GIS用电子式电流互感器整体解决方案样本

该ECVT 整体解决方案有以下特点:

1. 一次结构可靠、稳定。由GIS厂家成熟技术保证的安装结构,其电场结构、密封结构经过实例充分的验证,从而保证产品主体可靠、稳定的运行;

2. 按GIS技术要求合理设计,可根据设计需要安装多组罗氏、低功率线圈。电容环优化设计,测量精度高;

3. 与GIS其它部件的标准化对接,满足GIS整体结构设计且有利于旧站改造项目;

4. 计量精度高、动态范围宽、无磁饱和问题、无CT二次开路问题;

5. 外观造型符合GIS整体设计风格,保证了产品的整体美观性。

二、电子式电流电压互感器(ECVT)

图3 ECVT 典型结构示意图

ECVT 由电子式电流互感器和电子式电压互感器有机组合而成。通常包含图中所示12 项(图3 中序号1-12)主要部件,这些主要部件大致可分为一次结构部分和二次测量部分,配置方式见表3

表3 ECVT 主要零部件配置清单注:“○”表示西开电气制造并供货,”√”表示由西开电气供货或选配其它专业厂家产品,但线圈尺寸、结构、装配方式以及电气参数等需满足一次设备要求。

产品概述

GIS 用电子式电流互感器(简称ECT) 及电子式电流电压互感器(简称ECVT)作为GIS 的一个重要元件,其主要组成部分如图1-3 所示。按照GIS 设备整体化、系统化要求,为保证GIS的整体安全性、可靠性,西安西电开关电气有限公司(以下简称西开电气)作为GIS 主设备生产厂家,提供整体设计和解决方案。

以满足GIS 整体布置结构需求和保证GIS 整体安全性、可靠性。

图1 罗氏线圈+低功率线圈式ECT 典型结构示意图

该解决方案通常包含图中所示11 项(图1 中序号1-11)主要部件,这些主要部件大致可分为一次结构部分和二次测量部分,配置方式见表1。

表1 主要零部件配置清单

注:“○”表示西开电气制造并供货,”√”表示由西开电气供货或选配其它专业厂家产品,但线圈尺寸、结构、装配方式以及电气参数等需满足一次设备要求。

该ECT 整体解决方案有以下特点:

1. 一次结构可靠、稳定。由GIS厂家成熟技术保证的安装结构,其电场结构、密封结构经过实例充分的验证,从而保证产品主体可靠、稳定的运行;

2. 按GIS技术要求合理设计,可根据设计需要安装多组罗氏、低功率线圈;

3. 与GIS其它部件的标准化对接,满足GIS整体结构设计且有利于旧站改造项目;

4. 计量精度高、动态范围宽、无磁饱和问题、无CT二次开路问题;

5. 外观造型符合GIS整体设计风格,保证了产品的整体美观性。

2 . 全光纤式ECT

图2 全光纤式ECT 典型结构示意图

该解决方案通常包含图中所示9 项(图2 中序号1-9)主要部件,这些主要部件大致可分为一次结构部分和二次测量部分,配置方式见表2。

表2 主要零部件配置清单

注:“○”表示西开电气制造并供货,”√”表示由西开电气供货或选配其它专业厂家产品,但线圈尺寸、结构、装配方式以及电气参数等需满足一次设备要求。

该ECT 整体解决方案有以下特点:

1. 一次结构可靠、稳定。由GIS厂家成熟技术保证的安装结构,其电场结构、密封结构经过实例充分的验证验证,从而保证产品主体可靠、稳定的运行;

2. 按GIS技术要求合理设计,可根据设计需要安装多组光纤线圈、并可与其它线圈混合安装;

3. 与GIS其它部件的标准化对接,满足GIS整体结构设计且有利于旧站改造项目;

4. 计量精度高、动态范围宽、无磁饱和问题、无CT二次开路问题,良好的抗震抗干扰能力,不存在破坏性损坏;

5. 外观造型符合GIS整体设计风格,保证了产品的整体美观性。

一、电子式电流互感器ECT

电子式电流互感器可根据技术原理分为罗氏线圈+低功率线圈式和全光纤式。

1. 罗氏线圈+低功率线圈式ECT

24小时客服电话:400-887-0823

二次测量

2线圈(低功率+罗氏线圈)√8采集器

√10数据传输光纤√11合并单元√

零序电流互感器的原理及应用

零序电流互感器的原理及应用 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 三相电路不对称时,电流均可分解正序、负序和零序电流。正序指正常相序的三相交流电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分解出来三个大小相同、相位相同的相量。零序电流互感器套在三芯电缆上,三相不平衡时在外部就表现出零序电流(因为相量相同加强) 零序电流互感器 零序电流互感器为一种线路故障监测器,一般儿只有一个铁芯与二次绕组,使用时,将一次三芯电缆穿过互感器的铁芯窗孔,二次通过引线接至专用的继电器,再由继电器的输出端接到信号装置或报警系统。在正常情况下,一次回路中三相电流基本平衡,其所产生合成磁通也近于零。在互感器的二次绕组中不感生电流,当一次线路中发生单相接地等故障时,一次回路中产生不平衡电流(意即零序电流),在二次绕组中感生微小的电流使继电器动作,发生信号。这个使继电器动作的电流很小(mA级),称作二次电流或零序电流互感器的灵敏度(也可用一次最小动作电流表示),为主要动作指标。 零序电流互感器保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电

电流互感器二次线的计算

电流互感器问答 15.当有几种表计接于同一组电流互感器时,其接线顺序如何? 答:其接线顺序是:指示仪表、电度仪表、记录仪表和发送仪表。 16.使用电流互感器应注意的要点有哪些? 答:(I)电流互感器的配置应满足测量表计、自动装置的要求。 (2)要合理选择变比。 (3)极性应连接正确。 (4)运行中的电流互感器二次线圈不许开路. (5)电流互感器二次应可靠接地。 (6)二次短路时严禁用保险丝代替短路线或短路片。 (7)二次线不得缠绕。 17.电流互感器的轮校周期和检修项目是什么? 答;计量用和作标准用的仪器和有特殊要求的电流互感器校验周期为每两年一次,一般仪用互感器核验周期为每四年一次。仪用互感器的检验项目为:校验一、二次线圈极性;测定比差和角差;测量绝缘电阻、介质损失以及而压试验. 18.怎样根据电流互感器二次阻抗正确选择二次接线的截面积? 答:可根据下式计算进行选择 S≥ρLm / Z―(rq+ri+rc). 式中S——连接导线的截面积 Lm——连接导线的计算长度m,单机接线Lm=2L,星形接线Lm=L,不完全星形接线Lm=√3 ρ——导线电阻率Ωmm2/m Z——对应于电流互感器准确等级的二次负荷额定阻抗,可从铭牌查出。 rq——为仪表电流线圈的总阻抗Ω; rj——为继电器电流线圈的总阻抗Ω rc——连接二次线的接触电阻一般取0.05Ω 19.电流互感器二次为什么要接地? 答:二次接地后可以防止一次绝缘击穿,二次串入高压,威胁人身及设备的安全,属于保护接地。接地点应在端子k2处,低压电流互感器一般采用二次保护接零的方式。 20对电流互感器如何进行技术管理? 答:(1)电流互感器以及其它计量设备必须做好台帐,有专人管理。并做好互感器转移记录。 (2)在供电企业内应建立各种相应的技术档案和管理制度,包括出厂原始记录、资料。历年修校记录、检修工艺规程和质量标准. (3)对计量用电流互感器的安装、更换、移动、校验、拆除、加封和接线工作均由供电

电流互感器设计

电流互感器设计 1 互感器设计目的及意义 (2) 2 电流互感器总体设计 (2) 2.1 电流互感器类型选取 (3) 2.2 电流互感器各部件设计 (3) 2.2.1 铁芯及绕组设计 (3) 2.2.2 外绝缘套管设计 (3) 2.2.3 复合绝缘子设计 (4) 2.2.4 出线套管内绝缘设计 (5) 2.2.5 屏蔽设计 (5) 2.2.6 密封结构设计 (5) 2.2.7 互感器其他部件及标准件 (5) 2.3 1100KV电流互感器总体装配图 (5) 2.3.1 画各部件三维图 (5) 2.3.2 装配体绘制及总质量估算 (5) 2.3.3 装配体材料清单 (6) 2.3.4 装配体电场和机械性能模拟分析 (6) 3 单件电流互感器组装 (6) 3.1 原材料的购买及检验 (6) 3.2 原材料的处理 (6) 3.3 线圈的缠绕 (7) 3.4 环氧套管的浇注及修整 (7) 3.5 电流互感器的装配 (7)

1 互感器设计目的及意义 电流互感器是一种专门用作变换电流大小的特殊变压器。由于发电和用电的不同需要,线路上的电流大小不一,而且相差悬殊。若要直接测量这些大小不一的电流,就需要制作相应等级的仪表,给仪表制造带来极大困难。此外,有些高压线路直接测量也是非常危险的。而电流互感器可以把不同等级的电流,按不同的比例,统一成大小相近的电流。电力系统用互感器是将电网高电压、大电流的信息传递到低电压、小电流二次侧的计量、测量仪表及继电保护、自动装置的一种特殊变压器,是一次系统和二次系统的联络单元,其一次绕组接入电网,二次绕组分别与测量仪表、保护装置等互相连接。互感器与测量仪表和计量装置配合,可以测量一次系统的电压、电流和电能;与继电保护和自动装置配合,可以构成对电网各种故障的电气保护和自动控制。互感器的好坏,直接影响到电力系统测量、计量的准确性和继电保护装置动作的可靠性。随着电力工业建设的迅速发展,电力系统输电容量不断扩大,远距离输电迅速增加,电网电压等级逐渐升高,对电流互感器的电压等级及设备技术参数提出了更高的要求。 2 电流互感器总体设计 ↓ →↑↑符合要求 是

电子式电流互感器的技术及研究

电子式电流互感器的技术及研究 发表时间:2019-06-03T15:50:11.437Z 来源:《电力设备》2019年第3期作者:王迪 [导读] 摘要:随着我国经济的不断发展,促进我国电网的发展,同时电子式互感器有了显著的提高。 (国网吉林省电力有限公司长春供电公司吉林省长春市 130000) 摘要:随着我国经济的不断发展,促进我国电网的发展,同时电子式互感器有了显著的提高。在电子式互感器具有超高压的系统,只有优良的结缘性能能够承受高水平的电磁环境。与传统的互感器进行比较,技术性能和经济效益没有明显的提高。结合实际情况进行分析,职能变电站中主要的设备就是电流互感器。基于此,本文对电子式电流互感器的技术进行分析研究。 关键词:电子式电流互感器;核心技术;应用配置 传统的电磁式电流互感器对于当前电力系统传输容量不断加大,而且电压等级不断提升的情况其适用性越来越差,使电力系统的发展带来了一定的制约作用。在这种情况下,开发电子式电流互感器则具有必然性,由于于其通过利用光通信及微电子技术,并采用新型的传感原理,有效的规避了传统电力互感器所存在的不足之处,利用数字信号进行输出,确保了电力系统安全、稳定的运行,不仅实现了成本的节约,而且也实现了对二次设备的优化。目前数字化变电站的建设更是需要以电子式互感器和光纤通讯网作为其基础,所以电子式电流互感器在当前电力系统运行了具有极为重要的意义。 1电子式电流互感器类型及特点 目前在电子式电流互感器研究领域主要有三个研究方向:有源型;无源型;全光纤型。其中,后两种都属于无源光学电流互感器。 1.1有源型 有源型又可以称为混合型,所谓有源光纤电流互感器乃是高压侧电流信号通过采样传感头将电信号传递给发光元件而变成光信号,再由光纤传递到低电压侧,进行光电转换变成电信号后输出。有源型光纤电流互感器的方框图如图1所示: 有源型光纤电流互感器结构简单,长期工作稳定性好,容易实现高精度、性能稳定的实用化工业产品,是目前国内研究的主流。但是高压侧电源的产生方法比较复杂或者成本比较高,还有待于进一步研究。 1.2无源型 所谓无源型光学电流互感器乃是传感头部分不需要供电电源。传感头一般基于法拉第(Faraday)效应原理,即磁致光旋转效应。当一束线偏振光通过放置在磁场中的法拉第旋光材料后,若磁场方向与光的传播方向平行,则出射线偏振光的偏振平面将产生旋转,即电流信号产生的磁场信号对偏振光波进行调制。 无源型结构是近年来比较盛行的,其优点是结构简单,且完全消除了传统的电磁感应元件,无磁饱和问题,充分发挥了光学互感器的特点,尤其是在高压侧不需要电源器件,使高压侧设计简单化,互感器运行寿命有保证。 其缺点是光学器件制造难度大,测量的高精度不容易达到。尤其是此种电流互感器受费尔德(Verdet)常数和线性双折射影响严重。而目前尚没有更好的方法能解决费尔德常数随温度变化而出现的非线性变化即系统的线性双折射问题,所以很难在工业中得到实际应用。 1.3全光纤型 全光纤型电流互感器实际上也是无源型的,只是传感头即是光纤本身(而无源型光纤电流互感器的传感头一般是磁光晶体,不同于全光纤型的传感头是特殊绕制的光纤传感头),其余与无源型完全一样。 2电子式互感器的核心技术 2.1传感技术 对于传感技术主要是由罗氏线圈的电流传感器,但是对于罗氏线圈电流传感器具有一定的无磁性和磁饱等很多优点,适用的范围比较大,但是对于磁光玻璃传感器是一种合型电流互感器,主要是利用光纤进行传递能量,在磁光电流互感器的工作测量的过程中,只和磁光材料的维尔德常熟有一定的关系,这样能够准确的测量结果。对于光纤式电流传感器主要运行的原理是法拉第旋光效应,因为光纤的本身具有传感元件,在原理上可以进一步的对光纤进行分类。 2.2高压侧电子电路供能技术 高压侧电子电路主要由三个技术构成,主要包括激光功能技术、蓄电池供能技术和自励电源技术。 伴随着我国技术的发展,逐渐提高激光供能技术的可靠性,对于自动化自用与自励电源进行交替工作,采用这样的方式对非电气链接的能量传递方式进行干扰,在于特高磁场测量中有很好的应用前景。 蓄电池功能技术,对于充电源主要是通过特殊的设计的线圈从高压母线感应出电流,整个过程中经过对电流的调整和稳压调节后,对蓄电池进行充电。对于蓄电池的主要来源就是高压侧电子电路的工作电能供给,这种技术结构不仅简单,还能够提高工作效率,但是在实际工作中应该重视一个问题就是对蓄电池不能进行反复的充电,这样就减少电池的使用寿命,并且更换电池也是一件费事的事情。 自励电源技术,主要的核心技术就是独立式光隔离电流互感器,线圈由高压母线产生的规律变化的磁场激励得到的交流店,从而实现自供电。这样技术应用可以促进互感器摆脱有源实现。实现“无源化”,缺点是如果母线电流不稳定,影响供电稳定性。 3电子式电流互感器的应用配置 3.1电子式电流互感器的选型配置 根据电子式互感器研发现状,配电网IIOKV等级设备中光电、线圈电子式互感器均有挂网运行;35KV及以下配电网设备中,基本采用线圈电子式互感器为主。以某地区某110KV数字化变电站为例,110KV主设备采用GIS组合电器,配置了光纤电子式电流互感器,每个间隔1组保护线圈、1组计量线圈:额定一次电流600A,测量额定二次输出为01CF,精度0.5级;保护额定二次输出为2D41,精度5P:10KV主设备采用CGIS组合电器,线路间隔均配置了模拟量输出的低功率电子式电流互感器,额定一次电流600A,测量额定二次输出电压为150mV,精度0.5级:保护额定二次输出电压为1V,精度5P。 3.2电子式电流互感器的安装 按照安装方式,电子式互感器可分为独立支撑型、GIS型、套管型及独立悬挂型。目前,一些地区配电网一次设备主要采用集约型、小型化设备,比如GIS、CGIS、开关柜等。电子式电流互感器由于绝缘结构简单,体积和重量都远小于传统的电流互感器,更适用于小型化的设备的安装。低功率电子式电流互感器在开关柜内安装较传统电流互感器更为紧凑,节省空间。GIS设备配置了光纤电子式电流互感器。

电子式互感器分类、特点及应用现状分析

电子式互感器的现状与发展前景 随着电力传输容量的增加,运行电压等级越来越高,传统的电磁式电流,电压互感器暴露出如绝缘要求高,磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃、易爆炸等一系列缺点。基于光学和电子学原理的电子式电压、电流互感器(分别简称为EVT和ECT)经过30多年的发展以其独特的优点,成为最有发展前途的一种超高压条件下电压、电流的测量设备。 早期的电子式互感器一次侧和二次侧通过光纤来传输信号,也称为光电式互感器。2002年,IEC根据新型电子式电压、电流互感器的发展趋势,制定了关于EVT的IEC60044-7标准和ECT的IEC60044 -8标准,明确了电子式互感器的定义及相成的技术规范。 根据IEC60044-7标准,EVT采用电阻分压器.电容分压器或光学装置作为一次转换部件,利用光纤怍为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 根据IEC600448标准,ECT采用传统电流互感器(CT)、霍尔传感器、Rogowski线圈或光学装置作为一次转换部件,利用光纤作为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 电子式互感器的分类 几十年来,电子式互感器产品的种类已经被开发出很多,根据原理的不同,电子式互感器可分为无源式和有源式2类。所谓无源式电子互感器是指高压侧传感头部分不需要供电电源的电于式互感器,而有源式电子互感器是指传感头部分需要供电电源的电子式互感器。 无源式电子互感器的优点是在传感头部分不需要复杂的供电装置,整个系统的线性度比较好,缺点是传感头部分有复杂而不稳定的光学系统,容易受到多种环境因素的影响,影响了实用化的进程,虽然各国学者不断的提出新方法以提高测量准确度,备种方法都在实验室条件下取得了一定成果,但都不同程度地存在着通用性差,装置复杂等缺点,未能有效克服这个困难,其研究还有待进一步深入。 有源式电子式互感器的原理大都比较简单,已被广泛接受。无源式EVT主要利用传统的电阻分压器,电容分压器以及单个电容器测量电压值。在有源式ECT中,作为一次电流采样传感头的元件有传统的电磁式电流互感器、分流器和Rogowski线圈等。

零序电流互感器原理、作用及如何使用

一零序电流互感器原理、作用及如何使用 答:原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 作用:当电路中发生触电或漏电故障时,保护动作,切断电源。 使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和. 二零序电流互感器它的零序的涵义是什么?它主要的功能与作用是什么? 答:如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流) 这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC 三:在矿用开关里的馈电开关中,零序电流互感器与三相电抗器的作用分别是什么?零序电流与零序电压的区别是什么?选择性漏电是怎么实现的? 答:零序电流互感器的作用是使电流实现方向保护,真正实现选择性漏电保护,三相电抗器的作用是能在电路中起到阻抗的作用的。零序电流是三相电流不平衡所产生的,如漏电、三相电压不平衡时所产生。选择性漏电是通过电流的方向实现的,在总开关时,电流是从电源到负荷端流入进行检测,在分开关时,电流是从负荷端到电源端流入进行检测,零序电流互感器一般都用在检测零序电流从负荷端流入时实现选择性漏电的。

1000A电流互感器的设计资料

沈阳化工大学 本科毕业论文 题目: 1000A测量级电流互感器的设计 院系:信息工程学院 专业:电气工程及其自动化 班级:电气0703 学生姓名:李宗霖 指导教师:肇巍 论文提交日期:2011年 6 月 25 日 论文答辩日期:2011年 6 月 28 日

毕业设计(论文)任务书 电气工程及自动化专业电气0703班学生:李宗霖

摘要 电流互感器是电力系统中最为关键的基础设备,起到测量和保护作用,是用来测量电路中电流大小的装置。当某一电路中的电流过大以至于不能通过仪器直接测量出来,这时在电路中电流互感器的另一侧会准确地产生成比例的小电流,这样就可以方便直接用仪器测量并记录。电流互感器同时可以隔绝待测电路中可能出现的高电压,以便保护测量仪器。 本次设计是根据对600A电流互感器的分析,进而设计1000A测量级的电流互感器。通过了解电流互感器的发展趋势,电磁场的基本知识,所需材料的相关参数,进行计算铁心截面积,绕线长度,平均磁路长,绕组阻抗,以及0.5准确级时对应的5%,20%,100%,120%倍额定电流及0.25倍额定电压,120%倍额定电流时所对应的磁场强度,铁损角及误差。通过计算出的比差值和相位差与误差限制表进行对比,得到所计算的误差处在误差限制之内。 通过对1000A测量级电流互感器的设计,达到对电流互感器的深入了解,对以后从事相关行业起到重要的帮助。 关键词:电流互感器;设计;测量

Abstract Current transformer is the key basic instrument in electrical power system. Current transformer is used for measurement and protection. It is a instrument used for measuring the current in a circuit. When current in a circuit is too high to directly apply to measuring instruments, a current transformer produces a reduced current accurately proportional to the current in the circuit, which can be conveniently connected to measuring and recording instruments. A current transformer also isolates the measuring instruments from what may be very high voltage in the monitored circuit. Current transformers are commonly used in metering and protective relays in the electrical power industry. This project is based on the analysis of a 600A current transformer, and then makes a design of a 1000A current transformer. Through the understanding of the development of current transformers and the basic knowledge of electromagnetic field to get the parameters of the material. And calculate responding current of 5%, 20%, 100%,120% when it at the accuracy of 0.5, and the magnetic power at 120% and the errors. Through the results of errors and comparing with the diagram we have already got . Through achieve above projects, to make the design of 1000A current transformer come true. The significance of the this design of current transformer is to get a more completed understanding of it, maybe of a help in the future. Keywords: current transformer; design; measure

零序电流互感器的作用及原理

(当电路中发生触电或漏电故障时,互感器二次侧输出零序电流,使所接二次线路上的设备保护动作(切断电源,报警等等)。 零序电流保护一般适合使用于TN接地系统。因为当发生一相接地时,对TN-S 系统Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE和接触阻抗 Zf,即 Zs=Z1+ZPE+Zf;对于TN-C系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN 和接触电阻Zf,即 ZS=Z1+ZPEN+Zf;对于TN-C-S系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN,PE线阻抗ZPE和接触电阻Zf,即 ZS=Z1+ZPEN+ZPE+Zf,产生的单相接地故障电流Id=220/ZS,明显大于无故障时的三相不平衡电流,只要整定合适,就可检测出发生接地故障时的零序电流,以切断故障回路。 而对IT系统,一般均是使用对供电可靠性要求较高、对单相接地不必要立即切断供电回路、但需发出绝缘破坏监察信号、以维持继续供电一段时间的工矿企业内的不配出中性线的三相三线配电线路。当单相接地时,该故障线路上流过的零序电流是全系统非故障系统电容电流之和,因而容易检测出接地故障电流,故可用零序电流保护装置来监察相对地第一次接地故障。 TT 接地系统常应用于工农业、民用建筑的照明、动力混合供电的三相四线配电系统中,常发现三相不平衡电流较大,当发生一相接地时,Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE,负载侧接地电阻RA和电源侧接地电阻RB,接触阻抗Zf,即ZS=Z1+ZPE+RA+RB+Zf,接地故障电流Id=220/ZS,由于RA+RB》》Z1+ZPE+Zf,且RA+RB数值一般均较大,很明显TT 系统的故障环路阻抗大,产生的单接故障电流Id,远远小于不平衡电流,很难检测出故障电流,故不适用于TT接地系统。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/418290054.html,。

电压互感器和电流互感器的运行及事故处理正式样本

文件编号:TP-AR-L1463 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 电压互感器和电流互感器的运行及事故处理正式 样本

电压互感器和电流互感器的运行及 事故处理正式样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 第一节电压、电流互感器运行中的规定 1.1电压互感器 1.1.1电压互感器运行参数的规定 1)电压互感器运行中的容量不准超过其铭牌的 规定值。 2)电压互感器绝缘电阻值的规定 a、1000V及以上的电压互感器,采用1000V摇 表测量,其绝缘电阻不得小于1MΩ/KV; b、1000V以下的电压互感器,采用500V摇表测 量,其绝缘电阻不得小于0.5 MΩ;

c、绝缘击穿熔断器采用500V摇表测量,其绝缘电阻不得小于0.5 MΩ; 3)熔断器熔丝的规定: a、一次侧熔丝不得大于1A,二次侧熔丝不得大于2A; b、一、二次侧熔丝必须用消弧绝缘套住。 4)运行中电压互感器在任何情况下不准短路。 1.1.2电压互感器正常运行操作 1.1. 2.1电压互感器投入前的检查 1)设备周围应无影响送电的杂物; 2)各接触部分良好,无松动、发热和变色现象; 3)充油式的电压互感器,油位正常,油色清洁,各部无渗漏油现象; 4)瓷瓶无裂纹及积灰;

基于空心线圈的电子式电流互感器设计大学论文

2013届毕业生毕业设计说明书 题目: 基于空心线圈的电子式电流互感器设计 学院名称:电气工程学院班级: xxx 学生姓名: xxx 学号: xxx 指导教师: xxx 教师职称: xxx

2013年05月15日

目次 引言 (1) 1 电子式电流互感器概述 (2) 1.1 电子式电流互感器的研究背景和意义 (2) 1.2 国内外研究现状 (3) 1.3 本课题研究的目的 (4) 2 系统方案设计 (5) 2.1 系统方案论证 (5) 2.2 课题方案设计 (5) 3 电子式电流互感器传感头介绍 (7) 3.1 Rogowski线圈的结构及其工作原理 (7) 3.2 计算Rogowski线圈的互感系数 (8) 3.3 Rogowski线圈两种工作状态 (9) 4 高压端电路和供电模块 (12) 4.1 积分电路 (12) 4.2 滤波电路 (14) 4.3 A/D转换电路 (15) 4.4 电源电路 (18) 4.5 光纤收发模块 (20) 5 低压端电路 (21) 总结 (22) 致谢 (23) 参考文献 (24) 附录: (26)

引言 随着电力系统的电压等级不断提高,对测量仪器的要求也越来越高,提高测量仪器的测量精度有利于电力系统安全和经济地运行。目前广泛使用的电流互感器是传统的电磁式电流互感器,但由于其本身存在缺点,人们不得不研究开发一种新型的互感器来代替它,在这个背景下,一种新型的电流互感器——电子式电流互感器随之兴起,它满足了目前电力系统中对电网电流的测量的要求,克服了传统的电磁式电流互感器的缺点,有广阔的发展空间。 本文设计的电子式电流互感器采用了Rogowski线圈、89C51单片机、MAX197 A/D转换芯片为主要部分。通过Rogowski线圈对电网中的电流进行采样,实时的分析和处理采样电流,将母线电流的实际状况显示出来,然后把信息反馈到控制室,如果电流出现异常,控制室向继电保护发出保护命令,保证电力系统的正常运行。

电流互感器的设计

CT设计计算说明 I1n-----额定一次电流 I2n-----额定二次电流 A S----铁芯截面积;cm2 L C----平均磁路长;cm N K----控制匝数 N L----励磁匝数 r2-----二次绕组的电阻 L2*N2 r2=ρ55 ,Ω S2 式中ρ55-----导线在55℃时的电阻系数, Ω·mm2/m,铜导线ρ55=0.02 ; ρ75=0.0214 L2-------二次绕组导线总长, m ; N2-------二次绕组匝数; S2--------二次绕组的导线截面积, mm2 。 X2----二次绕组的漏电抗; X2选取 当I1n≤600A 时X2≈0.05~0.1Ω I1n≥600A 时X2≈0.1~0.2Ω Z2 ----二次绕组组抗Z2=√r22+ X22 U2 ----二次绕组组抗压降U2=I0×Z2; V U0 ----二次绕组端电U0=U2+E2JG; V E2JG----二次极限感应电势;V (IN)1n------额定一次安匝 (IN)2n------额定二次安匝 N1n---------一次绕组额定匝数 N2n---------二次绕组额定匝数 W2n---------额定二次负荷标称值 Z2n---------额定二次负荷; Z2n= W2n/ I2n2{例50(V A)/5(A)2=2} Z2min-------最小二次负荷; Z2min=1/4 Z2n R2n --------额定二次负荷有功分量; R2n=Z2n cosφ2=0.8Z2n,Ω R2min ------最小二次负荷有功分量; R2min=Z2min cosφ2=0.8Z2min,Ω X2n --------额定二次负荷的无功分量;X2n=Z2n cosφ2=0.6Z2n

电子式电流互感器相关问题汇总

电子式电流互感器的定义 2000年,IEC根据基于光学和电子学原理的电流互感器(ECT)的发展趋势,制定了关于ECT的IEC60044-8标准,明确电子式电流互感器(Electronic Current Transformer: ECT)指采用传统电流互感器(CT),霍尔传感器、Rogowski线圈或光学装置作为一次转换部分,利用光纤作为一次转换器和一次转换器之间的传输系统,并且装有电子器件作测量信号的传输和放大,其输出可以是模拟量或数字量。由于其中某些类型要利用光学器件对电流传感且全部利用光纤传输信号,故电子式电流互感器亦称为光学电流互感器(Optical Current Transformer: OCT) 电磁互感器的优点在于性能比较稳定,适合长期运行.并且具有长期的运行经验。 电磁互感器的缺点: 磁式电流4.感器(Current Transformer: CT)己暴露出下述内在的致命弱点:1绝缘问题:传统电磁式电流互感器采用的空气绝缘,油纸绝缘,气体绝缘乃至串级绝缘都不能满足随电压等级日益增长而更为苛刻的运行条件,在超高压等级使用电磁式电流互感器会产生绝缘击穿的潜在危险;2误差问题:电磁式电流互感器的闭合铁芯由于电流的非周期分量作用而饱和,导磁率急剧降低,使误差在过渡过程中上升到不能允许的程度3铁磁谐振效应:由于电流互感器电感饱和作用引起的持续性、高幅值谐振过电压;4电磁式互感器含有铁芯,因此动态测量的范围小,频带窄面对暂态过程测量性能差;此外还有,输出端开路时导致高压危险; 体积重量均大,成本过高; 易产生干扰;不易与数字设备连接;因有绝缘油而导致易燃易爆炸等。已难以满足电力系统在线检测,高精度故障诊断,电力数字网发展需要 电子互感器的优点 1)数字化输出,简化了互感器与二次设备的接口,避免了信号在传输、储存 和处理中的附加误差,提高了系统可靠性。 2)信号光纤传输,抗电磁干扰性能好,在强电磁环境中保证信号的精确性 和可靠性。 3)无铁芯,不存在磁饱和、铁磁谐振现象,线性度好,绝缘简单,动态测量 范围大、频带宽、精度高。而且体积小、重量轻、低成本,减小了变电 站的面积,。 4)低压没有开路危险,没有因存在绝缘油而产生的易燃、易爆等危险 电子式电流互感器没有磁饱和、铁磁谐振等问题由于电磁式电流互感器使用了铁心,不可避免地存在磁饱和、铁磁共振和磁滞效应等问题,而电于式电流互感器采用的是磁光玻璃、光纤或电子线路。不存在这方面的问题。 电子式电流互感器绝缘结构简单,绝缘性能好。电磁式电流互感器的绝缘结构非常复杂,尤其是对于电压等级比较高的电流互感器来说,绝缘部分要消耗大量的电工材料,体积也非常庞大。而电子式电流互感器由于采用了光纤和比较轻便的绝缘子支往,其绝缘结构比较简单,绝缘性能也比较好、 (3)电子式电流互感器动态测量范围大,精度高。电网正常运行时,流过电流互感器的电流并不大,但短路电流一般很大,而且随着电网容量的增加,辣路故障时的电流越来越大。电磁式电流互感器f}I为存在磁饱和问题,难以实现大范围测量,不能同时满足高精度计量和继电保护的需要。电子式电流互感器有很宽的动态范围,测量额定电流的范围从几十安培至几千安培,过电流范围可达几万安墙。个电子式电流互感器可同时满足计量和继电保护的

电缆的接地线为什么要穿过零序电流互感器

电缆的接地线为什么要穿过零序电流互感器零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 1、如果单纯用于电缆接地,电缆的接地线是可以不经过电流互感器,而直接接地的。

2、如果该路出线(进线)设有零序保护,则要求取零序电流信号,该信号源就是这个电流互感器,为了准确测量这个零序电流,就要求被测的电流导体通过这个电流互感器,于是就出现了电缆的接地线通过零序电流互感器的情况。

关于电子式电流互感器的设计分析

关于电子式电流互感器的设计分析 近年来,由于社会对电能的需求量不断增加,电力企业的传输容量也在不断的增加,而电子式电流互感器的设计成功,有效的确保了电力系统运行的安全性,而且有效的降低了成本,为数字化变电站的建设奠定了良好的基础。文中从电子式电流互感器的类型和特点进行了分析,并进一步对电子式电流互感器的设计思想、光电池的选择及电源性能参数进行了具体的阐述。 标签:电子式电流互感器;高压侧电源;供能电路 前言 传统的电磁式电流互感器对于当前电力系统传输容量不断加大,而且电压等级不断提升的情况其适用性越来越差,使电力系统的发展带来了一定的制约作用。在这种情况下,开发电子式电流互感器则具有必然性,由于于其通过利用光通信及微电子技术,并采用新型的传感原理,有效的规避了传统电力互感器所存在的不足之处,利用数字信号进行输出,确保了电力系统安全、稳定的运行,不仅实现了成本的节约,而且也实现了对二次设备的优化。目前数字化变电站的建设更是需要以电子式互感器和光纤通讯网作为其基础,所以电子式电流互感器在当前电力系统运行了具有极为重要的意义。 1 电子式电流互感器类型及特点 1.1 无源式 无源式电子式电流互感器是不需要电源供电的光电电流和电压测量的装置,利用磁光晶体和光纤作为传感器,而且光纤不仅可以作为信号传输通道,而且也可作为传感元件,由于无源式互感器其种类较多,所以利用了较多的物理效应。 1.2 有源式 有源式电子式电流互感器其是以电子器件为其传感头,同时需要在一次侧提供电源,利用一次侧的采术传感器来进行取样,信号通道以光纤为主,将一次侧的光信号在地面进行处理后将其还原为被测信号。这种有源式的互感器具有非常好的绝缘性和抗电磁干扰性,而且不仅制造成本得到了有效的降低,而且无论是体积还是重量都有所减小,而且能够更好的将常规电流测量装置的优势有效的发挥出来,利用电子器件作为传感头,有效的规避了传统传感头光路复杂及对温度及振动敏感的问题。由于在有源式电流互感器上所采用的电阻和电容器件都是沿用了传统的器件,具有更高的精确度,而且结构更为简单,易与实现与计算机的联通,更具有实用性。 2 电子式电流互感器的设计思想

电流互感器设计实例

电流互感器设计实例 作为磁性元件设计的最后一部分内容,我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。 假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。当然,我们可以用一个1V/ 10A=100m^的电阻来测量,但是电阻将造成的损耗为1V X1OA=1OW这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图5-26所示。 囹昴用电流菽厠互感跻碱小期耗 当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,畐I」边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10 /N)R=1V 在电阻中消耗的功率为P=(1V)2/R。我们假设消耗的功率为50mW也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Q,如果采用20Q的电阻,由欧姆定律可得副边匝数N=200 现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流 为10A/200=50mA互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。2 50kHz 频率工作时,磁芯上的磁感应强度不会超过 c (2Vx4ps}10B 4 ~ 200 匝XA -人 由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此A可以很小,而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由2 00匝的绕组所占体积来确定。你可以用40号的导线流过500mA勺峰值电流,但是这种导线实在太细,一般的变压器厂家不会为你绕制。 实用提示除非一定要用,一般情况下不要使用规格小于36号线的导线。 现在我们来分析为什么不能用电压变压器来替代电流互感器?已经知道副边电压只有2V,因此原边电压为2V/200=100mV如果输入直流电压为48V,那么电流互感器原边10 mV电压对48V电压来说是微不足道的一一那样你可以在副边得到50mA的电流,而对原边几乎没有什么影响。假设另一种情况(不现实的),原边的输入直流电压只有5mV那么互感器的原边不可能有10mV的电压,同时由于原边阻抗(如反射副边阻抗)也比较大,决定了副边根本不可能产生50mA的电流。即使整个5mV t压全部加在原边,畐寸边也只能产生 200X 5mV=1V勺电压:不能在转换电阻上产生足够的电压。因此,电压变压器只能用作变压器,不能用来检测电流。

零序电流互感器的原理及作用

零序电流互感器的原理及作用 原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 作用:当电路中发生触电或漏电故障时,保护动作,切断电源。 使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC

电子式电流互感器的原理和应用

电子式电流互感器的原理和应用 天津市电力公司发展策划部(天津市300010)魏联滨 天津市电力公司基建部(天津市300010)邹新梧 =摘要> 介绍了电流互感器的原理,对其主要技术优势进行了说明;介绍了天津地区电网建设工程应用情况;指出电子式互感器将成为未来电力系统信号测量和互感器技术发展的必然趋势。 =关键词> 电子式;电流互感器;原理;应用 0引言 智能变电站是采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。智能变电站作为统一坚强智能电网的重要基础和节点支撑,是必不可少的建设内容。 电子式电流互感器是智能化变电站的重要组成部分,它的测量精度和运行稳定性直接影响到变电站乃至电网的安全稳定运行。目前,在中国电力系统中,已经有不同原理的电子式互感器在不同的电压等级的变电站得到较为广泛的应用。天津地区也已经开始在变电站建设中逐步试用和推广电子式电流互感器。 1电子式互感器的基本概念及特点 2002年,I EC根据电子式互感器的研究和发展情况,制定了I E C60044-7电子式电压互感器标准和I E C60044-8电子式电流互感器标准,对电子式互感器的特点、性能指标和检定原则进行了规范。 目前,电子式电流互感器主要采用Rogo w sk i线圈、光学装置或传统电流互感器等方式实现一次电流信号的转换。电子电流式互感器可直接输出数字量信号,实现采集信号对外的光纤传输。根据传感头部分是否需要提供电源,电子式电流互感器可分为有源式和无源式两类,如图1所示。 与传统电磁式互感器相比。电子式互感器主要有以下特点: 1)电子式互感器可从实现原理上根本地避免磁路饱和、铁磁谐振等问题,提高采集精度 ; 图1电子式电流互感器分类 2)频率响应宽,动态范围大,可有效进行高频大电流的测量,基于光学原理的电子式电流互感器还可进行直流的测量; 3)无油,因此没有易燃易爆等缺陷,二次信号通过光纤传输,也没有电磁式互感器二次侧开路等危险; 4)二次侧信号通过光纤传输,没有电缆传输方式的电磁干扰问题;. 5)绝缘结构简单,一次高压与二次设备通过光纤连接,无电磁式互感器的绝缘问题; 6)体积小、重量轻、造价低,随着电压等级的升高这些优势更加明显; 7)二次侧可直接输出数字信号与其他智能电子设备接口。 2有源电子式电流互感器原理及其应用 有源电子式电流互感器主要有低功耗铁芯线圈和Rogo w ski线圈原理两种。 211低功耗铁芯线圈 低功耗铁芯线圈与传统电磁式互感器实现原理基本一致。低功率线圈:LPCT是传统电磁式CT的一种发展,LPCT按照高阻抗进行设计。使传统CT 在很高的一次电流下出现饱和的基本特性得到了改善,扩大了测量范围。LPCT一般在5%-120%额定电流下线性度较好,适用于测量。 212Rogo w ski线圈 21211基本原理 Rogo w ski线圈为拆绕在非铁磁材料上的空心线圈。如图2所示。 由于Rogo w sk i线圈的输出电压与电流变化率

相关文档
最新文档