数 R 虚数 C 上式中N0:非负整数集;Q+:非负有理数集;Q:有理数集;R:实数集;C:复数集. 在教学中,前两次扩充都是从实践需要来说明其必要性的.这样处理学生易于理解,符合可接受性原则.若从数学本身发展的需要出发,则常从以下两方面来说明:(l)某一运算的逆运算在原有数集中不封闭;(2)某一方程在原有数集中没有解. 事实上,这两个方面是相互等价且互为补充的.我们说某一运算的逆运算在原数集中不封闭,则必定存在与此运算有关的方程在此数集中无解;反之,若存在某一方程在原数集中无解,则此方程中涉及到未知数运算的逆运算并不封闭·例如,在N0中减法不封闭,这意味着当a>b时,方程a+x=b在N0中无解. 从代数系统(A,?)扩充到代数系统(B,。),必须满足以下四个条件:(1)A?B;(2)a°b=a?b,?a,b∈A;(3)在(B,°)中,方程a°x=b有唯一确定的解;(4)如果(C,十)也满足性质(1)~(3),则存在(B,。)到(C,+)的同构映射,这个映射使A中 的元素及运算保持不变. 满足上述条件的数集的扩充可能有多种方法.在中学数学教学中,数集扩充的方法是在已知的集合A上补充新数的集合A,构成扩集B,使B=A∪A这种扩充 思想虽易于接受,但不太严密,且不易了解数的结构思想. 另一种途径是从数学结构的角度,用旧数系中的数为材料构成一个新数集B,然后使它的某个子集与旧数系A相等(严格地说,是同构).下面说明通过这种途 径来建立数系的过程. 一自然数集N 自然数是最简单、最基本的数,皮亚诺四条公理揭示了自然数的根本性质. 在给出加法运算,乘法运算的定义之后,可以证明(N,十,?)是具有加法、乘法交换律和加法、乘法结合律以及分配律的代数系统. 在N中,序关系(<)是利用自然数的加法来定义的.可以证明“<”满足反对 称性、传递性、可比性以及最小数原理.所以(N,<)不仅是一个全序集,而且是一个良序集. 在(N,+,·)中,方程a+x=b,a?x=b不一定有解,因此,在N中,加法、乘法的逆运算都不封闭.对于减法要限制施行.对于除法则分两种情况讨论:(l)a整除b,(2)带余除法. 二从N到有理数域Q的扩充 定理可换半群(A,+)可扩充的充分必要条件是运算“+”是可消去的. 证明必要性:若a+c=a+b,a,b,c∈A,设(B,+)是(A,+)的扩充,则在(B,+)中,a+x=a+b有唯一解x=b;又由a+c=a+b,知c满足a+x=a+b,所以b=c.

近世代数教案 (2)

近世代数教案 西南大学 数学与统计学院 张广祥 学时数:80(每周4学时) 使用教材:抽象代数——理论、问题与方法,科学出版社2005 教材使用说明:该教材共10章,本课程学习前6章,覆盖通用的传统教材(例如:张禾瑞《近世代数基础》)的所有内容,但本教材更强调抽象代数理论的应用和方法特点。本教材的后4章有一定难度和深度,可作为本科近世代数(二)续用。如果不再开设近世代数(二),则可以供有兴趣的学生自学、自读,进一步了解现代代数学更加前沿的内容,拓宽知识面。 教学方法:由于该教材首次在全年级使用,采用教研室集体备课的方式,每2周一次参加

教学的教师集体研讨备课。 每节配有3—5题常规练习作业。每章提供适量的(3—4题)思考问题供学生独立思考,学生完成的思考题成绩可记入平时成绩。 整学期可安排1—2次相关讲座,介绍现代代数学的研究方法或研究成果。本学期已经准备讲座内容:群与Goldbach猜想。 教学手段:黑板板书与Powerpoint 课件相结合。 主要参考书: 1.张禾瑞,近世代数基础,1952第一版,1978年修订版,高等教育出版社 2.刘绍学, 近世代数基础,(面向21世纪课程教材,“九五”国家级重点教材) 高等教育出版社,1999 3.石生明, 近世代数初步, 高等教育出版社2002 4.B.L.Van der Waerden,代数学,丁石孙,曾肯成,郝鈵新,曹锡华译,1964卷1,1976卷2,科学出版社 5. M.Kline, 古今数学思想,卷1-4,张理京,张锦炎,江泽涵译,上海科技出版社2002 第二章数环与数域 本章教学目标: 1. 熟悉整数剩余类环的运算,了解整数剩余类环在数论研究中的作用。 2. 数环就是数系,熟悉各种不同形态的数环与数域;有限的、无限的;交换的、不交换的。 3. 学习整环的分式域、素域与扩域的理论。 4. 综合应用数环与数域的初等方法证明欧拉二平方和定理、Lagrange四平方和定理。 5. 本章通过若干数论定理的学习,使学生了解和熟悉环论的初等方法,为第3章与第5章学习系统的扩域理论奠定基础。 教学时数:共6节,8学时 2.1 整数剩余类环 复习引入:通过整数的整除性问题,了解引入整数剩余类环的必要性,一方面使学生知道

抽象代数期末考试试卷及答案

抽象代数试题 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、6阶有限群的任何子群一定不是( )。 A 、2阶 B 、3 阶 C 、4 阶 D 、 6 阶 2、设G 是群,G 有( )个元素,则不能肯定G 是交换群。 A 、4个 B 、5个 C 、6个 D 、7个 3、有限布尔代数的元素的个数一定等于( )。 A 、偶数 B 、奇数 C 、4的倍数 D 、2的正整数次幂 4、下列哪个偏序集构成有界格( ) A 、(N,≤) B 、(Z,≥) C 、({2,3,4,6,12},|(整除关系)) D 、 (P(A),?) 5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有( ) A 、(1),(123),(132) B 、12),(13),(23) C 、(1),(123) D 、S3中的所有元素 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、群的单位元是--------的,每个元素的逆元素是--------的。 2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1----------。 3、区间[1,2]上的运算},{min b a b a =ο的单位元是-------。

4、可换群G 中|a|=6,|x|=8,则|ax|=——————————。 5、环Z 8的零因子有 -----------------------。 6、一个子群H 的右、左陪集的个数----------。 7、从同构的观点,每个群只能同构于他/它自己的---------。 8、无零因子环R 中所有非零元的共同的加法阶数称为R 的-----------。 9、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为--------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链? 2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。S 1+S 2也是子环吗? 3、设有置换)1245)(1345(=σ, 6)456)(234(S ∈=τ。 1.求στ和στ-1; 2.确定置换στ和στ-1的奇偶性。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

高等代数第四章整环里的因子分解

第四章整环里的因子分解 §1、素元、唯一分解 一、整除、单位、相伴元 定义在整环I中,若a=bc,则称a能被b整除,也说b整除a,记为b|a。b不能整除a记作b|a。 定义整环I的一个元ε叫做I的一个单位,假如ε是一个有逆元的元。元b叫做元a的相伴元(a与b相伴),假若b是a 和一个单位ε的乘积:b=εa。 单位元必是单位,反之不然。 例1在整数环Z中,单位即是1和-1,b是a的相伴元?b=±a。在数域F的多项式环F[x]中,单位即是零次多项式c∈F*,g(x)是f(x)的相伴元?g(x)=cf(x)。

定理1 两个单位ε1和ε2的乘积ε1ε2也是单位。单位ε的逆元ε-1也是一个单位。 推论整环I中全体单位的集U关于乘法作成群。 二、素元 定义单位以及元a的相伴元叫做a平凡因子。其余的a的因子,假如还有的话,叫做a的真因子。 定义整环I的一个元p叫做一个素元(注:应是不可约元),假如p0 ≠,p不是单位,并且p只有平凡因子。 例2 在例1的Z中,素元就是素数。在F[x]中,素元就是不可约多项式。 定理2 单位ε同素元p的乘积εp也是一个素元。 定理3整环I的一个非零元a有真因子?a=bc,b和c都不是单位。

推论假定a≠0,并且a有真因子b:a=bc。那么c也是a的真因子。 三、唯一分解 定义一个整环I的一个元a说是在I 里有唯一分解,假如以下条件能被满足:(i)a=p1p2…p r(p i是I的素元) (ii)若同时 a=q1q2…q s(q i是I的素元) 那么r=s 并且我们可以把q i的次序掉换一下,使得 q i=εi p i (εi是 I的单位) 零元和单位都不能唯一分解。 例3 在整环I={}Z +, 3中: a∈ - b a b (1)ε是单位1 = ?。 ? ε = 1 ε2± (2)若4 α2=,则α是素元。 (3)4∈I有两种不同的分解(不相伴分解): ()()3 + - = - ? = 1 1 3 2 2 4-

近世代数讲义(电子教案)

《近世代数》课程教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数期末考试试卷与答案

一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。 A、a B、 a , e 33 C、 e, a D、 e, a , a 2、下面的代数系统( G, * )中,()不是群 A、G为整数集合, * 为加法 B、G为偶数集合, * 为加法 C、G为有理数集合, * 为加法 D、G为有理数集合, * 为乘法 3、在自然数集 N 上,下列哪种运算是可结合的?() A、a*b=a-b B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| 4、设 1 、 2 、 3 是三个置换,其中 1 =(12)(23)(13),2 =(24)(14),3=( 1324),则3=() A、2 B 、12 D 、2 1 12C 、2 5、任意一个具有 2 个或以上元的半群,它()。 A、不可能是群 B、不一定是群 C、一定是群 D、是交换群 二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正 确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子 ----- 称为整环。 4 3、已知群G中的元素a的阶等于 50,则a的阶等于 ------。 4、a 的阶若是一个有限整数n,那么 G与-------同构。 5、A={1.2.3}B={2.5.6}那么 A∩B=----- 。 6、若映射既是单射又是满射,则称为-----------------。 7 、叫做域F的一个代数元,如果存在F的----- a 0 , a1 , , a n使得 n a 0 a 1 a n0 。

第四章整环里的因子分解.doc

第四章 整环里的因子分解 §4.1 不可约、素元、最大公因子 1. 证明:0不是任何元的真因子. 注 这里的0是指整环I 的零元,“任何元”是指整环I 中的任何元. 证明 由于0不能整除整环I 中的非零元,因此0不是整环I 中的非零元的真因子.虽然0整除0,但0与0相伴,因此0不是0的真因子.所以0不是整环I 中任何元的真因子. 2.找出Gauss 整数环},|{][Z Z ∈+==n m ni m i I 的所有单位. 解 假设Z ∈b a ,,使得bi a +是I 中的单位,则存在Z ∈d c ,,使得 1))((=++di c bi a , 从而,1))((2222=++d c b a .由此可见,i bi a ±±=+,1.所以i ±±,1就是I 中的所有单位. 3.证明:在Gauss 整数环][i I Z =中,3是不可约元,5是可约元. 证明 显然,3和5既不是零元,也不是单位. 设Z ∈d c b a ,,,,使得 3))((=++di c bi a . 于是 9))((2222=++d c b a . 显然322≠+b a .因此122=+b a 或122=+d c ,从而,bi a +是单位或di c +是单位.所以3是不可约元. 由5)2)(2(=-+i i 可知,i +2和i -2都是5的真因子.所以5是可约元. 4.设I 是整环,I b a ∈,,直接证明: a b a ?=)()(~b . 证明 由于I 是有单位元的交换环,根据定理3.16的推论1(3),aI a =)(,bI b =)(. 因此 ?=)()(b a 存在R s r ∈,,使得rb a =,sa b =a ?~b . 5.设p 是整环I 的素元,m a a a p 21|(2≥m ),证明:至少存在一个i a (m i ≤≤1),使i a p |. 证明 我们用数学归纳法来证明. 当2=m 时,根据素元的定义,我们的断言成立. 假设当n m =(2≥n )时,结论成立.当1+=n m 时,根据素元的定义,n a a a p 21|或1|+n a p .若p 不整除1+n a ,则n a a a p 21|.于是,根据归纳假设,至少存在一个i a (n i ≤≤1),使i a p |.所以当1+=n m 时,我们的断言成立. 6.设整环I 中任意两个元的最大公因子都存在,m a a a ,,,21 是I 中m 个不全为零的

近世代数电子教案

近世代数电子教案 第一章基本概念 在普通代数里,我们计算的对象是数,计算的方法是加、减、乘、除。数学渐渐进步,我们发现,可以对于若干不是数的事物,用类似普通计算的方法加以计算。这种例子我们在高等代数里已经看到很多,例如对于向量、矩阵、线性变换等就都可以进行运算。近世代数(抽象代数)的主要内容就是研究所谓代数系统,即带有运算的集合。近世代数在数学的其它分支和自然科学的许多部门里都有重要的应用。近二十多年来,它的一些成果更被直接应用于某些新兴的技术。 我们在高等代数里已经初步接融到的群、环、域是三个最基本的代数系统。在本书里我们要对这三个代数系统做略进一步的介绍。 在这一章里,我们先把常要用到的基本概念介绍一下。这些基本概念中的某一些,例如集合和影射,在高等代数里已经出现过。但是为了完整起见,我们不得不有所重复。 §1.1 集合 ●课时安排约1课时 ●教学内容(《近世代数》张禾瑞著) 集合的概念,元素,空集合,集合与集合之间的包含、交、并、积,子集的 概念 例题: 例1 A={1.2.3} B={2.5.6} 那么A∩B={2} A={1.2.3} B={4.5.6} 那么A∩B=空集合 例2 A={1.2.3} B={2.4.6} 那么A∪B={1.2.3.4.6} A={1.2.3} B={4.5.6} 那么A∪B={1.2.3.4.5.6} 1 习题选讲P 4 ●教学难点 元素与集合的关系(属于)集合与集合的关系(包含) ●教学要求 掌握集合元素、子集、真子集。集合的交、并、积概念 2 ●布置作业P 4 ●教学辅导 精选习题:(侧重概念性、技巧性的基本问题) 1.B A,但B不是A的真子集,这个情况什么时候才能出现? §1.2 映射 ●课时安排约1课时 ●教学内容(《近世代数》张禾瑞著) 映射,象,原象,映射相同的定义及映射的表示方法

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

近世代数期末考试题库

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的( ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射 2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 A 、2 B 、5 C 、7 D 、10 3、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样) - 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。 5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B ---------。 2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。 3、环的乘法一般不交换。如果环R 的乘法交换,则称R 是一个------。 4、偶数环是---------的子环。 5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。 ~ 6、每一个有限群都有与一个置换群--------。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。 8、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么---------。 9、一个除环的中心是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换σ和τ分别为:? ? ????=6417352812345678σ,??? ???=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。 , 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

近世代数期末考试试题和答案解析

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

近世代数第四章整环里的因式分解

第四章整环里的因式分解 §1. 素元、唯一分解 本讲中, 总假定为整环, 为的商域. 1. 整除 定义1 设D为整环, D b ,, 如果存在D a∈ c∈, 使得 则称整除, 记作; 并称是的一个因子, 是的倍元. ?整环中的整除概念是整数环中整除概念的推广, 因此有许多与整数的整除相类似的性质. ?整除有下列常用的性质: (1) 如果, , 则; (2) 如果, , , 则. 2.相伴 定义2整环D的一个元叫做D的一个单位,假如是一个有逆元的元。元叫做元的相伴元,假如是和一个单位的乘积:

定理1两个单位的乘积也是一个单位.单位的逆元也是一个单位. 例1因为整数环的单位仅有1与-1,故任一非零元有2个相伴元:与a -. 例2有四个单位,1,-1,i,-i,所以任一非零元,有四个相伴元: 定义3 单位以及元的相伴元叫做的平凡因子.若还有别的因子,则称为的真因子. 3. 素元 定义4 设D为整环,D p∈,且既非零也非单位,如果只有平凡因子,则称为一个素元. 定理2单位ε与素元的乘积也是一个素元. 定理3整环中一个非零元有真因子的充分且必要条件是: ,这里,都不是单位.

推论设,并且有真因子:.则也是的真因子. 定义5 我们称一个整环D的元在D中有唯一分解,如果以下条件被满足: (i) (为D的素元) (ii) 若同时有 (为的素元) 则有,并且可以调换的次序,使得(为的单位) 整环的零元和单位不能有唯一的分解.所以唯一分解问题研究的 对象只能是非零也非单位的元. 例3给整环.那么有: (1)的单位只有. (2)适合条件的元一定是素元. 首先,;又由(1),也不是单位.设为的因子: 那么

近世代数讲义(电子教案)

《近世代数》课程教案 第一章基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题您认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都就是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都就是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 就是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶就是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 就是循环群,那么G 也就是循环群。 ( ) 6、群G 的子群H 就是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征就是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 就是整数环,()p 就是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ与D 都就是非空集合,而f 就是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算就是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο就是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),那么ο在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设()ο,G 为群,其中G 就是实数集,而乘法k b a b a ++=οο:,这里k 为G 中固定

《近世代数》教学大纲

《近世代数》课程教学大纲 一、课程性质与目标 (一)课程性质 《近世代数》是数学专业本科生专业基础课,是现代数学的基本内容,培养并提高学生的抽象思维能力,从中掌握分析与解决问题的方式、方法。 (二)课程目标 通过本课程的学习,使学生初步掌握基本的系统的代数知识和抽象严谨的代数方法,进一步熟悉和掌握代数处理问题的方法;进一步提高才抽象思维能力和严格的逻辑推理能力;进一步理解具体和抽象、特殊与一般、有限与无限的辩证关系。能应用所学理论指导中学数学教学以及其它工作,培养学生独立提出问题、分析问题和解决问题的能力,培养学生的数学基本素质,同时为今后继续学习奠定基础。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 (1)把握概念、推理证明相结合的基本原则 (2)注意教学内容与其他相关课程的联系和渗透 2、课程基本内容 群、环、域是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法。重点:群、正规子群、商群、循环群、环、理想、商环、同态基本原理等。难点:商群、理想、商环等。 (二)课程教学 1、注重数学思想与数学素养的培养,阐述所讲内容在整个理论体系中的作用和地位。 2、在传授基础理论,基本概念的掌握的同时,加强学生逻辑推理能力和计算能力的培养。 3、注重课堂讲授、习题课、习题批改等环节。 三、课程实施与评价 (一)学时 本课程总学时为54学时(讲授46学时,习题课8学时)。 (二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 (1)配备多媒体教学设备。 (2)配置与教学内容相关的图书、期刊、音像资料等。 (三)课程评价 1、对学生能力的评价 (1)基础理论,基本概念的掌握。 (2)逻辑推理能力,包括逻辑思维的合理性和严密性

抽象代数电子教案 新 优质文档

《抽象代数》课程全册教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:黑板板书与口授教学法。 教学时数:12学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算就是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、 2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能就是群 B 、不一定就是群 C 、一定就是群 D 、 就是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若就是一个有限整数n,那么G 与-------同构。 5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。 6、若映射?既就是单射又就是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。 8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为

近世代数发展简史

近世代数发展简史 根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。 一、近世代数的定义 代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。 二、近世代数的发展 代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。 域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。而域的系统发展是从1910年,施泰尼茨(Steinitz,E.)的著名论文“域的代数理论”开始的。同期,布尔(Boole,G.)研究人的思维规律,于1854年出版《思维规律的研究》,建立了逻辑代数,即布尔代数。但格论是在1933~1938年,经伯克霍夫(Birkhoff,G.D.)、坎托罗维奇(Канторович.П.В.)、奥尔(Ore,O.)等人的工作才确立了在代数学中的地位。另一方面,1843年,哈

近世代数期末考试试卷及答案(正)

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集(C )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子的--交换环---称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于--25----。 4、a 的阶若是一个有限整数n ,那么G 与-模n 乘余类加群------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=--{2}---。 6、若映射?既是单射又是满射,则称?为----一一映射-------------。 7、α叫做域F 的一个代数元,如果存在F 的--不都等于零的元---n a a a ,,,10 使 得 010=+++n n a a a αα 。

近世代数期末考试真题

近世代数期末练习题 一、判断题(在括号里打上 √ 或 ? ) 1、一个阶是11的群只有两个子群。( ) 2、循环群的子群是循环子群。( ) 3、在一个环中,若右消去律成立,则左消去律成立。( ) 4、消去律在无零因子环中一定成立。( ) 5、在环中,逆元一定不是零因子。( ) 6、在一个域中一定不存在零因子。( ) 7、模99的剩余类环99Z 是一个域。( ) 8、模19的剩余类环19Z 是一个整环。( ) 9、整除关系是整数集Z 的元素间的一个等价关系。( ) 10、同余关系是整数集Z 的元素间的一个等价关系。( ) 11、群G 的两个子群的交还是子群。( ) 12、环R 的一个子环和一个理想的交一定是R 的子环。( ) 13、群G 的不变子群也是G 的子群,环R 的理想也是R 的子环。( ) 14、设群G 与群G'同态,则G 的不变子群的同态像是G'的不变子群。 ( ) 15、一个域一定是一个整环。( ) 二、填空题 1、在3次对称群3S 中,元素(123)的阶为 ,(123)的逆元为 ,(123) 所生成的子群在3S 中的指数为 ,该子群是否3S 的不变子群? 。 2、环Z 6的全部零因子是 ,全部可逆元是 。 3、在环Z 10中,[6]+[7]= ,[6][7]= ,[6]-[7]= ,[6]3= , [7]-1= 。 三、证明:(1)若群G 的元a 的阶为2, 则a – 1 = a . (2)若群G 的元 a 的阶大于2, 则a – 1 ≠ a . (3)在群G 中, 元 a 与逆元a –1有相同的阶. 四、证明:设群G 中元a 的阶为n . 证明a s = a t ? n | ( s – t ) . 五、设R 是一个环,证明R 是交换环当且仅当(a+b) 2=a 2+2ab+b 2。 六、设G 是一个群,证明G 是交换群当且仅当(ab) -1=a -1b -1。

相关文档
最新文档