增稠剂水溶性高分子增稠剂综述

增稠剂水溶性高分子增稠剂综述
增稠剂水溶性高分子增稠剂综述

水溶性高分子增稠剂综述

1 绪论

增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重

要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。

1.1定义

能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。尤其是水相增稠剂应用更为普遍。在水体系中,当增稠剂达到一定浓度后,亲油端基缔

合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。

1.2分类及机理

水溶性高分子增稠剂的分类有以下几种:

1.2.1纤维素类[1]

纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。纤维素

是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有 3 个羟基, 通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。

这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。

1.2.2 聚丙烯酸类

聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。

聚丙烯酸类增稠剂的增稠机理有 2 种, 即中和增稠与氢键结合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和, 使其分子离子化并沿着聚合物的主链产生负电荷, 同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果; 氢键结合增稠是聚丙烯酸类增稠剂

先与水结合形成水合分子, 再与质量分数为10 %~ 20 %的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合, 使其卷曲的分子在含水系统中解开形成网状结构达到增稠

效果。

1.2.3 天然胶及其改性物

天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类( 见表1) 。

增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。它们的水溶液的流变形态大部分是非牛顿流体, 但也有些稀溶液的流变特性接近牛顿流体。

1.2.4无机高分子及其改性物

无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两

类是蒙脱土和水辉石。

其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的

透明胶体悬浮液。在这种情况下,片晶带有表面负电荷,它的边角由于出现晶格断裂面而带有

少量的正电荷。在稀溶液中,其表面的负电荷比边角的正电荷大,粒子之间发生相互排斥,故不会产生增稠作用。随着电解质的加入和浓度增加,溶液中离子浓度的增加,片晶表面电荷减少。这时,主要的相互作用由片晶间的排斥力转变为片晶表面的负电荷与边角正电荷之间的

吸引力, 平行的片晶相互垂直地交联在一起形成所谓“纸盒式间格”的结构[3] ,引起溶胀产生胶凝从而达到增稠的效果。离子浓度进一步加大又会破坏结构发生絮凝导致降低稠度。这类增稠剂主要用于牙膏、香波、护发素、膏霜、乳液和止汗剂等的增稠。稠度一般随着浓度

的增加而迅速增大随后趋于平缓,流变形态为触变性。除具增稠性能外,在体系中还有稳定乳液、悬浮作用。其改性物主要是季铵盐化(见表1),改性后具有亲油性,可用于含油量多的体系。

1.2.5 聚氧乙烯类

一般把相对分子质量大于25000的产品称作聚氧乙烯,而小于25000的称作聚乙二醇。聚氧乙烯的水溶液在质量分数为百分之几时为假塑性流体,其水溶液倾向呈黏稠状。如将浸入其

中的物体从溶液中拉出,形成长拉丝和成膜。相对分子质量越大和相对分子质量分布越宽的

黏稠性就越大,低相对分子质量和窄相对分子质量分布的聚氧乙烯黏稠性较低,其水溶液的黏度取决于相对分子质量大小、浓度、温度和测量黏度时的切变速度。其溶液的黏度随着相对分子质量的增大和浓度的增加而上升,随着温度上升( 10℃~90℃)而较急剧下降。聚氧乙烯水溶液的假塑性随相对分子质量的减小而降低,相对分子质量1×10^5的水溶液流变性接近牛顿流体。

增稠效果来源于高分子聚合物链溶解进表面活性剂体系中, 增稠机理主要与高分子聚

合物链有关,并不依赖于表面活性剂体系。聚氧乙烯的水溶液在紫外线、强酸和过渡金属离

子( 特别是Fe3+、Cr3+和Ni2+) 作用下会自动氧化降解,失去其黏度。

1.2.6其他

PVM/MA癸二烯交联聚合物[4](聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)是新的一族增稠剂,在过去3年的个人护理品工业应用中它很快得到认可。它们能使乳液稳定、增稠,赋予极好的肤感,几乎感觉不到黏性。能配制成透明定型凝胶、喷发胶和乳胶,可用于增稠醇类溶液、甘油和其他非水体系,可在无需乳化剂的情况下悬浮活性组分,在牙膏中它还能起到玉洁纯的增效作用[5]。

PVP(聚乙烯吡咯烷酮)[6]是一种既溶于水,又溶于多数有机溶剂的聚酰胺,外观为白色或淡黄色粉末,或为透明液体,水溶性好,安全无毒,为绿色化学品。PVP广泛应用于医药、化妆品、洗涤用品、饮料、纺织品、造纸、农药和印刷等行业。PVP的增稠性能与其相对分子质

量密切相关,在给定浓度的条件下,相对分子质量越大,其黏度也越大。pH值和温度对PVP水溶液的黏度影响都不明显,未交联的PVP溶液没有特殊的触变性,除非浓度非常高时才会有触变性,并显示很短的松驰时间。

表1:水溶性高分子增稠剂的分类

纤维素类

纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等

聚氧乙烯类

PEG- n( n= 5M、9M、23M、45M、90M、160M)等

聚丙烯酸类

丙烯酸酯/ C10~ 30烷基丙烯酸酯交联聚合物、丙烯酸酯/ 十六烷基乙氧基( 20) 衣康酸物丙烯酸酯/十六烷基乙氧基( 20) 甲基丙烯酸酯共聚物、丙烯酸酯/十四烷基乙氧基( 25) 丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基( 20) 衣康酸酯共聚物、丙烯酯酯/十八烷基乙氧基( 20) 甲基丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基( 50) 丙烯酸酯共聚物、丙烯酸

酯/ VA 交联聚合物、PAA( 聚丙烯酸)、丙烯酸钠/乙烯异癸酸酯交联聚合物、Carbomer( 聚丙烯酸)及其钠盐等

天然胶及其改性物

海藻酸及其(铵、钙、钾) 盐、果胶、透明质酸钠、瓜尔胶、阳离子瓜尔胶、羟丙基瓜尔胶、

黄蓍胶、鹿角

菜胶及其(钙、钠)盐、汉生胶、菌核胶等

无机高分子及其改性物

硅酸铝镁、二氧化硅、硅酸镁钠、水合二氧化硅、蒙脱土、硅酸锂镁钠、水辉石、硬脂铵蒙

脱土、硬脂铵水辉石、季铵盐- 90 蒙脱土、季铵盐- 18 蒙脱土、季铵盐- 18水辉石等

其他

PVM/MA 癸二烯交联聚合物( 聚乙烯甲基醚/ 丙烯酸甲酯与癸二烯的交联聚合物) 、PVP( 聚乙烯吡咯烷酮)等

2.国内外研究现状

自从Vanderhoff 等在1962 年开始的反相乳液聚合方式以来,高分子量的聚丙烯酸类和聚

丙烯酰胺的聚合就以反相乳液聚合为主。Ruffner 等发明了以含氮及聚氧乙烯或其与聚氧丙

烯交替共聚的聚合型表面活性剂、交联剂和丙烯酸单体采用乳液共聚合的方法制备了聚丙烯

酸乳液用作增稠剂, 取得了良好的增稠效果, 并且具有较好的抗电解质性能。Arianna Benetti等[7]采用反相乳液聚合的方法, 以丙烯酸、含磺酸基的单体和阳离子单体共聚,发明了一种用于化妆品的增稠剂。由于在增稠剂结构中引入了抗电解质能力极强的磺酸基和季铵

盐,制备的聚合物具有极好的增稠和抗电解质性能。Martial Pabon 等[8]采用反相乳液聚合,以丙烯酸钠、丙烯酰胺和甲基丙烯酸异辛基酚聚氧乙烯酯大单体共聚,制备了疏水缔合型水溶性增稠剂。Charles A. 等[9]以丙烯酸和丙烯酰胺为共聚单体,通过反相乳液聚合制得了高

分子量的增稠剂。何平等[10]探讨了有关反相乳液聚合法制备聚丙烯酸增稠剂的几个问题。文中以两性共聚物为稳定剂、亚甲基双丙烯酰胺为交联剂, 引发丙烯酸铵进行反相乳液聚合,以制备高性能的涂料印花增稠剂。研究了不同的稳定剂、引发剂、共聚单体及链转移剂对聚合的影响。指出甲基丙烯酸十二酯与丙烯酸的共聚物能作为稳定剂,过氧化苯甲酰-二甲基苯胺及叔丁基过氧化氢-焦亚硫酸钠两种氧化还原引发剂均能在35℃引发聚合,得到一定粘度的白浆。并且认为丙烯酸铵与15%以下的丙烯酰胺共聚的产物的耐盐性增加。

2.1耐电介质增稠剂的研究[11]

在大多数情况下,纺织品印花色浆中需要加入适量的电解质来保证所印花纹的质量,但是目前市场上大多数的合成增稠剂耐电解质性能较差,无法满足工业需求。苏州大学张玉芳、

周向东采用反相乳液聚合法制备了耐电解质性能良好的增稠剂,并将其用于纺织品印花。以N-乙烯基吡咯烷酮为提高增稠剂耐电解质能力的功能单体,丙烯酸为主要原料,N,N’-亚甲基双丙烯酰胺为交联剂,煤油为溶剂,司盘-80为乳化剂,过硫酸钾、过硫酸铵和亚硫酸氢

钠为引发体系,吐温-80为反相乳化剂,采用反相乳液聚合的方法,制备了一种耐电解质增

稠剂N。

2.2缔合型水性聚氨酯增稠剂的研究,[12]

缔合型水性聚氨酯增稠剂集合优异的增稠、流平、触变、耐酸碱等特性为一体,绿色环保

无污染,是目前的高端流变助剂,对缔合型水性聚氨酯增稠剂的研究有着巨大的实际意义和

商业价值。西北大学刘志林、陈立宇对缔合型水性聚氨酯增稠剂的合成进行了研究,对于异氰酸基团、醇醚基团、封端剂、溶剂、催化剂等进行了筛选,并考察了合成的工艺条件,研究表明合成该缔合型水性聚氨酯增稠剂的最优条件为:以丙酮为溶剂,以二月桂酸二丁基锡为催化剂,配料比为HDI:PEG-6000:十六醇=2:1:2,聚合温度为60℃,封端温度为65℃,合成出的增稠剂效果良好。对合成的缔合型水性聚氨酯增稠剂进行的系列表征表明,该反应为亲核反应,合成样品的热稳定性良好,增稠剂分子硬段在分子中起着骨架作用,软段在分子中起着亲水功能。亲水链段和疏水链段的长度比值要在一个特定的值域内增稠效果才能达到最好。

温度、酸、碱、电解质、表面活性剂等外部因素对增稠性能的影响表明,温度、碱、电解质、表面活性剂对增稠体系的影响较大,少量的碱、电解质、表面活性剂就会使体系粘度大幅度

的变化,而酸对体系的影响很小,甚至还会对体系的热稳定性起促进作用。

2.3耐盐增稠剂的研究[13]

张海玲、周向东、史亚鹏等以丙烯酸、煤油、丙烯酸十八酯等为主要原料,采用反相乳液

聚合制备了一种耐盐增稠剂。考察了pH 值、溶剂种类、乳化剂用量、耐盐单体用量等对增

稠剂主要性能的影响,并优化了合成工艺。优化的工艺条件为: pH 值至6.5,以煤油为溶剂,乳化剂Span-80和丙烯酸十八酯用量分别为单体总用量的8%和1.5%,高速乳化45 min后,在氮气保护下聚合反应约2h,最后加入Tween-80反相乳化45 min,出料即得到增稠剂。结果表明,自制增稠剂1%原糊黏度为 1 387.7 mPa·s,对盐的黏度保留率为47.82%,抱水性为 1.5 cm/15min,PVI 值为0.27,得色量( 正面K/S值)达20以上,渗透率达67%以上,色泽不匀度在0.173%以下,脱糊率在84%以上,综合性能良好。

2.4溶剂聚合法制备粉末状聚丙烯酸增稠剂[14]

马晓原,王万绪等以丙烯酸和季戊四醇三烯丙基醚为原料,过氧化十二酰为引发剂,在乙酸乙酯溶剂中制备了粉末状聚丙烯酸增稠剂。研究了交联剂和引发剂用量、反应时间对产物水溶液的黏度和透光率的影响,并采用红外光谱、激光粒度仪、扫描电镜等对产品进行了表征。结果表明: 聚丙烯酸增稠剂的最佳合成条件为: 季戊四醇三烯丙基醚用量为丙烯酸单体

质量的1.0%,引发剂用量为丙烯酸单体质量的0.8%时,在73~76℃的温度下反应 4 h。粉末状聚丙烯酸增稠剂的粒径分布在1~100μm 范围内,在水溶液中粒径小于200nm。采用该法合成的PAA水溶液的黏度和透光率不低于文献报道的乳液聚合法和反相乳液聚合法所得产

品。

2.5反相乳液聚合法制备高性能聚丙烯酸钠增稠剂[15]

卞进发实验采用反相乳液聚合法, 研究以丙烯酸、煤油、N,N-亚甲基双羟丙烯酰胺为原料,合成高性能聚丙烯酸钠增稠剂。通过对中和度、聚合温度、煤油用量、交联剂用量、引发剂

等多个条件实验的研究,得到了聚合的最佳工艺条件: 中和度控制在75%,反应温度为50℃,煤油用量为丙烯酸量的0.5倍,交联剂用量0.2g, 引发剂过硫酸胺和连二亚硫酸钠分别为丙

烯酸量的1%和0.75%质量分数。采用最佳工艺条件合成所得产品聚丙烯酸钠性能优良,设备投资省,操作简便。聚丙烯酸钠增稠剂的性能较优,粘度达到630mPa·s,增稠倍率达到30。

3.市场与应用[16]

增稠剂的用途相当广泛,目前应用研究已经深入到印染纺织、水性涂料、医药、食品加工和日常用品等方面。

3.1印染纺织

纺织品及涂料印花要获得良好的印制效果和质量,很大程度上取决于印花色浆的性能,其中增稠剂的性能起着至关重要的作用。加入增稠剂可使印花产品给色量高,印花轮廓清晰,

色泽鲜艳饱满,提高产品的透网性和触变性,给印染企业创造更大的利润空间。印花色浆的

增稠剂过去多用天然淀粉或海藻酸钠,由于天然淀粉成糊困难、海藻酸钠价格较贵等原因,

现在逐渐被丙烯酸型印染增稠剂所代替。

3.2水性涂料

涂料的主要功能是装饰及保护被涂物。适当地加入增稠剂,可以有效地改变涂料体系的流

体特性,使之具有触变性,从而赋予涂料良好的贮存稳定性和施工性。好的增稠剂要达到如下要求:贮存时提高涂料黏度、抑制涂料的分离,高速涂装时要降低黏度,涂装后提高涂膜的黏度、防止流挂现象的发生,等等。传统的增稠剂经常使用水溶性的聚合物,例如,纤维

素衍生物中的高分子羟乙基纤维素(HEC)等。SEM[17]资料显示聚合增稠剂还可在纸制品涂膜

过程中控制水分的保留,增稠剂的存在可使涂料纸表面呈现光滑和均匀。尤其是溶胀型乳液(HASE)增稠剂有优秀的抗飞溅能力,可以和其它种类增稠剂联合使用,大大减轻涂料纸表面的粗糙度。

3.3食品

迄今世界上用于食品工业的食品增稠剂已有40 余种,主要用来改善和稳定食品的物理性

质或形态、增加食品的黏度、赋予食品粘滑适口的口感,并起到增稠、稳定、均质、乳化凝

胶、掩蔽、矫味、增香、增甜等作用。增稠剂种类很多,分天然和化学合成两类。天然增稠

剂主要从动植物中获取,化学合成的增稠剂有CMC-Na、藻酸丙二酯等。

3.4日化行业

目前使用于日化行业的增稠剂达200多种,主要有无机盐类、表面活性剂类、水溶性高分

子类和脂肪醇及脂肪酸类等。在日用品方面,用于洗洁精,可使产品透明、稳定、泡沫丰富、手感细腻、易于漂洗,另外还常应用于化妆品、牙膏等。

3.5其它

增稠剂也是水基压裂液中的主要添加剂,关系到压裂液的使用性能及压裂成败。此外,增稠剂也广泛应用于医药、造纸、陶瓷、皮革加工、电镀等方面。

4.研究发展趋势与展望[18]

增稠剂属于多品种、多功能材料。纤维素增稠剂、聚丙烯酸酯增稠剂、碱溶性丙烯酸增稠

剂、聚氨酯增稠剂等系列产品的市场需求量较大, 它们在成糊性、渗透性、透网性、流变性、触变性、曳丝性、抱水性和混悬性等方面性能突出。随着增稠剂的不断开发, 各生产厂家普遍认识到应用研究的重要意义。但与跨国公司相比, 国内企业的产品在系列化和产品性能上

还存在一定差距, 一些产品开发还处于仿制阶段, 今后应该集中精力开发自己的特色产品。

液体缔合型无溶剂增稠剂、对聚丙烯酸增稠剂进行共聚改性、增稠剂复配将是今后增稠剂领

域开发的方向。此外, 尽管合成增稠剂占据着主要市场面, 但是这些增稠剂大多以反相乳液

聚合为主, 有机溶剂的污染给环境带来巨大的压力。因此开发低污染环境友好型增稠剂也是

该领域的研究方向之一。

参考文献

[1]刘义,高俊,化妆品用增稠剂,日用化学工业,2003年2月

[2] Zahid Amiad, Wil J Hemkere, Cheryl A Maiden, etal. Carbomerresins: past, present and future [J] . Cosmetics & Toiletries, 1992,107(5) : 81- 86.

[3] Donald J Del l. Smectite clays in personal care products [J] . Cosmetics&Toiletries, 1993, 108

(5):79- 85.

[4] St ephen L Kopolow, Yoon Tae Kwak , Michael Helioff . A new thickener/ stabilizer technology [ J] . Cosmetics & Toiletries, 1993, 108(5):61- 67

[5] Nuran Nabi , Charlnanie Mukerjee, etal In Vitro and in vivo studies ontriclosan/PVM/MA copolymer/NaF combination as anti - plaque agent[ J] . American Journal of Dentistry, 1989, 2 (9) : 197-206

[6] 丁运生,史铁钧,汤雪梅,绿色高分子产品,聚乙烯吡咯烷酮[J].安徽化工,1999(3):5-6

[7] Arianna Benetti, Gianmarco Polotti, Giuseppe Libassi.Inverse emulsions as thickeners for cosmetics [P] .US2007/0258927 Al.

[8] Martial Pabon, Jean-marc Corpart, Joseph Selb, etal.Synthesis in inverseemulsion and properties of water-soluble associating po lymers[J] . Journal of Applied Polymer Science, 2002, 84: 1418-1430.

[9] Charles A Defazion. Preparation of high molecular weight polyacry lates by inverseemulsion polymerization[P] . US4656222, 1987.

[10] 何平,谢洪泉,侯笃冠等.有关反相乳液聚合法制备聚丙烯酸增稠剂的几个问题[J] . 高分子材料科学与工程,2002,18(3) : 172-175.

[11]张玉芳,周向东,耐电解质增稠剂的合成与性能,2014

[12]刘志,陈立宇,缔合型水性聚氨酯增稠剂的合成及表征,2013

[13]张海玲,周向东,史亚鹏等,耐盐增稠剂的合成与性能,印染(2011 No.23)

[14]马晓原,王万绪,杜志平等,溶剂聚合法制备粉末状聚丙烯酸增稠剂,中国日用化学工业研究院,2013年11月

[15]卞进发,反相乳液聚合法制备高性能聚丙烯酸钠增稠剂,计算机与应用化学,2011年11月28日

[16]白庆华,李鸿义,增稠剂的研究进展,河北化工,2011年7月,第34卷第7期

[17] 关有俊,谭亮.新型水性聚氨酯缔合型增稠剂的研制[J].上海涂料,2005,43(7/8):1-3.

[18]范珂瑞,增稠剂的制备及应用研究进展,纺织科技进展,2010年第3期

高吸水性高分子材料

高吸水性高分子材料 具有选择分离功能的高分子材料*、高吸水性高分子材料、离子交换树脂*功能高分子材料:指在高分子链上接上带有某种功能的宫能团使其在物理、化学、生物、医学等方面具有特殊功能的高分子材料。 几种功能高分子材料的应用:()高吸水性材料亲水性高聚物(分子链带有许多亲水原子团)旱地种植、改良土壤、改造沙漠、尿不湿等**强吸水能力的功能高分子材料:如无土栽培、改良土壤、改造沙漠等。 保水剂是一种吸水能力特强的功能高分子材料。 无毒无害反复吸水、释水“微型水库”。 同时它还能吸收肥料、农药、并缓慢释放增加肥效、药效。 高吸水性树脂广泛用于农业、林业、园艺、建筑等。 **聚丙烯腈水解物将聚丙烯腈用碱性化合物水解再经交联剂交联即得高吸水性树脂。 如将废晴纶丝水解后用氢氧化钠交联的产物即为此类。 由于氰基的水解不易彻底产品中亲水基团含量较低故这类产品的吸水倍率不太高一般在~倍左右。 高吸水性树脂*《时代周刊》评出世纪最伟大的项发明其中“尿不湿”榜上有名为什么“尿不湿”能评为世纪最伟大的项发明呢最初是为谁专门设计的呢?*美国在上世纪六十年代初航天事业崛起如何解

决宇航员的排尿问题迫在眉睫华人唐鑫源成为“尿不湿”的发明人后来他被誉为美国“太空服之父”。 美国从起甄选的位宇航员合影太空服之父唐鑫源*“神舟”系列上天的航天员都使用了“尿不湿”航天员专用“尿不湿”克能吸收约克水吸水性远强于一般婴儿使用的“尿不湿”*“尿不湿”是航天产品“下凡”的成功典范!现在不仅是婴幼儿使用还有供特殊成人使用的更有趣的是有些宠物也系上了“尿不湿”出门溜达以保护公共卫生。 资料显示:年英国一次性尿布销售利润达亿英镑。 设想一下我们中国这样一个人口大国利润有多么惊人!*吸水前吸水后尿不湿吸水前后的变化*你了解“尿不湿”的材料吗?它应该有什么性能?“尿不湿”起作用的物质是一种功能高分子材料具有很强的吸水能力。 它所用的材料是高吸水性树脂(常用网状结构的聚丙烯酸钠)聚丙烯酸钠如何合成?CH=CHCOOHCH=CHCOONa加交联剂得网状结构*吸水机理基于高分子电解质的离子网络理论:在高分子电解质的立体网络构造的分子间存在可移动的离子对由于显示高分子电解质电荷吸引力强弱的可移动离子浓度在高吸水性树脂的内侧比外侧高即产生渗透压。 渗透压及水和高分子电解质之间的亲和力产生了异常的吸水现象。 *实例:含羧酸钠盐的高吸水性树脂在未接触水时是固态网络与水接触后亲水基与水作用水渗入树脂内部羧酸基解离成羧酸根和Na,羧

各种增稠剂的性能对比

各种增稠剂的性能对比 四合一增稠剂、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都是新型增稠剂。 他们的区别在于以下这些方面: 一、溶解速度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂,高泡增稠剂入水即溶。 2、即溶全透明增稠粉,在酸性水质条件下,5分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。 3、速溶耐酸碱透明增稠粉,在常温中性水质条件下,15--30分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。 4、全透明增稠粉、658-8透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。 5、半透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。二、透明度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂、

即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、658-8透明增稠粉,清澈透明,水溶液象矿泉水一样清澈透明。 2、半透明增稠粉、半透明。 3、高泡增稠剂,在与磺酸+AES复配的情况下是全透明的,单独用是半透明的。三、稠度稳定性几种增稠剂稠度稳定性都很好,不会因为冬夏季而出现变果冻和变稀的情况。 四、耐酸碱情况 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉,全透明增稠粉、658-8透明增稠粉都不耐酸,当PH值小于5,稠度会下降,耐碱,PH值在14都能增稠。 2、半透明增稠粉,不耐酸碱。当PH值大于10,小于5,稠度会快速下降,当PH值偏碱时水溶液呈米黄色。 3、速溶耐酸碱透明增稠粉,耐酸碱:PH值在3—14都能增稠,是目前少有的宽幅耐酸碱增稠剂。 五、与盐复配反应 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂必须与盐复配才能增稠。 2、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都不宜与盐复配,会分层。 六、增稠条件 1、四合一增稠剂(兑水后须加盐)、即溶全透明增稠粉,全透明增稠粉、半透明增稠粉、速溶耐酸碱透明增稠粉、658-8透明增稠粉,

聚氨酯触变增稠剂说明书

聚氨酯触变增稠剂 产品指标: 型号:L-1028 产品外观:透明黏稠乳液 PH:7.0±1(1%水溶液) 有效成分:40% 粘度:≤2500厘泊;(25℃) 溶剂:环保型亲水溶剂 产品应用场景: 聚氨酯触变增稠剂适用于聚氨酯乳液,水性涂料、粘合剂、树脂、内外墙乳胶漆、水性油墨、乳化石膏、胶粘剂、填缝料、弹性胶浆体系。 产品概述: 聚氨酯触变增稠剂通过缔合提供优异的流变(流动,流平等)性能,极佳的增稠效果;由于本产品为非离子型,因而其增稠效果较少受体系PH值的影响;能有效改善低中剪切粘度,并有优异的增稠倍率,提高印花胶浆,固浆的触变过网性能和流平性适中的光泽现性,与多种树脂体系相容性能优异,并提高成膜性,牢度和流变性,是目前提高产品质量的极佳增稠剂.本产品抗酸.抗碱.抗盐。 1.能有效改善低中剪切粘度 2.增稠倍率极佳,流动性能略差,有假塑性。 3.流变体系不受PH值的影响,可增稠酸,碱,盐性物质 4.赋予漆光膜适中的光泽展现性 5.改善成膜性能,赋予漆膜优异的耐水性能 6.本产品不影响印花助剂牢度不含油剂 7.附带杀菌防霉效果 产品使用方法: 建议用量(wt%,以总量计):0.1-0.8% 建议本助剂在生产过程中最后加入,应当边加入边搅拌,其加入量以达到所需的效果为止 建议使用聚氨酯触变增稠剂进行稀释,然后再缓慢搅拌加入。 包装存储: 包装:本品采用60KG、200KG、1000KG塑料桶装。 储存:本品不属危险品,无毒,远离热及火源,密封存放于室内阴凉、通风、干燥处。未使用完前,每次使用后容器应严格密封。保质期12个月。 运输:本品运输中要密封好,防潮、防强碱强酸及防雨水等杂质混入。

增稠剂介绍

增稠剂 简介: 增稠剂是一种流变助剂,不仅可以使涂料增稠,防止施工中出现流挂现象,而且能赋予涂料优异的机械性能和贮存稳定性。对于黏度较低的水性涂料来说,是非常重要的一类助剂。 增稠剂有水性和油性之分。尤其是水相增稠剂应用更为普遍。增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 分类: 增稠剂的品种很多,主要有无机增稠剂(以膨润土为主)和有机增稠剂(纤维素类、碱溶胀型丙烯酸乳液类、缔合型聚氨酯类等)。但其中用量最大的还是羟乙基纤维素、缔合型聚氨酯、碱溶胀丙烯酸乳液3类产品。 1. 纤维素类 纤维素类增稠剂(HEC)及憎水改性纤维素型增稠剂(HMHEC)是涂料中用得最为广泛的增稠剂种类。纤维素及其他的多糖类增稠剂常以粉状形式存在,应用时常和颜料一起研磨成颜料浆。当后添加时,纤维素和其他无机粉状增稠剂会给涂料带来更多的问题。以液体形式供货的HEC和HMHEC产品为涂料的生产带来了方便。 2. 缔合型聚氨酯 第二类经常用于水性涂料的增稠剂为非离子缔合型的聚合物,最常见的为憎水改性的乙氧基化聚氨酯及相似的含脲、脲-氨酯及醚键的氧化乙烯/氧化丙烯。非离子缔合型的增稠剂通常以水/共溶剂溶液或水溶液的形式存在。因此当其用于涂料时较难分散,且需较长的时间才能使其得以充分发挥作用。 3. 碱溶胀丙烯酸乳液 碱溶胀丙烯酸乳液用于水性涂料的增稠剂为碱可溶或溶胀的乳液,有2种基本类型:传统的丙烯酸酯类(ASE)和憎水改性缔合型聚丙烯酸酯类(HASE)。此类增稠剂需加适

增稠剂

目录 摘要 (1) 前言 (1) 1.增稠剂 (1) 2.食品增稠剂的来源 (2) 2.1 天然增稠剂 (2) 2.2 人工合成增稠剂 (2) 3. 增稠剂在食品中的作用 (2) 3.1 稳定作用 (2) 3.2 增稠作用 (3) 3.3 改善食品的凝胶性,防止“起霜” (3) 3.4 保水作用 (3) 3.5 成膜作用 (3) 4. 影响增稠剂作用效果的因素 (3) 4.1 结构及相对分子质量对黏度的影响 (3) 4.2 PH值对黏度的影响 (3) 4.3 温度对黏度的影响 (4) 4.4 增稠剂的协同效应 (4) 5. 增稠剂食品中应用 (4) 5.1 肉制品加工中的应用 (4) 5.2 面制品中的应用 (4) 5.3 果冻、饮品等中的应用 (5) 5.4 在其他食品中的应用 (5) 6. 食品增稠剂的应用发展前景 (5) 参考文献 (7)

增稠剂在食品中的应用 摘要:增稠剂在食品加工中应用广泛,是一类可以提高食品的粘稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、爽滑的口感,并兼有乳化、稳定或使呈悬浮状态作用的食品添加剂。增稠剂在食品中添加量较低,却能有效的改善的食品的品质和性能。其化学成分除明胶、酪蛋白酸钠等蛋白质外,还有自然界中广泛存在的天然多糖及其衍生物,以及人工合成的增稠剂。本文介绍了增稠剂特性、食品增稠剂的来源、添加到食品中的作用、在食品中的应用以今后的发展前景。 关键词:黏润、悬浮状、凝胶、衍生物 前言 增稠剂是通过在溶液中形成网状结构或具有较多亲水基团的胶体对保持食品的色香味结构和食品的稳定性发挥极其重要的作用,起作用大小取决于增稠剂分子本身的结构及其流变学特性。不同分子结构的增稠剂即使在其他理化参数一致,相同浓度的条件下黏度也可能有较大的差别。 1.增稠剂 增稠剂又称胶凝是一种流变助剂,在日常工作和生活经常接触的到,广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。其中用于食品时又称糊料或食品胶。增稠剂大多属于亲水性高分子化合物,一般都采用物理吸水膨胀化学反应两种原理起到增稠增粘的效果。增稠剂分子中含有许多亲水基团,例如羟基、羧基、氨基和羧酸根等,能与水分子发生水化作用。通常,食品增稠剂都是高分子亲水的胶体物质,大部分是从天然动植物中提取或加工而成。 追溯增稠剂的历史,最早的渊源就在食品。在很早以前,我国便有人在烹调菜肴时用淀粉来勾芡,使得菜肴的汤汁更为浓厚、黏稠,这其实就是最早的“增稠剂”。现代,仍然有些国家,把淀粉划归为食品添加剂中的增稠剂。GB 2760- 2011食品添加剂使用卫生标准明确规定了39种允许限量使用的增稠剂,允许添加增稠剂的食品种类大致有乳与乳制品、脂肪、油和乳化脂肪制品、冷冻饮品、

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

水性聚氨酯的分类

水性聚氨酯的分类 由于聚氨酯原料和配方的多样性,水性聚氨酯开发40年左右的时间,人们已研究出许多种制备方法和制备配方。水性聚氨酯品种繁多,可以按多种方法分类。 1.以外观分 水性聚氨酯可分为聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。实际应用最多的是聚氨酯乳液及分散液,本书中统称为水性聚氨酯或聚氨酯乳液,其外观分类如表5所示。 表5 水性聚氨酯形态分类 2.按使用形式分 水性聚氨酯胶粘剂按使用形式可分为单组分及双组分两类。可直接使用,或无需交联剂即可得到所需使用性能的水性聚氨酯称为单组分水性聚氨酯胶粘剂。若单独使用不能获得所需的性能,必须添加交联剂;或者一般单组分水性聚氨酯添加交联剂后能提高粘接性能,在这些情况中,水性聚氨酯主剂和交联剂二者就组成双组分体系。 3.以亲水性基团的性质分 根据聚氨酯分子侧链或主链上是否含有离子基团,即是否属离子键聚合物(离聚物),水性聚氨酯可分为阴离子型、阳离子型、非离子型。含阴、阳离子的水性聚氨酯又称为离聚物型水性聚氨酯。 (1)阴离子型水性聚氨酯又可细分为磺酸型、羧酸型,以侧链含离子基团的居多。大多数水性聚氨酯以含羧基扩链剂或含磺酸盐扩链剂引人羧基离子及磺酸离子。 (2)阳离子型水性聚氨酯一般是指主链或侧链上含有铵离子(一般为季铵离子)或锍离子的水性聚氨酯,绝大多数情况是季铵阳离子。而主链含铵离子的水性聚氨酯的制备一般以采用含叔胺基团扩链剂为主,叔胺以及仲胺经酸或烷基化试剂的作用,形成亲水的铵离子。还可通过含氨基的聚氨酯与环氧氯丙烷及酸反应而形成铵离子。 (3)非离子型水性聚氨酯,即分子中不含离子基团的水性聚氨酯。非离子型水性聚氨酯的制备方法有:①普通聚氨酯预聚体或聚氨酯有机溶液在乳化剂存在下进行高剪切力强制乳化;②制成分子中含有非离子型亲水性链段或亲水性基团,亲水性链段一般是中低分子量聚氧化乙烯,亲水性基团一般是羟甲基。 (4)混合型聚氨酯树脂分子结构中同时具有离于型及非离子型亲水基团或链段。 4.以聚氨酯原料分 按主要低聚物多元醇类型可分为聚醚型、聚酯型及聚烯烃型等,分别指采用聚醚多元醇、聚酯多元醇、聚丁二烯二醇等作为低聚物多元醇而制成的水性聚氨酯。还有聚醚-聚酯、聚醚—聚丁二烯等混合以聚氨酯的异氰酸酯原料分,可分为芳香族异氰酸酯型、脂肪族异氰酸酯型、脂环族异氰酸酯型。按具体原料还可细分,如TDI型、HDI型,等等。 5.按聚氨酯树脂的整体结构划分 (1)按原料及结构可分为聚氨酯乳液、乙烯基聚氨酯乳液、多异氰酸酯乳液、封闭型聚氨酯

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

水性聚氨酯配制方法

1.低聚物多元醇:聚醚二醇、聚酯二醇、聚醚三醇、聚丁二烯二二醇、丙烯酸酯多元醇等 水性聚氨酯胶粘剂制备中常用的低聚物多元醇一般以聚醚二醇、聚酯二醇居多,有时还使用聚醚三醇、低支化度聚酯多元醇、聚碳酸酯二醇等小品种低聚物多元醇。聚醚型聚氨酯低温柔顺性好,耐水性较好,且常用的聚氧化丙烯二醇(PPG)的价格比聚酯二醇低,因此,我国的水性聚氨酯研制开发大多以聚氧化丙烯二醇为主要低聚物多元醇原料。由聚四氢呋喃醚二醇制得的聚氨酯机械强度及耐水解性均较好,惟其价格较高,限制了它的广泛应用。 聚酯型聚氨酯强度高、粘接力好,但由于聚酯本身的耐水解性能比聚醚差,故采用一般原料制得的聚酯型水性聚氨酯,其贮存稳定期较短。但通过采用耐水解性聚酯多元醇,可以提高水性聚氨酯胶粘剂的耐水解性。国外的聚氨酯乳液胶粘剂及涂料的主流产品是聚酯型的。脂肪族非规整结构聚酯的柔顺性也较好,规整结构的结晶性聚酯二醇制备的单组分聚氨酯乳液胶粘剂,胶层经热活化粘接,初始强度较高。而芳香族聚酯多元醇制成的水性聚氨酯对金属、RET等材料的粘接力高,内聚强度大。 其他低聚物二醇如聚碳酸酯二醇、聚己内酯二醇、聚丁二烯二醇、丙烯酸酯多元醇等,都可用于水性聚氨酯胶粘剂的制备。聚碳酸酯型聚氨酯耐水解、耐候、耐热性好,易结晶,由于价格高,限制了它的广泛应用。 2.异氰酸酯:TDI、MDI、IPDI、HDI等 制备聚氨酯乳液常用的二异氰酸酯有TDI、MDI等芳香族二异氰酸酯,以及TDI、MDI、HDI:MDI等脂肪族、脂环族二异氰酸酯。由脂肪族或脂环族二异氰酸酯制成的聚氨酯,耐水解性比芳香族二异氰酸酯制成的聚氨酯好,因而水性聚氨酯产品的贮存稳定性好。国外高品质的聚酯型水性聚氨酯一般均采用脂肪族或脂环族异氰酸酯原料制成,而我国受原料品种及价格的限制,大多数仅用TDI为二异氰酸酯原料。 多亚甲基多苯基多异氰酸酯一般用于制备乙烯基聚氨酯乳液和异氰酸酯乳液。 3.扩链剂:1,4—丁二醇、乙二醇、己二醇、乙二胺等 水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了这类特种扩链剂外,经常还使用1,4—丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂。由于胺与异氰酸酯的反应活性比水高,可将二胺扩链剂混合于水中或制成酮亚胺,在乳化分散的同时进行扩链反应。 4.水:蒸馏水、离子水 水是水性聚氨酯胶粘剂的主要介质,为了防止自来水中的Ca2+、寸+等杂质对阴离子型水性聚氨酯稳定性的影响,用于制备水性聚氨酯胶粘剂的水一般是蒸馏水或去离子水。除了用作聚氨酯的溶剂或分散介质,水还是重要的反应性原料,合成水性聚氨酯目前以预聚体法为主,在聚氨酯预聚体分散与水的同时,水也参与扩链。由于水或二胺的扩链,实际上大多数水性聚氨酯是聚氨酯—脲乳液(分散液),聚氨酯—脲比纯聚氨酯有更大的内聚力和粘接力,脲键的耐水性比氨酯键好。

高吸水性高分子材料

高吸水性高分子材料 高材091 姚丽琴 高吸水性高分子材料主要指高吸水性树脂,又称超级吸水剂。它与日常生活中的一些 其他的吸水剂,如:聚氨酯海绵、棉花、手纸等高分子材料不同,日常生活中的吸水剂能吸收水分最高可达自身重量的20倍,而我们这里所要介绍的超级吸水剂,是指其吸水能力至少超过自身重量说数百倍的特殊性树脂,能够表现出超强的吸水能力。 高吸水性树脂从其原料角度出发主要分为两类,即天然高分子改性高吸水性树脂和全合成高吸水性树脂。前者是指对淀粉、纤维素、甲壳质等天然高分子进行结构改造得到的高吸水性材料。其特点是生产成本低、材料来源广泛、吸水能力强,而且产品具有生物降解性,不造成二次环境污染,适合作为一次性使用产品。但是产品的机械强度低,热稳定性差,特别是吸水后性能较差,不能应用到诸如吸水性纤维、织物、薄膜等场合。淀粉和纤维是具有多糖结构的高聚物,最显著的特点是分子中具有大量羟基作为亲水基团,经过结构改造后还可以引入大量离子化基团,增加吸水性能。后者主要指对聚丙烯酸或聚丙烯腈等人工合成水溶性聚合物进行交联改造,使其具有高吸水树脂的性质。特点是结构清晰、质量稳定、可以进行大工业化生产,特别是吸水后机械强度较高,热稳定性好。但是生产成本较高,而吸水率偏低。在材料的外形结构上来说,目前已经有粉末型、颗粒型、薄膜型、纤维型等高吸水性产品,其中纤维型和薄膜型材料具有使用方便,便于在特殊场合使用的特点。高吸水性树脂由于采用原料不同,制备方法各

异,产品牌号繁多,单从产品名称上不易判断其结构归属。 高吸水性高分子材料之所以能够吸收高于自身重量数百倍,甚至上千倍的水分,其特殊结构特征起到了决定性的作用。作为高吸水性树脂从化学结构上来说主要具有以下的特点: 1)树脂分子中具有强亲水基团,如羟基、羧基等。这类聚合物分子都能够与水分子形成氢键,因此对水有很高的亲和性,与水接触后可以迅速吸收并被水所溶胀。 2)树脂具有交联结构,这样才能在与水相互作用时不被溶解成溶液。 3)聚合物内部应该具有浓度较高的离子性基团,大量离子性基团的存在可以保证体系内部具有较高的离子浓度,从而在体系内外形成较高的指向体系内部的渗透压,在此渗透压作用下,环境中的水具有向体系内部扩散的趋势,因此,较高的离子性基团浓度将保证吸水能力的提高。 4)聚合物应该具有较高的分子量,分子量增加,吸水后的机械强度增加,同时吸水能力也可以提高。 高吸水性树脂的性能 高吸水性树脂作为一种功能材料应用,其应用领域不同,对它的性能也有各种各样的要求。高吸水性树脂主要有以下几项性能: 1)吸水性高吸水性树脂的吸水性可从两个方面反映:一是其吸水溶胀的能力,以吸水率表示,目前报道的最大吸水率是5000 倍;另一个是其保水性。其吸水能力不仅决定于聚合物的组成,结构,形态,分子量,交联度等内在因素,外界条件对其影响也很大.高吸水性树脂吸水性的测定方法很多,有筛网法,茶袋

各种增稠剂的性能对比

各种增稠剂的性能对比 四合一增稠剂、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都是新型增稠剂。他们的区别在于以下这些方面: 一、溶解速度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂,高泡增稠剂入水即溶。 2、即溶全透明增稠粉,在酸性水质条件下,5分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。。 3、速溶耐酸碱透明增稠粉,在常温中性水质条件下,15--30分钟即能全部溶解,适用于所有高低转速搅拌类设备:大型电机搅拌机、电钻搅拌机、反应釜、高剪切乳化机、管道乳化机、胶体磨、其他搅拌工具、木棍都可以生产,任何生产设备都能使用。。 4、全透明增稠粉、658-8透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。 5、半透明增稠粉,不限水质,溶解速度较慢,需要电钻搅拌机搅拌。 二、透明度: 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、稠度增倍剂、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、658-8透明增稠粉,清澈透明,水溶液象矿泉水一样清澈透明。 2、半透明增稠粉、半透明。 3、高泡增稠剂,在与磺酸+AES复配的情况下是全透明的,单独用是半透明的。 三、稠度稳定性 几种增稠剂稠度稳定性都很好,不会因为冬夏季而出现变果冻和变稀的情况。 四、耐酸碱情况 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂、即溶全透明增稠粉,全透明增稠粉、658-8透明增稠粉都不耐酸,当PH值小于5,稠度会下降,耐碱,PH值在14都能增稠。 2、半透明增稠粉,不耐酸碱。当PH值大于10,小于5,稠度会快速下降,当PH值偏碱时水溶液呈米黄色。 3、速溶耐酸碱透明增稠粉,耐酸碱:PH值在3—14都能增稠,是目前少有的宽幅耐酸碱增稠剂。 五、与盐复配反应 1、四合一增稠剂、AES伴侣增稠剂、三维增稠剂、高泡增稠剂、稠度增倍剂必须与盐复配才能增稠。 2、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉、半透明增稠粉、658-8透明增稠粉都不宜与盐复配,会分层。 六、增稠条件 1、四合一增稠剂(兑水后须加盐)、即溶全透明增稠粉,全透明增稠粉、半透明增稠粉、速溶耐酸碱透明增稠粉、658-8透明增稠粉,都能直接将清水增稠,自来水、井水、河水都行。 2、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂不能清水增稠,必须与盐与AES复配才能增稠。 七、使用量比较 1、速溶耐酸碱透明增稠粉、即溶全透明增稠粉使用量都差不多,用于洗洁精增稠,常规量是百分之0.6—0.9,其他产品的用量自己根据产品特性自己确定。 2、全透明增稠粉,用于洗洁精增稠,常规量是百分之0.6---0.8,其他产品的用量自己根据产品特性自己确定。 3、半透明增稠粉,用于洗洁精增稠,常规量是百分之0.7---0.9,其他产品的用量自己根据产品特性自己确定。 4、三维增稠剂、AES伴侣增稠剂、高泡增稠剂、稠度增倍剂,视水溶液中活性物的多少决定他们的用量,活性物越多稠度增倍剂的用量越少,反之亦然。常规用量为1—2% 5、658-8透明增稠粉,用于洗洁精增稠,常规量是百分之0.8---1,其他产品的用量自己根据产品特性自己确定。 6、四合一增稠剂,独立增稠用量为4%,与活性物复配增稠用量为0.5--4%加,原有洗涤剂溶液中活性物含量越高,则高效增稠剂的使用量则越少,反之亦然。所以使用比例不是固定的,准确比例需要自己的配方试验后确定。 八、使用方法: 1、即溶全透明增稠粉需要在酸性水质中溶解,所以要先将活性剂溶于水中后,加磺酸将水的PH值调至3--5,增稠完成后加碱将水的PH值调至7。 2、速溶耐酸碱透明增稠粉,易溶于酸性和中性水质,在碱性水质中溶解较慢,配方中属碱性的产品在生产顺序上需要排在最后放。稠度在碱性情况下稠度更高。 3、全透明增稠粉、半透明增稠粉,稠度增倍剂,高泡增稠剂,658-8透明增稠粉、三维增稠剂、四合一增稠剂、AES伴侣增稠剂都是在生产中最后才放。 九、对皮肤头发的亲和性 1、即溶全透明增稠粉、速溶耐酸碱透明增稠粉、全透明增稠粉和658-8透明增稠粉,为高分子聚合物。对皮肤头发的没有亲和

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

水性聚氨酯胶解析(一)

水性聚氨酯胶解析(一) 2009-11-21 23:08 水性聚氨酯胶解析 水性聚氨酯胶的发展概况 水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯。依其外观和粒径,将水性聚氨酯分为三类:聚氨酯水溶液(粒径<0.001um,外观透明)、聚氨酯分散液(粒径0.001-0.1 um,外观半透明)、聚氨酯乳液(粒径>0.1 ,外观白浊)。但习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散液,区分并不严格。实际应用中,水性聚氨酯以聚氨酯乳液或分散液居多,水溶液少。 由于聚氨酯类胶粘剂具有软硬度等性能可调节性好以及耐低温、柔韧性好、粘接强度大等优点,用途越来越广。目前聚氨酯胶粘剂以溶剂型为主。有机溶剂易燃易爆、易挥发、气味大、使用时造成空气污染,具有或多或少的毒性。近10多年来,保护地球环境舆论压力与日俱增,一些发达国家制订了消防法规及溶剂法规,这些因素促使世界各国聚氨酯材料研究人员花费相当大的精力进行水性聚氨酯胶粘剂的开发。 水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视。 聚氨酯从30年代开始发展,而在50年代就有少量水性聚氨酯的研究,如1953年Du Pont公司的研究人员将端异氰酸酯基团聚氨酯预聚体的甲苯溶液分散于水,用二元胺扩链,合成了聚氨酯乳液。当时,聚氨酯材料科学刚刚起步,水性聚氨酯还未受到重视,到了六、七十年代,对水性聚氨酯的研究开发才开始

迅速发展,1967年首次出现于美国市场,1972年已能大批量生产。70-80年代,美、德、日等国的一些水性聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司有多种牌号的水性聚氨酯产品供应,如德国Bayer公司的磺酸型阴离子聚氨酯乳液ImPranil和Dispercoll KA等系列、Hoechst公司的Acrym系列、美国Wyandotte化学公司的X及E等系列,日本大日本油墨公司的Hydran HW 及AP系列、日本公司的聚氨酯乳液CVC36及水性乙烯基聚氨酯胶粘剂CU系列、日本光洋产业公司的水性乙烯基聚氨酯胶粘剂KR系列等等。 在水性类胶粘剂中,我国目前仍以聚丙烯酸酯类乳液胶、聚乙烯醋酸乙烯类乳液胶、水性三醛树脂等胶粘剂为主。有柔韧性好等特点,有较大的发展前途。水性聚氨酯胶粘剂的性能特点 1.与溶剂型聚氨酯胶粘剂相比,水性聚氨酯胶粘剂除了上述的无溶剂臭味、无污染等优点外,还具有下述特点。 (1)大多数水性聚氨酯胶粘剂中不含NCO基团,因而主要是靠分子内极性基团产生内聚力和粘附力进行固化。而溶剂型或无溶剂单组分及双组分聚氨酯胶粘剂可充分利用NCO的反应、在粘接固化过程中增强粘接性能。水性聚氨酯中含有羧基、羟基等基团,适宜条件下可参与反应,使胶粘剂产生交联。 (2)除了外加的高分子增稠剂外,影响水性聚氨酯粘度的重要因素还有离子电荷、核壳结构、乳液粒径等。?聚合物分子上的离子及反离子(指溶液中的与聚氨酯主链、侧链中所含的离子基团极性相反的自由离子)越多,粘度越大;而固体含量(浓度)、聚氨酯树脂的分子量、交联剂等因素对水性聚氨酯粘度的影响并不明显,这有利于聚氨酯的高分子量化,以提高胶粘剂的内聚强度。与之相比,溶剂型聚氨酯胶粘剂的粘度的主要影响因素有聚氨酯的分子量、支化度、胶的浓

吸水高分子材料

神奇的功能高分子材料—高吸水性树脂 随着科学技术和国民经济的发展,高分子材料已经渗透到各个领域。各种塑料制品、薄膜、人造皮革、合成橡胶、合成纤维等已经成为人们生活中不可缺少的材料。功能高分子材料是20世纪60年代发展起来的新型领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的一种新型材料。 功能高分子有时也称为精细高分子或特种高分子,至今还没有一个准确的定义,一般是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。 高吸水性树脂就是一种新型的功能高分子材料,它具有优异的吸水、保水功能,可吸收自身重量几百倍、上千倍,最高可以达到5300倍的水,即使挤压也很难脱水,被冠予“超级吸附剂”的桂冠。 高吸水性树脂的种类很多,所用原料及工艺方法也各不相同。主要类型有聚丙烯酸酯类、聚乙烯醇类、醋酸乙烯共聚物类、聚氨酯类、聚环氧乙烷类、淀粉接校共聚物类等,此外还有与橡胶共混的复合性吸水材料。在上述各种类型中,研究开发较多的为聚丙烯酸酯类。该树脂系以丙烯酸和烧碱为主要原料,采用逆向聚合法而制得。由于工艺较为简单,易于操作,制得的树脂吸水率高,生产成本较低,因此发展非常迅速。 高吸水性树脂是一种白色或徽黄色、无毒无味的中性小颗粒。它与海绵、沙布、脱脂棉等吸水材料的物理吸水性不同,是通过化学作用吸水的。所以树脂一旦吸水成为膨胀的凝胶体,即使在外力作用下也很难脱水,因此可用作农业、园林、苗不移植用保水剂。在蔬菜,花卉种植中,预先在土壤中撒千分之几的高吸水性树脂,可使蔬菜长势旺盛,增加产量。在植树造林中,各种苗木移植期间往往因为保管不善而干枯死亡。如果将刚出土的苗木用高吸水性树脂的水凝胶液进行保水处理,其成活率可显著提高。有人做过山茶花、珊瑚树的移植试验。经保水处理的成活率达百分之百,而未作处理的成活率很低或全部死亡。高吸水性树脂还可作为种子涂覆剂,在飞播造林、入早草原方面大显身手。 高吸水性树脂除具有吸水量高,保水性好、吸水性快,吸氨力强、无毒副作用等特点外,其最突出的特点是它与苯、甲苯、丙酮、乙醚、甲醇、乙醇、二氯乙烷、三氯甲烷、四氯化碳、醋酸等化学试剂混合时,可使试剂脱水,却不与试剂发生化学反应。它吸收试剂中的水份后,变成一种凝胶状的物质。如果把吸足水份的保水剂分离出来,烘干后可重复使用。高吸水性树脂用于化工生产,可大大提高各种化学试剂的浓度、纯度和产品的质量。它可以取代化工生产中的精馏塔,从根本上改革生产工艺,大大降低了生产成本,经济效益十分可观。 高吸水性树脂,可以做成吸血纸,代替医用药棉。坯可加工成妇女卫生巾、婴幼儿纸尿布、纸手帕以及纸餐巾等。妇女卫生巾携带方便,卫生、柔软舒适,

水溶性高分子增稠剂综述

1 绪论 增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 1.1定义 能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。尤其是水相增稠剂应用更为普遍。在水体系中,当增稠剂达到一定浓度后,亲油端基缔合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。 1.2分类及机理 水溶性高分子增稠剂的分类有以下几种: 1.2.1纤维素类[1] 纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。纤维素是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3 个羟基, 通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。 1.2.2 聚丙烯酸类 聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。 聚丙烯酸类增稠剂的增稠机理有2 种, 即中和增稠与氢键结合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和, 使其分子离子化并沿着聚合物的主链产生负电荷, 同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果; 氢键结合增稠是聚丙烯酸类增稠剂先与水结合形成水合分子, 再与质量分数为10 %~ 20 %的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合, 使其卷曲的分子在含水系统中解开形成网状结构达到增稠效果。 1.2.3 天然胶及其改性物 天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类( 见表1) 。 增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。它们的水溶液的流变形态大部分是非牛顿流体, 但也有些稀溶液的流变特性接近牛顿流体。 1.2.4无机高分子及其改性物 无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两类是蒙脱土和水辉石。 其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的透明胶体悬浮液。在这种情况下,片晶带有表面负电荷,它的

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

相关文档
最新文档