无铅喷锡(HASL)上锡不良案例研究

无铅喷锡(HASL)上锡不良案例研究
无铅喷锡(HASL)上锡不良案例研究

无铅喷锡(HASL)上锡不良案例研究

由于欧盟、美国和我国等国家和地区对铅等有毒物质使用的限制,电子组件中传统的有铅喷锡PCB已经向无铅喷锡PCB转化。然而,在无铅喷锡PCB的使用过程,很多技术人员发现PCB 在经过一段时间储存或者经历高温过程后(如回流焊接过程),PCB焊盘很难被焊料润湿,从而造成无铅喷锡PCB部分焊盘出现上锡不良现象。本文将以典型案例分析的方式,给出无铅喷锡PCB上锡不良的失效机理,并介绍针对上述不良的主要分析思路和分析方法,并给出避免无铅喷锡PCB出现上锡不良的相关措施。本文的研究结果避免无铅喷锡PCB出现上锡不良,提高电子产品的可靠性有一定的指导意义。

1 案例的背景

某单位送回流焊接后PCBA样品5块和同批次PCB空板5块,委托单位反应该批次PCBA在经过一次回流焊接后,第二面(B面)部分焊盘存在上锡不良现象,而且在某些IC引脚位置尤为明显。上锡不良的的PCB比例为5%左右。考虑到PCB的A、B面没有显著的差异,且只在第二面存在上锡不良现象,委托单位对焊接工艺顺序进行调整,发现原本焊接良好的A面也存在一定的上锡不良现象,而B面则明显改善。同时委托单位表示,该PCB已经使用很长时间,只有最近的这一批存在上锡不良现象。由于无法准确判断导致上锡不良的原因,委托要求对失效的原因进行分析,从而为解决该失效提高依据。由于涉及客户的部分信息,为保密要求不提供外观照片。

2 分析过程

2.1 总体思路

根据委托单位提供的信息,该PCB采用的无铅喷锡工艺,且改变工艺流程对上锡不良的现象有明显的改善,初步推断失效的原因可能与无铅喷锡表面镀层在高温下的合金退化导致可焊性下降有关。为了对该失效推断进行验证,则分析思路为:对失效PCBA具体的失效部位进行外观检查,重点检查失效部位的润湿情况,区分上锡不良为不润湿或反润湿,同时检查焊料对引脚的润湿情况。外观检查后对上锡不良焊盘进行切片,验证其镀层的质量情况,重点考核镀层厚度和镀层中锡铜合金情况。为了验证镀层质量问题,还必须对同批次PCB空板对应焊盘位置进行分析。

2.2 外观检查

利用立体显微镜对上锡不良焊盘及对应PCB空板上的对应焊盘进行外观检查,结果发现上锡不良位置主要表现为焊料对焊盘反润湿现象,同批次PCB空板对应焊盘检查发现焊盘镀层存在一定的厚度不均匀性,同时焊盘表面不存在污染等异常现象。检查结果分别见图1和图2。

2.3 金相分析

对上锡不良焊盘进行金相切片获取润湿不良位置PCB焊盘的镀层信息,然后有扫描电子显微镜和能谱分析仪对镀层进行形貌和成分分析,从而判断该位置的喷锡镀层质量状况,上锡不良镀层的SEM照片见图3。由图3可知,上锡不良位置无铅喷锡镀层已经完全合金化,即所有的无铅焊料和PCB铜焊盘之间形成了锡铜合金,锡铜合金(铜和锡的金属间化合物)已经暴露到焊盘表面。由于锡铜合金的可焊性差且在高温下易氧化从而进一步降低可焊性并最终导致焊料和PCB焊盘之间出现反润湿现象。因此,为了保证无铅喷锡处理的可焊性,必须保证在焊接过程中有一定的焊料层可供焊接,典型照片见图4。由于无法准确判断导致锡铜完全合金化的原因到底是工艺不当还是PCB原本喷锡工艺异常,因此为了确定具体的失效原因,还必须对同批次的PCB空板焊盘进行分析。

同批次PCB空板对应焊盘的SEM分析照片见图5和图6,其中图5为纵向切片SEM照片,图6 为焊盘表面SEM照片。由图5和图6可知,没有经过焊接过程的PCB空板焊盘镀层也存在较为严重的合金暴露情况,PCB空板表面SEM 照片可见明显的合金暴露点。同时,PCB空板的合金层厚度经测量大致为2um左右,考虑到合金化会导致厚度增加,原是的无铅喷锡镀层的厚度应在2um以下,显然喷锡层厚度较薄。偏薄的喷锡层在喷锡过程及后续的储存过程都会导致焊料和铜焊盘合计化,且合金厚度会持续增加,因此,最终导致合金层暴露到镀层表面

喷锡工艺介绍

热风整平,俗称:喷锡,英文:Hot Air Solder Level (缩写HASL)或 Hot Air Leveling(缩写HAL)。是印制电路板表面处理的方式之一。 它的工作原理是利用热风将印制电路板表面及孔内多余焊料去掉,剩余焊料均匀覆在焊盘及无阻焊料线条及表面封装点上。 热风整平的工艺比较简单,主要是:放板(贴镀金插头保护胶带)-热风整平前处理-热风整平-热风整平后清洗-检查。热风整平的工艺虽然简单,但是,若想热风整平出优良合格的印制电路板还有很多的工艺条件需要掌握,例如:焊料温度,空气刀气流温度,风刀压力,浸焊时间,提升速度等等。这些条件都有设定值,但工作时又要根据印制电路板的外在条件及加工单的要求相变化,例如:板厚,板长。不同的单面,双面,多层板。它们所采用的条件是有差异的,只有熟悉掌握各种工艺参数,根据印制电路板的不同类型,不同要求,耐心,细致,合理的调整机器,才能热风整平出合格的印制电路板。 在热风整平中常常会出现以下一些常见的问题根据工作经验提出了一些解决方法仅供参考。 一、热风整平抽风口滴残液,这种现象是从热风整平的抽风口向下滴流黄色液体,这种液体主要是整平时被抽风口吸入的助焊剂。天长日久积于抽风管道内,无法排出,便顺抽风口四周滴落,滴落在什么地方都有,像热风管道,风刀口处,风刀口上保护盖滴落最多,有时,在工作中也会滴于操作员的头上,工作服上,在下班关闭抽风后滴下的残液最多,例如热熔,这些液体覆于设备上,时间久了对设备的残蚀很大。可参考脱排油烟机的结构,在抽风口上做一个漏斗型铁丝网引流残液,可减小或解决这种情况,可以在漏斗网下端引入地沟或放入废液槽,这样做好后,残液在从抽风口向下流动的过程中,流经铁丝时,会有一大部分残液沿铁丝流下。并且多做几个备用如腐蚀坏了可更换。 二、热风整平时戴的手套,在热风整平时通常是采用帆布手套,将一付手套套入另一付手套戴在手上进行工作,时间稍长助焊剂便浸入手套里边去了,这时手套的隔热能力就大大减小了,而且,助焊剂浸到手上对手也有一定的伤害.这种浸入了助焊剂的手套洗涤后还能再用一次,但效果不好,由于帆布变软,助焊剂浸入的速度非常快且量大,建议采用浸塑手套里面在加一个细帆布手套,关键的问题是:这种橡胶手套的大小要合适,隔热要好,而且柔软度好。 三、挠性板及铣完外形返工的印制电路板如何热风整平,挠性板由于板材柔软,在热风整平时极易产生问题,需要格外谨慎,热风整平前应铣好与挠性板边缘相吻合的边框,然后在边框与挠性板边缘处各打几个相对的孔,一般在边框每边上各打三个孔即可,边宽,边长的挠性板可以多打

上锡不良原因分析报告

6A7A45001A上锡不良原因分析报告 背景: 2014年5月31日,型号6A7A45001A上锡不良,针对此问题协同徐春梅小姐,前往SMT加工厂分析不良原因。 目的: 为解决问题板的处理方式以及问题板的产生原因,防止再发。 目录: A、试验条件/流程: B、检验分析; C、现场排查; D、总结与建议。 A、试验条件: a.现场温湿度:NA; b.锡膏类别:同方A-P6337-D-900(Alloy:Sn63/Pb37)有铅; c.FUX PCB:E400163A2(无铅喷锡板); d.回流焊峰值:260℃/实际板面温度251℃; e.钢网厚度:0.12mm; f.丝印锡膏厚度:NA; g.丝印方式:手印/机印; B、检验分析: 依试验流程共试验4set E400163A2空板PCB结果如下: b-a、目检1set明显不上锡,相对不良比例25%; b-b、放大镜检验4set 焊盘周边严重锡珠,相对不良比例100%(图组1-1)。 图组1-1 试验方案2共试验5set已贴S/S面PCBA,试验结果如下: b-c目检5set未发现明显不良,相对不良比例0%。 分析:b-b图示锡珠形成机理: 回流焊中出现的锡珠(或称焊料球),常常藏与矩形片式元件两端之间的侧面或细间距引脚之间。在元件贴状过程中,焊膏被置于片式元件的引脚与焊盘之间,随着印制板穿过回流焊炉,焊膏熔化变成液体,如果与焊盘和器件引脚等润湿不良,液态焊料颗粒不能聚合成一个焊点。部分液态焊料会从焊缝流出,形成锡珠。因此,焊料与焊盘和器件引脚的润湿性差是导致锡珠形成的根本原因。 造成焊料润湿性差的原因: 1、回流温度曲线设置不当; 求证:加工厂回流焊温度曲线图(1)NG 标准回流焊温度曲线图(2)OK

无铅喷锡炉的除铜法

无铅HASL工艺中最大的麻烦,是设备使用过程中锡槽的沉铜堵塞问 题。在为HASL工艺提供支持期间,Berger一直处理Cemco、Pentagal、Laif和Lantronic等公司的生产设备。他发现,在所有车间中,问题都是 一样的。随着铜成分的增加,焊料的熔化温度会提高,进而工艺温度 也会相应地提高。Berger的建议是铜成分的目标水平应该在0.9%左右。 最近的学术研究报告也支持Berger所提出的建议,对锡铜合金焊料来 说,0.9%比传统上认为的0.7%更接近实际(见图1)。他认为,在Balver Zinn近年来对客户HASL 锡槽进行的5,600次分析中,铜成分的高斯曲线峰值只是略高于这一水平,与此表现得出奇地一致(见图2)。

控制锡槽中铜成分的方法 HASL工艺的典型工作温度范围约为265~275°C,根据Berger的经验,这个温度范围可以用于几乎所有实际生产的层压板。在这个温度下,即 使是CEM1,也没有分层劣化的问题。但是,要求的工艺温度的确随着 锡槽中铜成分的升高而提高。例如,对于锡铜镍合金(SN100CL),如果 铜成分比最优值1.2%高出0.3%,那么焊接温度必须提高到285°C。如果锡槽中铜含量达到了这种水平,可以通过以下两种方式之一使其降到 0.9%左右: 选择1:加入不含铜的焊料合金,降低锡槽中铜的含量。 选择2:使用所谓的“冻干”方法。在锡铅共晶焊料(63%锡/37%铅) 温度 降至大约190°C时(约比183°C熔点温度高7°C),熔解中的锡铜金属间化合物(Cu6Sn5)会“冻干”。在高密度含铅焊料中,这种金属间化合物一 般会漂浮在熔融焊料的表面,可以使用漏勺撇出。

化金板上锡不良改善报告(2011-12-23)

技术报告 文件编号: 收件 生产、品管、客服、副总办 制作 2011/12/23 抄送 王主管、叶经理、杨经理、席经理、刘副总 审核 FAX 批准 事件 主题: 化金板上锡不良跟进改善报告 责任对象 加工 现状 描述 从9月份开始客户端抱怨化金板上锡不良频繁,9-11三个月均有上锡不良投诉5-6起,现我部根据客户端提供实物板进行相应的测试分析,结合深昊的改善意见,提出了一系列改善措施并要求生产严格执行, 待跟进改善后化金板在客户端上线品质状况,从12月份客户投诉状况来看,上锡不良已有明显改善。 不良 案例 1、 上锡不良案例 1.1、8-12月份上锡不良统计 月份 8月 9月 10月 11月 12月(截止12月23日) 上锡不良(件) 1 6 5 5 1 9-11月上锡不良投诉明显增多 8-12月共投诉18件上锡不良分布图 1.2、客户投诉上锡不良典型案例如下 1.2.1不熔金、缩锡发黑案例 料号 不良描述 不良率 不良周期 相关图片 4513 BGA 处不上锡,且有轻微 的发黑 2% 3111 18901 PAD 吃锡不良,表现为部 分不熔金 6% 3711 4532 整PCS 不吃锡,金完全未 熔,轻拨零件就会脱落 2.5% 4111 上 24688月 9月 10月11月 12月 月 件数不 不65% 缩35% BGA 处不上锡且有发黑 明显有不熔金 整板不熔金且掉件

不良案例1.2.2案例分析 料号BGA处EDS图片EDS光谱图给客户端结论 4513 外界污染 18901 金面轻微污染 4532 金层有阻焊层,可 能有菌类污染 1.2.3小结 从上述三个案例分析来看,不熔金、缩锡发黑应为焊接过程中润湿性不够,导致无法熔掉金层或无法形成IMC层,继而产生上锡不良;影响润湿性原因很多,PCB表面污染、镍层腐蚀氧化等都会影响影响润湿效果,客户端炉温低、锡膏助焊剂差等也会影响润湿性。 上锡不良模拟分析2、原因分析(鱼骨图) 上 锡 不 良锡膏退洗 作业不规范 辅助工具不良 培训不到位 PCB不良 参数不当 保养不到位 酸碱恶劣环境 人 物 环 机 法 锡膏异常客户炉温异常

上锡不良原因

深圳市联益电子有限公司 上锡不良类型及原因分析 一、焊后PCB板面残留多板子脏: 1.FLUX固含量高,不挥发物太多。 2.焊接前未预热或预热温度过低(浸焊时,时间太短)。 3.走板速度太快(FLUX未能充分挥发)。 4.锡炉温度不够。 5.锡炉中杂质太多或锡的度数低。 6.加了防氧化剂或防氧化油造成的。 7.助焊剂涂布太多。 8.PCB上扦座或开放性元件太多,没有上预热。 9.元件脚和板孔不成比例(孔太大)使助焊剂上升。 10.PCB本身有预涂松香。 11.在搪锡工艺中,FLUX润湿性过强。 12.PCB工艺问题,过孔太少,造成FLUX挥发不畅。 13.手浸时PCB入锡液角度不对。 14.FLUX使用过程中,较长时间未添加稀释剂。 二、着火: 1.助焊剂闪点太低未加阻燃剂。 2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。 4.PCB上胶条太多,把胶条引燃了。 5.PCB上助焊剂太多,往下滴到加热管上。 6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度 太高)。 7.预热温度太高。 8.工艺问题(PCB板材不好,发热管与PCB距离太近)。 三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX残留多,有害物残留太多)。 4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。 6.FLUX活性太强。 7.电子元器件与FLUX中活性物质反应。 四、连电,漏电(绝缘性不好) 1. FLUX在板上成离子残留;或FLUX残留吸水,吸水导电。 2. PCB设计不合理,布线太近等。 3. PCB阻焊膜质量不好,容易导电。 五、漏焊,虚焊,连焊 1. FLUX活性不够。

上锡不良类型及原因分析

上锡不良类型及原因分析 一、焊后PCB板面残留多板子脏: 1.FLUX固含量高,不挥发物太多。 2.焊接前未预热或预热温度过低(浸焊时,时间太短)。 3.走板速度太快(FLUX 未能充分挥发)。 4.锡炉温度不够。 5.锡炉中杂质太多或锡的度数低。 6.加了防氧化剂或防氧化油造成的。 7.助焊剂涂布太多。 8.PCB上扦座或开放性元件太多,没有上预热。 9.元件脚和板孔不成比例(孔太大)使助焊剂上升。 10.PCB本身有预涂松香。 11.在搪锡工艺中,FLUX润湿性过强。 12.PCB工艺问题,过孔太少,造成FLUX挥发不畅。 13.手浸时PCB入锡液角度不对。 14.FLUX使用过程中,较长时间未添加稀释剂。二、着火: 1.助焊剂闪点太低未加阻燃剂。 2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。 4.PCB上胶条太多,把胶条引燃了。 5.PCB 上助焊剂太多,往下滴到加热管上。 6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度太高)。 7.预热温度太高。 8.工艺问题(PCB板材不好,发热管与PCB距离太近)。三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX残留多,有害物残留太多)。 4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。 6.FLUX活性太强。 7.电子元器件与FLUX中活性物质反应。四、连电,漏电(绝缘性不好) 1. FLUX在板上成离子残留;或FLUX残留吸水,吸水导电。 2. PCB设计不合理,布线太近等。 3. PCB阻焊膜质量不好,容易导电。五、漏焊,虚焊,连焊 1. FLUX活性不够。 2. FLUX的润湿性不够。 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();},

如何对付SMT的上锡不良

如何对付SMT的上锡不良 波峰面:波的表面均被一层氧化皮覆盖﹐它在沿焊料波的整个长度方向上几乎都保持静态﹐在波峰焊接过程中﹐PCB接触到锡波的前沿表面﹐氧化皮 破裂﹐PCB前面的锡波无皲褶地被推向前进﹐这说明整个氧化皮与PCB以同样的速度移动波峰焊机。 焊点成型:当PCB进入波峰面前端(A)时﹐基板与引脚被加热﹐并在未离开波峰面(B)之前﹐整个PCB浸在焊料中﹐即被焊料所桥联﹐但在离开波峰尾端的瞬间﹐少量的焊料由于润湿力的作用﹐粘附在焊盘上﹐并由于表面张力的原因﹐会出现以引线为中心收缩至最小状态﹐此时焊料与焊盘之间的润湿力大于两焊盘之间的焊料的内聚力。因此会形成饱满﹐圆整的焊点﹐离开波峰尾部的多余焊料﹐由于重力的原因﹐回落到锡锅中。 防止桥联的发生 1、使用可焊性好的元器件/PCB 2、提高助焊剞的活性 3、提高PCB的预热温度﹐增加焊盘的湿润性能 4、提高焊料的温度 5、去除有害杂质﹐减低焊料的内聚力﹐以利于两焊点之间的焊料分开。 波峰焊机中常见的预热方法 1、空气对流加热 2、红外加热器加热 3、热空气和辐射相结合的方法加热 波峰焊工艺曲线解析 1、润湿时间:指焊点与焊料相接触后润湿开始的时间 2、停留时间:PCB上某一个焊点从接触波峰面到离开波峰面的时间,停留/焊接时间的计算方式是﹕停留/焊接时间=波峰宽/速度 3、预热温度:预热温度是指PCB与波峰面接触前达到的温度(見右表) 4、焊接温度 焊接温度是非常重要的焊接参数﹐通常高于焊料熔点(183°C )50°C ~60°C大多数情况是指焊锡炉的温度实际运行时﹐所焊接的PCB 焊点温度要低于炉温﹐这是因为PCB吸热的结果 SMA類型元器件預 熱溫度 單面板組件通孔器件與混裝90~100 雙面板組件通孔器件100~110 雙面板組件混 裝100~110 多層板通孔器 件15~125

有铅焊锡和无铅焊锡的区别

有铅焊锡和无铅焊锡的区别 各种无铅焊锡的熔点关系Sn-Cu-Ni系227℃Sn-Ag系221℃Sn-Ag-Cu系219℃ Sn-Ag-Bi-In系208℃Sn-Zn系199℃Sn-Pb共晶183℃推荐使用温度一览CXG无铅焊台温度350℃~400℃回流炉温度230℃~240℃温度喷流炉245℃~255℃CXG 938无铅焊台特点:★ 惊人的升温速度,从室温上升至300℃绝不超过13秒,温度回升快,有利于频繁的焊接,温度保持不变,提高生产效率。★调节温度比市场同类焊台的调节温度更有利于生产,当需要调节温度时只要把温控旋钮按一下,则旋钮弹出,可根据生产需要调节温度,调节好以后,再按一下温度调节旋钮,旋钮锁住,可以预防生产过程中碰到旋钮而改变温度影响生产,旋钮锁住后,面板平坦,美观大方。★手柄轻巧,长时间使用绝不感到疲劳。★分体式设计,摆放容易,多种烙铁头选用,且更换方便。★普通及防静电型两种,以便配合不同工作之用。★手柄选择:909、909ESD 配C8无铅系列焊咀。规格:型号CXG 938 耗电75瓦特控制台938电焊台/938电焊台ESD 输出电压交流电30伏特温度范围摄氏200-480度/华氏392-896度发热组件CXG-1365陶瓷发热芯温度稳定±1℃(无负荷时)焊咀与接地间阻抗2Ω以下焊咀与接地间电位2mV以下重量(不包括电线)1500克(3.3磅)外形体积宽120 X 高93 X深170毫米 为什么要用无铅焊锡呢?主要海河是为了环保。下面的文章就说明了这个问题。 无铅热风整平的实践体会 摘要:本文通过对无铅与有铅热风整平工艺特性的对比,总结出无铅热风整平工艺的生产保养特点及工艺控制方法。 关键词:无铅热风整平无铅焊料浸锡时间除铜 1. 前言 随着欧盟颁布的二项环保新指令(WEEE和ROHS)在2006年7月1日正式实施,对PCB行业而言,这将面临一次严峻的考验,其影响将涉及到原材料、制造工艺、生产设备等方方面面。本公司为适应全球无铅化的潮流,也投资引进了一台垂直无铅喷锡机。该机在试生产及生产过程中,我们深感无铅与有铅热风整平具有很大区别。本文主要通过无铅与有铅热风整平的对比,介绍无铅热风整平在实际生产中的控制要点及异常问题的处理方法。 2. 无铅的定义和无铅焊料的选择 目前全球对无铅的定义尚未统一。欧盟称物质中的铅含量<0.1%为无铅,日本<0.1%,美国<0.2%称之为无铅。但是,实际控制中国际上普通认同铅含量<0.1%这个标准,而且只允许以不纯物形式存在,不允许有意添加。目前无铅焊料使用较为广泛的有Sn3.0Ag0.5Cu;Sn0.3Ag0.7Cu;

沉锡焊盘上锡不良是什么因素导致沉锡焊盘上锡失效分析详解

沉锡焊盘上锡不良是什么因素导致?沉锡焊盘上锡失效分 析 1. 案例背景 送检样品为某PCBA板,该PCB板经过SMT后,发现少量焊盘出现上锡不良现象,样品的失效率大概在千分之三左右。该PCB板焊盘表面处理工艺为化学沉锡,该PCB板为双面贴片,出现上锡不良的焊盘均位于第二贴片面,失效分析。 2. 分析方法简述 2.1 样品外观观察 如图1所示,通过对失效焊盘进行显微放大观察,焊盘存在不上锡现象,焊盘表面未发现明显变色等异常情况。 图1、失效焊盘图片

2.2 焊盘表面SEM+EDS分析 如图2~4所示,对NG焊盘、过炉一次焊盘、未过炉焊盘分别进行表面SEM观察和EDS 成分分析,未过炉焊盘表面沉锡层成型良好,过炉一次焊盘和失效焊盘表面沉锡层出现重结晶,表面均未发现异常元素; 图2. NG焊盘的SEM照片及EDS能谱

图3.过炉一次焊盘的SEM照片+EDS能谱图

图4.未过炉焊盘的SEM照片+EDS能谱图 2.3 焊盘FIB制样剖面分析 如图5~7所示,利用FIB技术对失效焊盘、过炉一次焊盘及未过炉焊盘制作剖面,对剖面表层进行成分线扫描,发现NG焊盘表层已经出现Cu元素,说明Cu已经扩散至锡层表面;过炉一次焊盘表层在0.3μm左右深度出现Cu元素,说明过炉一次焊盘后,纯锡层厚度约为0.3μm;未过炉焊盘的表层在0.8μm左右深度出现Cu元素,说明未过炉焊盘的纯锡层厚度约为0.8μm。鉴于EDS测试精度较低,误差相对较大,接下来采用AES对焊盘表面成分进行进一步分析。

图5. NG焊盘剖面的SEM照片及EDS能谱

图6.过炉一次焊盘剖面的SEM照片+EDS能谱图

无铅喷锡(HASL)上锡不良案例研究

无铅喷锡(HASL)上锡不良案例研究 由于欧盟、美国和我国等国家和地区对铅等有毒物质使用的限制,电子组件中传统的有铅喷锡PCB已经向无铅喷锡PCB转化。然而,在无铅喷锡PCB的使用过程,很多技术人员发现PCB 在经过一段时间储存或者经历高温过程后(如回流焊接过程),PCB焊盘很难被焊料润湿,从而造成无铅喷锡PCB部分焊盘出现上锡不良现象。本文将以典型案例分析的方式,给出无铅喷锡PCB上锡不良的失效机理,并介绍针对上述不良的主要分析思路和分析方法,并给出避免无铅喷锡PCB出现上锡不良的相关措施。本文的研究结果避免无铅喷锡PCB出现上锡不良,提高电子产品的可靠性有一定的指导意义。 1 案例的背景 某单位送回流焊接后PCBA样品5块和同批次PCB空板5块,委托单位反应该批次PCBA在经过一次回流焊接后,第二面(B面)部分焊盘存在上锡不良现象,而且在某些IC引脚位置尤为明显。上锡不良的的PCB比例为5%左右。考虑到PCB的A、B面没有显著的差异,且只在第二面存在上锡不良现象,委托单位对焊接工艺顺序进行调整,发现原本焊接良好的A面也存在一定的上锡不良现象,而B面则明显改善。同时委托单位表示,该PCB已经使用很长时间,只有最近的这一批存在上锡不良现象。由于无法准确判断导致上锡不良的原因,委托要求对失效的原因进行分析,从而为解决该失效提高依据。由于涉及客户的部分信息,为保密要求不提供外观照片。 2 分析过程 2.1 总体思路 根据委托单位提供的信息,该PCB采用的无铅喷锡工艺,且改变工艺流程对上锡不良的现象有明显的改善,初步推断失效的原因可能与无铅喷锡表面镀层在高温下的合金退化导致可焊性下降有关。为了对该失效推断进行验证,则分析思路为:对失效PCBA具体的失效部位进行外观检查,重点检查失效部位的润湿情况,区分上锡不良为不润湿或反润湿,同时检查焊料对引脚的润湿情况。外观检查后对上锡不良焊盘进行切片,验证其镀层的质量情况,重点考核镀层厚度和镀层中锡铜合金情况。为了验证镀层质量问题,还必须对同批次PCB空板对应焊盘位置进行分析。 2.2 外观检查 利用立体显微镜对上锡不良焊盘及对应PCB空板上的对应焊盘进行外观检查,结果发现上锡不良位置主要表现为焊料对焊盘反润湿现象,同批次PCB空板对应焊盘检查发现焊盘镀层存在一定的厚度不均匀性,同时焊盘表面不存在污染等异常现象。检查结果分别见图1和图2。

SMT上锡不良的解决办法

SMT上锡不良的解决办法 波峰面:波的表面均被一层氧化皮覆盖﹐它在沿焊料波的整个长度方向上几乎都保持静态﹐在波峰焊接过程中﹐PCB接触到锡波的前沿表面﹐氧化皮破裂﹐PCB前面的锡波无皲褶地被推向前进﹐这说明整个氧化皮与PCB以同样的速度移动波峰焊机。 焊点成型:当PCB进入波峰面前端(A)时﹐基板与引脚被加热﹐并在未离开波峰面(B)之前﹐整个PCB浸在焊料中﹐即被焊料所桥联﹐但在离开波峰尾端的瞬间﹐少量的焊料由于润湿力的作用﹐粘附在焊盘上﹐并由于表面张力的原因﹐会出现以引线为中心收缩至最小状态﹐此时焊料与焊盘之间的润湿力大于两焊盘之间的焊料的内聚力。因此会形成饱满﹐圆整的焊点﹐离开波峰尾部的多余焊料﹐由于重力的原因﹐回落到锡锅中。 防止桥联的发生 1、使用可焊性好的元器件/PCB 2、提高助焊剞的活性 3、提高PCB的预热温度﹐增加焊盘的湿润性能 4、提高焊料的温度 5、去除有害杂质﹐减低焊料的内聚力﹐以利于两焊点之间的焊料分开。 波峰焊机中常见的预热方法 1、空气对流加热 2、红外加热器加热 3、热空气和辐射相结合的方法加热 波峰焊工艺曲线解析 1、润湿时间:指焊点与焊料相接触后润湿开始的时间 2、停留时间:PCB上某一个焊点从接触波峰面到离开波峰面的时间,停留/焊接时间的计算方式是﹕停留/焊接时间=波峰宽/速度 3、预热温度:预热温度是指PCB与波峰面接触前达到的温度(见右表) 4、焊接温度 焊接温度是非常重要的焊接参数﹐通常高于焊料熔点(183°C )50°C ~60°C大多数情况是指焊锡炉的温度实际运行时﹐所焊接的PCB 焊点温度要低于炉温﹐这是因为PCB吸热的结果 SMA类型元器件预热温度 单面板组件通孔器件与溷装90~100 双面板组件通孔器件100~110 双面板组件溷装100~110 多层板通孔器件15~125 多层板溷装115~125 波峰焊工艺参数调节 1、波峰高度:波峰高度是指波峰焊接中的PCB吃锡高度。其数值通常控制在PCB板厚度的1/2~2/3,过大会导致熔融的焊料流到PCB 的表面﹐形成“桥连” 2、传送倾角:波峰焊机在安装时除了使机器水平外﹐还应调节传送装置的倾角﹐通过倾角的调节﹐可以调控PCB与波峰面的焊接时间﹐适当的倾角﹐会有助于焊料液与PCB更快的剥离﹐使之返回锡锅内 3、热风刀:所谓热风刀﹐是SMA刚离开焊接波峰后﹐在SMA的下方放置一个窄长的带开口的“腔体”﹐窄长的腔体能吹出热气流﹐

无铅喷锡Sn-CU-Ti除铜制程说明

无铅喷锡Sn-Tu-Ti除铜制程说明 一、前言 众所周知,欧盟、日本及美国的环保禁令关于无铅PCB以及下游的制程中的产品,铅、镉、汞、六价铬的含量指标有了明确的规定,时间从2006年7月1日起开始执行(详细的见欧盟的ROHS指令内容)。为了达到ROHS指令的内容要求,在PCB制程中的表面处理部份也在进行了无铅化,其中无铅喷锡处理表面制程为无铅表面处理的一个重要的形式,而其中的无铅喷锡中的除铜制程工艺尤为关键。 二、无铅喷锡除铜说明 1.除铜的原因 在有铅及目前的无铅喷锡制程中,除铜工艺是必须的,在无铅锡的合金中,铜在一定的比例含量中铜的含量为0.7%(wt%),在锡-银合金中铜的含量为0.5%(wt%)最为合适。如果铜的含量在合金中增加,也相应增加了无铅喷锡操作难度,但在喷锡的制板过程中,铜的含量随着制板量的增加而增加,在增加到一定的铜含量以后,就必须进行除铜降低的铜在锡槽中的含量,才能有效地进行生产得到合格的产品。 2.除铜的原理 一般地,目前无铅喷锡的除铜方法有物理除铜和化学除铜两种。考虑到化学除铜的不稳定因素影响,因此我们采取物理除铜的方式进行。 物理除铜对于有铅喷锡和无铅喷锡制程来说本质是一样的,

但方式截然不同,因为形成铜晶的锡铜合金分析出为高铜含量的晶体,铜晶密度为7.3g/cm3,有铅锡(63/37)的密度7.6g/ cm3,无铅锡的密度为7.2g/ cm3。因此在有铅锡中的铜晶是浮在表面,可以用漏匙即可捞出;相比之下,无铅锡中的铜晶的密度比母液的密度稍大,因此,铜晶是下沉或稍微悬浮在槽的下方,造成除铜的不方便。 在Sn-Tu-Ti合金体系中,我司针对铜晶的物理特性,通过对铜晶析出增加相应的催化剂,使铜晶的“聚合力”增加,静止状态下析出增加,使除铜的效率增加。 3.除铜的工艺要求 无铅喷锡的物理除铜工艺中,由于无铅喷锡自身的工艺时间不长,也只有三年多时间,在工艺上、操作上、执行上有待完善的地方,特别是除铜工艺,有待更好的研究及摸索。一般地,在无铅锡槽中,Cu含量大于1.2%需做除铜处理。在目前我司专业为Sn-Tu-Ti开发配套使用的除铜槽,是理想的除铜工具,以下详细地介绍除铜槽的规格及使用方法。 除铜槽操作说明 a.产品规格及外形 1)电源:AC 380V 50Hz 24KW 2)外形尺寸:(L)1170mm×(W)750mm×(H)500mm 3)材质:除铜槽用料:T=12mm 360L不锈钢板 4)加热器:采用台湾进口加热器

浅谈水平无铅喷锡工艺

浅谈水平无铅喷锡工艺 Mascon高级销售服务工程师李光华 简介 我自95年入PCB行业以来一直都服务水平喷锡工艺,对水平喷锡的工艺非常了解,因环保问题欧美在2006.01.01及我国在2010年全面禁含有铅的PCB产品,所以国内大型的PCB厂都在计划使用无铅喷锡..Mascon 公司是专业代理无铅的材料和设备,下面我来阐述水平无铅喷锡工艺. 设备 Mascon代理的英国生产的Cemco系列机型(CemcoC、CemcoD) 物料 Mascon代理的.Polaris(百利牌)T-995锡银、T-993锡铜合金锡巴. Mascon代理的.Polaris(百利牌)F-200-EL Horizontal Solder Leveling Flux. Mascon代理的.Polaris(百利牌)O-300-EL Horizontal OIL 设备简介 Cemco公司是英国专业制造水平喷锡机的公司,他们在制造其它机型的基础上累积了30年的经验设计制造出新一代的水平喷锡机Alchemy机型.Cemco Alchemy水平喷锡机是一种带触摸屏电脑全自动化控制的机器,该机操作简单,保养方便快捷省时,且保证有97%的一次性的合格率.Cemco机是目前能够作无铅喷锡的水平喷锡机,在德国有工厂用该机型开始大批量生产无铅板子.在国内,Mascon为惠亚、德丽、依顿等大型线路板厂作了一些无铅试板,这些板经过各公司分析都能满足他们的要求. 物料简介 1)T-995锡银合金Sn99.5%/Ag0.5%T-993锡铜合金Sn99.3%/Cu0.7%

F-200-EL松香是专门为CemcoAlchemy机研发出来水溶性的低酸无铅喷锡助焊剂,其低酸性的材料对机器的腐蚀非常低,并且能有效地清洁板子铜表面的杂质来降低板面的离子污染. F-200-EL松香的物理特性 3)O-300-EL高温油是专门为CemcoAlchemy机研发出来的一种承受高温无铅合金长S寿命高清洁润滑油,其烟雾少,能有效的抑制锡渣、碳化物的产生,使用寿命达到96小时. O-300-EL高温油的物理特性 机器性能 1)生产板面积最小230mm X 152mm,板子对角线270mm. 最大610mm X762mm. 在45度角能生产458mm X 610mm或更小的板子. 2)生产板厚度可以生产0.25mm---6.35mm的板子. 3)生产速度最快可达到17m/min. 4)锡面厚度根据客户试板的测量数据表明,PAD及IC位的锡厚都可以达到要求.

SMT锡膏常见不良问题及原因分析—双智利

SMT锡膏常见不良问题及原因分析——双智利 一.锡球: 1.印刷前,锡膏未充分回温解冻并搅拌均匀。 2.印刷后太久未回流,溶剂挥发,膏体变成干粉后掉到油墨上。 3.印刷太厚,元件下压后多余锡膏溢流。 4.REFLOW时升温过快(SLOPE>3),引起爆沸。 5.贴片压力太大,下压使锡膏塌陷到油墨上。 6.环境影响:湿度过大,正常温度25+/-5,湿度40-60%,下雨时可达95%,需要抽湿。 7.焊盘开口外形不好,未做防锡珠处理。 8.锡膏活性不好,干的太快,或有太多颗粒小的锡粉。 9.锡膏在氧化环境中暴露过久,吸收空气中的水分。 10.预热不充分,加热太慢不均匀。 11.印刷偏移,使部分锡膏沾到PCB上。 12.刮刀速度过快,引起塌边不良,回流后导致产生锡球。 P.S:锡球直径要求小于0.13MM,或600平方毫米小于5个. 二、立碑: 1.印刷不均匀或偏移太多,一侧锡厚,拉力大,另一侧锡薄拉力小,致使元件一端被拉向一侧形成空焊,一端被拉起就形成立碑。 2.贴片偏移,引起两侧受力不均。 3.一端电极氧化,或电极尺寸差异太大,上锡性差,引起两端受力不均。 4.两端焊盘宽窄不同,导致亲和力不同。

5.锡膏印刷后放置过久,FLUX挥发过多而活性下降。 6.REFLOW预热不足或不均,元件少的地方温度高,元件多的地方温度低,温度高的地方先熔融,焊锡形成的拉力大于锡膏对元件的粘接力,受力不均匀引起立碑。 三、短路 1.STENCIL太厚、变形严重,或STENCIL开孔有偏差,与PCB焊盘位置不符。 2.钢板未及时清洗。 3.刮刀压力设置不当或刮刀变形。 4.印刷压力过大,使印刷图形模糊。 5.回流183度时间过长,(标准为40-90S),或峰值温度过高。 6.来料不良,如IC引脚共面性不佳。 7.锡膏太稀,包括锡膏内金属或固体含量低,摇溶性低,锡膏容易榨开。 8.锡膏颗粒太大,助焊剂表面张力太小。 四、偏移: 一).在REFLOW之前已经偏移: 1.贴片精度不精确。 2.锡膏粘接性不够。 3.PCB在进炉口有震动。 二).REFLOW过程中偏移: 1.PROFILE升温曲线和预热时间是否适当。 2.PCB在炉内有无震动。

化金板上锡不良改善报告

技术报告

不良案例1、上锡不良案例 1.1、8-12月份上锡不良统计 月份8月9月10月11月12月(截止12月23日)上锡不良(件) 1 6 5 5 1 9-11月上锡不良投诉明显增多8-12月共投诉18件上锡不良分布图1.2、客户投诉上锡不良典型案例如下 1.2.1不熔金、缩锡发黑案例 料号不良描述不良率不良周期相关图片 4513 BGA处不上锡,且有轻 微的发黑 2% 3111 18901 PAD吃锡不良,表现为 部分不熔金 6% 3711 4532 整PCS不吃锡,金完全 未熔,轻拨零件就会脱落 2.5% 4111 上锡不良 2 4 6 8 8月9月10月11月12月 月份 件 数 不良分布 不熔金 65% 缩锡发黑 35% BGA处不 上锡且有 明显有不 整板不熔

不良案例1.2.2案例分析 料号BGA 处EDS图片EDS光谱图给客户端结论 4513 外界污染 18901 金面轻微污染 4532 金层有阻焊层,可 能有菌类污染 1.2.3小结 从上述三个案例分析来看,不熔金、缩锡发黑应为焊接过程中润湿性不够,导致无法熔掉金层或无法形成IMC层,继而产生上锡不良;影响润湿性原因很多,PCB表面污染、镍层腐蚀氧化等都会影响影响润湿效果,客户端炉温低、锡膏助焊剂差等也会影响润湿性。 上锡不良模拟分析2、原因分析(鱼骨图) 上 锡 不 良锡膏退洗 作业不规范 辅助工具不良 培训不到位 PCB不良 参数不当 保养不到位 酸碱恶劣环境 人 物 环 机 法 锡膏异常客户炉温异常

调查跟踪4.不良问题跟踪 4.1.上文提到的3.1.1及3.1.2在之前的上锡不良改善方案中早有要求,各部门必须严格按章操作。 4.2化金线保养不到位,并不是化金未做保养,而是在酸碱泡或换槽时未用扫把或碎布彻底清洗槽壁污垢, 还有部分水洗未按要求更换,可能让缸壁滋生菌类有“可趁之机”。 4.2.1.前处理酸洗槽大保养后及用扫把及碎布彻底清洁后对比 4-1酸碱泡后缸壁仍有污垢4-2用扫把彻底清洁后 4.2.2.金回收后水洗槽缸壁大保养后及用扫把及碎布彻底清洁后对比 明显有污垢污垢已被 白色污垢 用扫把清洗多次才能 清洗干净,此污垢可

SMT焊接上锡不良分析

SMT焊接上锡不良分析 编辑:时运电子 波峰面:波的表面均被一層氧化皮覆蓋﹐它在沿焊料波的整個長度方向上幾乎都保持靜態﹐在波峰焊接過程中﹐PCB接觸到錫波的前沿表面﹐氧化皮破裂﹐PCB前面的錫波無皸褶地被推向前進﹐這說明整個氧化皮與PCB以同樣的速度移動波峰焊機。 焊點成型:當PCB進入波峰面前端(A)時﹐基板與引腳被加熱﹐並在未離開波峰面(B)之前﹐整個PCB浸在焊料中﹐即被焊料所橋聯﹐但在離開波峰尾端的瞬間﹐少量的焊料由於潤濕力的作用﹐粘附在焊盤上﹐並由於表面張力的原因﹐會出現以引線為中心收縮至最小狀態﹐此時焊料與焊盤之間的潤濕力大於兩焊盤之間的焊料的內聚力。因此會形成飽滿﹐圓整的焊點﹐離開波峰尾部的多餘焊料﹐由於重力的原因﹐回落到錫鍋中。 防止橋聯的發生: 1、使用可焊性好的元器件/PCB 2、提高助焊剞的活性 3、提高PCB的預熱溫度﹐增加焊盤的濕潤性能 4、提高焊料的溫度 5、去除有害雜質﹐減低焊料的內聚力﹐以利於兩焊點之間的焊料分開。 波峰焊機中常見的預熱方法 1、空氣對流加熱 2、紅外加熱器加熱 3、熱空氣和輻射相結合的方法加熱 波峰焊工藝曲線解析 1、潤濕時間:指焊點與焊料相接觸後潤濕開始的時間 2、停留時間CB上某一個焊點從接觸波峰面到離開波峰面的時間,停留/焊接時間的計算方式 是﹕停留/焊接時間=波峰寬/速度 3、預熱溫度:預熱溫度是指PCB與波峰面接觸前達到的溫度(見右表) 4、焊接溫度: 焊接溫度是非常重要的焊接參數﹐通常高於焊料熔點(183°C )50°C ~60°C 大多數情況是指焊錫爐的溫度實際運行時﹐所焊接的PCB 焊點溫度要低於爐溫﹐這是因為PCB吸熱的結果 SMA類型元器件預熱溫度 單面板組件通孔器件與混裝90~100 雙面板組件通孔器件100~110 雙面板組件混裝100~110 多層板通孔器件15~125

PCB电路板喷锡工艺常见问题解决

PCB电路板喷锡工艺常见问题解决 PCB电路板喷锡工艺也被称为热风整平,它是指利用热风将印制板表面及孔内多余焊料去掉,剩余焊料均匀覆在焊盘及无阻焊料线条及表面封装点上,其工艺流程表现为:放板(贴镀金插头保护胶带)→热风整平前处理→热风整平→热风整平后清洗→检查。本文,我们将针对喷锡工艺中的一些常见问题提供参考借鉴的解决方法与注意事项。 一.热风整平抽风口滴残液,这种现象是从热风整平的抽风口向下滴流黄色液体,这种液体主要是整平时被抽风口吸入的助焊剂。天长日久积于抽风管道内,无法排出,便顺抽风口四周滴落,滴落在什么地方都有,像热风管道,风刀口处,风刀口上保护盖滴落最多,有时,在工作中也会滴于操作员的头上,工作服上,在下班关闭抽风后滴下的残液最多,例如热熔,这些液体覆于设备上,时间久了对设备的残蚀很大。可参考脱排油烟机的结构,在抽风口上做一个漏斗型铁丝网引流残液,可减小或解决这种情况,可以在漏斗网下端引入地沟或放入废液槽,这样做好后,残液在从抽风口向下流动的过程中,流经铁丝时,会有一大部分残液沿铁丝流下。并且多做几个备用如腐蚀坏了可更换。 二.热风整平时戴的手套,在热风整平时通常是采用帆布手套,将一付手套套入另一付手套戴在手上进行工作,时间稍长助焊剂便浸入手套里边去了,这时手套的隔热能力就大大减小了,而且,助焊剂浸到手上对手也有一定的伤害.这种浸入了助焊剂的手套洗涤后还能再用一次,但效果不好,由于帆布变软,助焊剂浸入的速度非常快且量大,建议采用浸塑手套里面在加一个细帆布手套,关键的问题是:这种橡胶手套的大小要合适,隔热要好,而且柔软度好。 三.挠性板及铣完外形返工的印制板如何热风整平,挠性板由于板材柔软,在热风整平时极易产生问题,需要格外谨慎,热风整平前应铣好与挠性板边缘相吻合的边框,然后在边框与挠性板边缘处各打几个相对的孔,一般在边框每边上各打三个孔即可,边宽,边长的挠性板可以多打几个孔,防止热风整平时,由于孔少,固定不牢而使挠性板面褶皱现象产生。将边框孔与挠性板边缘孔一一对应、再用细铜丝穿过孔进行扎绑,扎绑牢固后进行热风整平,整平时应注意将浸焊料时间减短,风刀压力减小,铣外形的板子返工时,也要铣好相吻合的边框,将板子放入边框内,然后用整平胶带粘接,将板面的胶带用压辊压平,这样处理后就可进行热风整平。 四.在导轨间卡板的原因: 1.导轨与板子的距离过近或距离过远,调节导轨便可解决。 2.挂板孔不在印制板边缘正中心,更正挂板孔位置可解决。 3.印制板边角不规整,加边框可以解决。 4.印制板返工时边缘挂锡过厚,用手将印制板插入焊料槽中然后取出。 5.导轨出锡孔被铅锡阻塞过多造成卡板,可用热焊料熔去,可用硬物顶出。 6.热风整平后的印制板被挂钉与导轨 顶部卡在中间造成变形,及时更换挂臂减震 器。 热风整平的工艺虽然简单,但是,若想热风整平出优良合格的印制板还有很多的工艺条件需要掌握,例如:焊料温度,空气刀气流温度,风刀压力,浸焊时间,提升速度等等。这些条件都有设定值,但工作时又要根据印制板的外在条件及加工单的要求相变化,例如:板厚,板长不同的单面,双面,多层板。它们所采用的条件是有差异的,只有熟悉掌握各种工艺参数,根据印制板的不同类型,不同要求,耐心,细致,合理的调整机器,才能热风整平出合格的印制板。

连接器引脚上锡不良失效分析

连接器引脚上锡不良失效分析 (作者:美信检测失效分析实验室) 1. 案例背景 送检样品为某款PCBA板,该PCBA板上一连接器在经过SMT后发现个别引脚上锡不良,失效不稳定;该连接器引脚每侧共50个引脚,材质为铜表面镀镍镀锡,PCB焊盘表面为OSP 工艺,锡膏成分为Sn-Ag-Cu(95%-3%-0.5%)。 2. 分析方法简述 2.1 样品外观观察 通过将失效样品和正常样品分别放在体式显微镜下观察,发现失效样品的某些引脚确实存在引脚上锡不良现象,失效引脚位置在连接器上分布不规律,但失效样品主要集中在连接器中间区域,且两端引脚上锡相对较好,典型照片见图1。正常样品表现为两端上锡饱满,中间区域引脚上锡不饱满,典型照片见图2,该现象说明失效可能与位置相关。

上锡不饱满 上锡不良 上锡饱满 上锡饱满 上锡不饱满 上锡饱满

如图3~4所示,分别对NG焊点表面和未使用引脚表面进行表面SEM观察和EDS成分分析,成分测试结果见表1~2,均未发现明显污染元素,说明造成该引脚上锡不良与污染相关性不大。 表2 未使用连接器引脚表面EDS测试结果(Wt%)

将NG焊点分别按照横向和纵向制作切片,观察焊点内部连接情况: 如图5和表3所示,通过纵向切片可知,焊锡与焊盘间形成良好IMC层,而引脚与焊锡之间出现分离,分层中间存在异物,通过对异物进行成分分析,主要元素为C、O、Sn、Br,怀疑其可能为助焊剂; 如图6和表4所示,通过横向切片可知,NG焊点引脚与焊盘存在偏位现象,表现为两侧不上锡,焊锡与焊盘形成均匀连续的IMC层,引脚底部与焊锡之间亦存在分层,中间也存在异物。通过对分层处进行放大观察,发现引脚底部存在一层锡层,锡层成分为纯锡(如图6中位置1和2所示);而焊点焊锡成分中含少量Ag(位置4和5),与锡膏(Sn-Ag-Cu:95%-3%-0.5%)中成分相对应。由此可推出,NG焊点引脚底部锡层为引脚表面镀锡层,因此可侧面说明NG焊点在SMT过炉过程中,引脚底部与焊锡没有良好接触。

PCBA透锡不良分析

PCBA透锡不良分析 一、PCBA透锡要求 根据IPC标准,通孔焊点的PCBA透锡要求一般在75%以上就可以了,也就是说焊接的对面板面外观检验透锡标准是不低于孔径高度(板厚)的75%,PCBA透锡在75%-100%都是合适。而镀通孔连接到散热层或起散热作用的导热层,PCBA透锡则要求50%以上。 二、影响PCBA透锡的因素 PCBA透锡不良主要受材料、波峰焊工艺、助焊剂、手工焊接等因素的影响。 关于影响PCBA透锡的因素的具体分析: 1、材料 高温融化的锡具有很强的渗透性,但并不是所有的被焊接金属(PCB板、元器件)都能渗透进去,比如铝金属,其表面一般都会自动形成致密的保护层,而且内部的分子结构的不同也使得其他分子很难渗透进入。其二,如果被焊金属表面有氧化层,也会阻止分子的渗透,我们一般用助焊剂处理,或纱布刷干净。

2、波峰焊工艺 PCBA透锡不良自然直接与波峰焊接的工艺有着直接的关系,重新优化透锡不好的焊接参数,如波高、温度、焊接时间或移动速度等。首先,轨道角度适当的降一点,并增加波峰的高度,提高液态锡与焊端的接触量;然后,增加波峰焊接的温度,一般来说,温度越高锡的渗透性越强,但这要考虑元器件的可承受温度;最后,可以降低传送带的速度,增加预热、焊接时间,使助焊剂能充分去除氧化物,浸润焊端,提高吃锡量。 3、助焊剂 助焊剂也是影响PCBA透锡不良的重要因素,助焊剂主要起到去除PCB和元器件的表面氧化物以及焊接过程防止再氧 化的作用,助焊剂选型不好、涂敷不均匀、量过少都将导致透锡不良。可选用知名品牌的助焊剂,活化性和浸润效果会更高,可有效的清除难以清除的氧化物;检查助焊剂喷头,损坏的喷头需及时更换,确保PCB板表面涂敷适量的助焊剂,发挥助焊剂的助焊效果。 4、手工焊接 在实际插件焊接质量检验中,有相当一部分焊件仅表面焊锡形成锥形后,而过孔内没有锡透入,功能测试中确认这部分有许多是虚焊,这种情况多出在手工插件焊接中,原因是烙

焊接不良的原因分析

焊接不良的原因分析 吃锡不良 其现象为线路的表面有部份未沾到锡,原因为: 1.表面附有油脂、杂质等,可以溶剂洗净。 2.基板制造过程时打磨粒子遗留在线路表面,此为印刷电路板制造厂家的问题。 3.硅油,一般脱模剂及润滑油中含有此种油类,很不容易被完全清洗干净。所以在电子零件的制造过程中,应尽量避免化学品含有硅油者。焊锡炉中所用的氧化防止油也须留意不是此类的油。 4.由于贮存时间、环境或制程不当,基板或零件的锡面氧化及铜面晦暗情形严重。换用助焊剂通常无法解决此问题,重焊一次将有助于吃锡效果。 5.助焊剂使用条件调整不当,如发泡所需的空气压力及高度等。比重亦是很重要的因素之一,因为线路表面助焊剂分布数量的多寡受比重所影响。检查比重亦可排除因卷标贴错,贮存条件不良等原因而致误用不当助焊剂的可能性。 6.焊锡时间或温度不够。一般焊锡的操作温度较其溶点温度高55~80℃ 7.不适合之零件端子材料。检查零件,使得端子清洁,浸沾良好。 8.预热温度不够。可调整预热温度,使基板零件侧表面温度达到要求之温度约90℃~110℃。 9.焊锡中杂质成份太多,不符合要求。可按时测量焊锡中之杂质,若不合规定超过标准,则更换合于标准之焊锡。 退锡 多发生于镀锡铅基板,与吃锡不良的情形相似;但在欲焊接的锡路表面与锡波脱离时,大部份已沾在其上的焊锡又被拉回到锡炉中,所以情况较吃锡不良严重,重焊一次不一定能改善。原因是基板制造工厂在渡锡铅前未将表面清洗干净。此时可将不良之基板送回工厂重新处理。 冷焊或点不光滑 此情况可被列为焊点不均匀的一种,发生于基板脱离锡波正在凝固时,零件受外力影响移动而形成的焊点。 保持基板在焊锡过后的传送动作平稳,例如加强零件的固定,注意零件线脚方向等;总之,待焊过的基板得到足够的冷却再移动,可避免此一问题的发生。解决的办法为再过一次锡波。至于冷焊,锡温太高或太低都有可能造成此情形。

相关文档
最新文档