高二数学:数列(讲义)

高二数学:数列(讲义)
高二数学:数列(讲义)

高考数学基础知识复习:数列概念

知识清单

1.数列的概念

(1)数列定义:按一定次序排列的一列数叫做数列;

数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如,数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1

n

(n N +∈)。 说明:

①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;

② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n

-=1,21

()1,2n k k Z n k -=-?∈?+=?

; ③

不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,……

(3)数列的函数特征与图象表示:

序号:1 2 3 4 5 6 项 :4 5 6 7 8 9

上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替

()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 (5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。 (6)

数列{n a }的前n 项和n S 与通项n a 的关系:1

1(1)(2)n n

n S n a S S n -=?=?-?≥

课前预习

1.(04 江苏)设数列{}n a 的前n 项和为n S ,n S =2

)

13(1-n a (对于所有1≥n ),且544=a ,

则1a 的数值是

2.(05广东,14)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条

直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f (用n 表示)。

3.(01上海)若数列{}n a 前8项的值各异,且n n a a =+8,对任意的+∈N n 都成立,则下列

数列中可取遍{}n a 前8项值的数列为( ) A

{}12+k a B {}13+k a C {}14+k a D {}16+k a

6.数列{}n a 的前n 项和为n S ,若1

(1)

n a n n =+,则5S 等于( )

A .1

B .

56

C .

16

D .

130

4.(07广东理)已知数列{n a }的前n 项和2

9n S n n =-,第k 项满足58k a <<,则k =( )

A .9

B .8 C. 7 D .6

4.(02上海)若数列{}n a 中,1a =3,且1+n a =2

n a (n 是正整数),则数列的通项n a =

5.(04 上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点。

○ ○○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○○○ ○○○○○○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 6.(全国2文)已知数列的通项52n a n =-+,则其前n 项和n S = .

7.(07江西理)已知数列{}n a 对于任意*

p q ∈N ,,有p q p q a a a ++=,若11

9

a =

,则36a = .

9.若数列{}n a 的前n 项和2

10(123)n S n n n =-=L ,

,,,则此数列的通项公式为

8.若数列{}n a 的前n 项和2

10(123)n S n n n =-=L ,

,,,则此数列的通项公式为

;数列{}n na 中数值最小的项是第

项.

高考数学基础知识复习:等差数列

知识清单

1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。

2、等差数列的通项公式:1(1)n a a n d =+-;

说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

3、等差中项的概念:

定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2

a b

A +=

a ,A ,

b 成等差数列?2

a b

A +=

。 4、等差数列的前n 和的求和公式:11()(1)

22

n n n a a n n S na d +-==+。 5、等差数列的性质:

(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP ,

如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m

a a d n m

-=

-()m n ≠;

(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 说明:设数列{}n a 是等差数列,且公差为d ,

(Ⅰ)若项数为偶数,设共有2n 项,则①S 奇-S 偶nd =; ② 1

n n S a S a +=奇偶; (Ⅱ)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②1

S n

S n =-奇偶。

6、数列最值

(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;

(2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥??

≤?或10

n n a a +≤??≥?。

课前预习 1.(01天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列

2.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )

A .120

B .105

C .90

D .75 4.(01全国理)设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首

项是( ) A.1 B.2 C.4 D.6 3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )

A.13项

B.12项

C.11项

D.10项 5.(06全国II )设S n 是等差数列{a n }的前n 项和,若

36S S =1

3,则612

S S =( ) A .

3

10

B .

13 C .1

8

D .

1

9

7.(94全国)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )

A.130

B.170

C.210

D.260

6.(02上海)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..

的是( ) A.d <0 B.a 7=0 C.S 9>S 5

D.S 6与S 7均为S n 的最大值

2.(07重庆理)若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( ) A .3 B.4 C. 5 D. 6

4.(07天津理)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2 B.4 C.6 D.8

6.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) (A)9 (B)10 (C)11 (D)12

8.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( ) A.2

3

-

B.13

-

C.

13

D.

23

3.(07湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且

7453

n n A n B n +=+,则使得n

n

a b 为整数的正整数n 的个数是( ) A .2

B .3

C .4

D .5

5.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22

lim n n n

a n S →∞-= .

10.已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = . 1.(07江西文)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=

高考数学基础知识复习:等比数列

知识清单

1.等比数列定义

一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:

1n a +:(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,2

1-

。(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)

2.等比数列通项公式为:)0(11

1≠??=-q a q a a n n 。

说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则

m n m

n

a q a -=。 3.等比中项

如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。 4.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a L L 的前n 项和是=n S 123n a a a a ++++L ,当1≠q 时,

q

q a S n n --=

1)1(1 或11n n a a q

S q -=-;当q=1时,1na S n =(错位相减法)。 说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是n

q ,

通项公式中是1

-n q 不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况。 5.等比数列的性质

①等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且

n m ≤,公比为q ,则有m n m n q a a -=;

②对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ?=?,也就是:

Λ

Λ=?=?=?--23121n n n a a a a a a ,如图所示:444484444764443

44421Λn

n a a n a a n n a a a a a a ??---11

2,,,,,,12321。

③若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等

比数列。

如下图所示:

4444444444484444444444476443

4421Λ4434421Λ444344421Λk k

k k

k S S S k k S S k k k a a a a a a a a 3232k

31221S 321-+-+++++++++++ 课前预习

1.(02 上海)若数列 {}

n a 中,31=a ,且2

1n n a a =+(n 为整正数),则数列的通项n a =

2.(04上海)在等差数列{}n a 中,当

s r a a =(s r ≠)时,{}n a 必定是常数数列,然而在

等比数列

{}n a 中,对某些正整数r,s (s r ≠),当s r

a a =时,非常数数列{}n a 的一个例子是

3.(04 上海)若干个能唯一确定一个数列的量称为该数列的“基本量”。设{}n a 是个公比为

q 的无穷等比数列,下列{}n a 的四组量中,一定能成为该数列“基本量”的是第 组

1

S 与

2

S ②

2

a 与

3

S ③

1a 与

n

a ④q 与

n

a 其中n 为大于1的整数,

n

S 为

{}n a 的前n 项和。

4.(2005江苏3)在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( )

(A )33 (B )72 (C )84 (D )189 5.(2000上海,12)在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19

-n

(n <19,n ∈N )成立.类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 成

立。

6.在等比数列{}n a 中,1a 和10a 是方程2

2510x x ++=的两个根,则47a a ?=( )

5()2A - (B 1()2

C - 1()2

D 7.(2006年辽宁卷)在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )

A .122n +-

B . 3n

C .2n

D .31n

-

8.(2006年北京卷)设4

7

10

310

()22222()n f n n N +=+++++∈L ,则()f n 等于( )

A .

2(81)7

n

- B .12(81)7n +- C .32(81)7n +- D .4

2(81)

7n +-

1.(07重庆文)在等比数列{a n }中,a 2=8,a 1=64,,则公比q 为

(A )2 (B )3 (C )4 (D )8

3.设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程03842

=+x x 的两根,则

=+20072006a a __________.

7.(07全国1理)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .

9.已知a b

c d ,,,成等比数列,且曲线2

23y x x =-+的顶点是()b c ,,则ad 等于( )A.3

B.2

C.1

D.2-

2.(07湖南文)在等比数列{}n a (n ∈N*)中,若11a =,41

8

a =,则该数列的前10项和为( ) A .4122

-

B .2122

-

C .10122

-

D .11122

-

7.等比数列{}n a 中,44a =,则26a a g 等于( ) A.4

B.8

C.16

D.32

高考数学基础知识复习:数列通项与求和

知识清单

1.数列求通项与和

(1)数列前n 项和S n 与通项a n 的关系式:a n =???--1

1s s s n n 12

=≥n n 。

(2)求通项常用方法

①作新数列法。作等差数列与等比数列;

②累差叠加法。最基本的形式是:a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1; ③归纳、猜想法。 (3)数列前n 项和 ①重要公式:1+2+…+n=

2

1

n(n+1); 12+22+…+n 2=

6

1

n(n+1)(2n+1); 13+23+…+n 3=(1+2+…+n)2=4

1

n 2(n+1)2;

②等差数列中,S m+n =S m +S n +mnd ;

③等比数列中,S m+n =S n +q n S m =S m +q m S n ; ④裂项求和

将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:

)11(1))((1C

An B An B C C An B An a n +-+-=++=

、)1(1+n n =n 1-11

+n 、n ·n !=(n+1)!

-n!、C n -1r -

1=C n r -C n -1r 、

)!1(+n n =!1

n -)!

1(1+n 等。

⑤错项相消法

对一个由等差数列及等比数列对应项之积组成的数列的前n 项和,常用错项相消法。

n n n c b a ?=, 其中

{}

n b 是等差数列,

{}

n c 是等比数列,记

n n n n n c b c b c b c b S ++?++=--112211,则1211n n n n n qS b c b c b c -+=+??++,…

⑥并项求和

把数列的某些项放在一起先求和,然后再求S n 。

数列求通项及和的方法多种多样,要视具体情形选用合适方法。 ⑦通项分解法:n n n c b a ±=

2.递归数列

数列的连续若干项满足的等量关系a n+k =f(a n+k -1,a n+k -2,…,a n )称为数列的递归关系。由递归关系及k 个初始值可以确定的一个数列叫做递归数列。如由a n+1=2a n +1,及a 1=1,确定的数列}12{-n

即为递归数列。

递归数列的通项的求法一般说来有以下几种:

(1)归纳、猜想、数学归纳法证明。 (2)迭代法。

(3)代换法。包括代数代换,对数代数,三角代数。

(4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。 课前预习

1.已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+n

i i i a a 11

1

。 2.求)(,3211

4321132112111*N n n

∈+++++++++++++++

ΛΛ。 3.设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和。

4.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。

6.设数列{}n a 是公差为d ,且首项为d a =0的等差数列,

求和:n

n n n n n C a C a C a S +++=+Λ11001

7.求数列1,3+5,7+9+11,13+15+17+19,…前n 项和。 典型例题

一、有关通项问题

1、利用1

1(1)(2)n n

n S n a S S n -=?=?-≥?求通项.

EG :数列{}n a 的前n 项和2

1n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列

吗?(3)你能写出数列{}n a 的通项公式吗?

变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式;

变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,11

3

n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.

变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且

*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列.

2、解方程求通项:

EG :在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知

658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.

变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于

(A )667 (B )668 (C )669 (D )670 3、待定系数求通项:

EG :写出下列数列{}n a 的前5项:(1)111

,41(1).2

n n a a

a n -==

+> 变式题

1、(

2006年福建卷)已知数列{}n a 满足*

111,21().n n a a a n N +==+∈ 求数列{}n a 的

通项公式;

4、由前几项猜想通项:

EG :根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式. 变式题1、(2007年深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,

则6a = ;

34599

1111

a a a a +++???+= .

变式题2、观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 .

A .40个

B .45个

C .50个

D .55个

2条直线相

交,最多有1个交点

3条直线相交,最多有3个交点

4条直线相交,最多有6个交点

(1)

(4)

(7)

( )

( )

二、有关等差、等比数列性质问题

EG :一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )

A .83

B .108

C .75

D .63

变式1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。 变式2、(江苏版第76页习题1)等比数列{}n a 的各项为正数,且

5647313231018,log log log a a a a a a a +=+++=L 则( )

A .12

B .10

C .8

D .2+3log 5

EG :设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )

A .1 B.2 C.4 D.8

变式题1、在各项都为正数的等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++=

A 33

B 72

C 84

D 189 三、数列求和问题

EG :已知}{n a 是等差数列,其中131a =,公差8d =-。(1)求数列}{n a 的通项公式,并作

出它的图像;(2)数列}{n a 从哪一项开始小于0?(3)求数列}{n a 前n 项和的最大值,并求出对应n 的值.

变式题1、已知}{n a 是各项不为零的等差数列,其中10a >,公差0d <,若100S =,求数列

}{n a 前n 项和的最大值.

变式题2、在等差数列}{n a 中,125a =,179S S =,求n S 的最大值.

EG :求和:21123n n S x x nx -=++++L

变式题1、已知数列42n a n =-和1

2

4n n b -=

,设n

n n b a c =,求数列}{n c 的前n 项和n T . 变式题2、(2007全国1文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且

111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ??

??

??

的前n 项和n S .

变式题2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .

3、利用等比数列的前n 项和公式证明 EG :11

1

22

1

= (,0,0)n n n

n n n n

a b a a

b a

b ab

b n N a b a b

++---*-+++++∈>>-L

变式题、(05天津)已知)0,0,( 1221>>∈+++++=*

---b a N n b ab b a b a a u n n n n n n Λ.

当b a =时,求数列{}n u 的前n 项和n S . EG :(1)已知数列}{n a 的通项公式为1

(1)

n a n n =

+,求前n 项的和;(2)已知数列}{n a 的通

项公式为1

n a n n =

++,求前n 项的和.

变式题1、已知数列}{n a 的通项公式为n a =1

2

n +,设13242111n n n T a a a a a a +=+++???L ,求n T .

变式题2、数列{a n }中,a 1=8,a 4=2,且满足:a n+2-2a n+1+a n =0(n ∈N*), (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设n n n n b b b S N n a n b +++=∈-=

ΛΛ21*)()

12(1

,,是否存在最大的整数m ,使得任

意的n 均有32

m

S n >总成立?若存在,求出m ;若不存在,请说明理由.

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

高二数学必修5数列单元测试.doc

________ 高二数学必修 5 数列单元测试 一、选择题: 时间 120 分钟 满分 100 分 3 分,共 30 分 . ) (本大题共 10 小题,每小题 1. 在数列- 1, 0, 1 , 1 , , n 2 中,是它的 9 8 n 2 A .第 100 项 B .第 12 项 C .第 10项 D .第 8项 2. 在数列 { a n } 中, a 1 2 , 2a n 1 2a n 1,则 a 101 的值为 A . 49 B . 50 C . 51 D .52 3. 等差数列 { a n } 中, a 1 a 4 a 7 39 , a 3 a 6 a 9 27 ,则数列 { a n } 的前 9 项的和等于 A . 66 B . 99 C . 144 D . 297 4. 设数列 {a n } 、 {b n } 都是等差数列,且 a 1=25,b 1=75,a 2+b 2=100,那么 a n +b n 所组成的数列的第 37 项的值是 ( ) .37 C 5.已知- 7, a 1, a 2,- 1 四个实数成等差数列,- 4, b 1, b 2, b 3,- 1 五个实数成等比数列,则 a 2a 1 = b 2 A . 1 B .- 1 C . 2 D .± 1 6. 等比数列 {a n } 中,前 n 项和 S n =3n +r ,则 r 等于 ( ) .0 C 7.已知数列 { a n } 的前 n 项和为 S 1 5 9 13 17 21 ( 1) n 1 (4n 3) , n 则 S 15 S 22 S 31 的值是( ) A. -76 B. 76 C. 46 D. 13 8. 6.已知等差数列 {a n } 的公差 d ≠0, 若 a 5、a 9、 a 15 成等比数列 , 那么公比为 A . 3 B . 2 C . 3 D . 4 4 3 2 3 9.若数列 { a } 是等比数列 , 则数列 { a +a } n n n+1 A .一定是等比数列 C .一定是等差数列 10.等比数列 {a n } 中, a 1 =512,公比 q= 1 2 B .可能是等比数列 , 也可能是等差数列 D .一定不是等比数列 ,用Ⅱ n 表示它的前 n 项之积:Ⅱ n =a 1 · a 2 a n 则Ⅱ 1 ,Ⅱ 2 , ,中最大的是 A .Ⅱ 11 B .Ⅱ 10 C .Ⅱ 9 D .Ⅱ 8 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题 :( 本大题共 5 小题,每小题 4 分,共 20分。) 11.在数 {a n } 中,其前 n 项和 S n =4n 2- n - 8,则 a 4= 。 12. 设 S n 是等差数列 a 5 5 S 9 的值为 ________. a n 的前 n 项和,若 ,则 S 5 13.在等差数列 { a } 中,当 a = a a 3 9 { a } 中,对某些正整数 r 、s ( r ≠ s ) ,当 a ( r ≠ s ) 时, { a } 必定是常数数列。然而在等比数列 r n r s n n =a s 时,非常数数列 { a n } 的一个例子是 ____________. 14. 已知数列 1, ,则其前 n 项的和等于 。 15. 观察下列的图形中小正方形的个数,则第 n 个图中有 个小正方形 . 三、解答题:(本大题共 5 小题,共 50 分。解答应写出文字说明,或演算步骤) 16. (本小题满分 8 分)已知 a n 是等差数列,其中 a 1 25, a 4 16

高中数学必修五数列知识点

一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-)2() 1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数. 3、有穷数列:项数有限的数列. 4、无穷数列:项数无限的数列. 5、递增数列:从第2项起,每一项都不小于它的前一项的数列. 6、递减数列:从第2项起,每一项都不大于它的前一项的数列. 7、常数列:各项相等的数列. 8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 例1.已知数列{}n a 的前n 项和为n n S n -=2 2,求数列{}n a 的通项公式. 当1=n 时,111==S a ,当2n ≥时,34)1()1(222 2-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适 合34-=n a n ,∴34-=n a n ()n N +∈ 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列 {}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 等差数列的通项公式: 如果等差数列 {}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:①2)(1n n a a n S += ②d n n na S n 2 ) 1(1-+ = 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a , A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A += 或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有 d m n a a m n )(-+=

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高二数学知识点总结高二数学必修5等比数列知识点总结

高二数学知识点总结高二数学必修5等比数列 知识点总结 等比数列在人们的日常生活中运用比较广泛,也是高二数学课本重点知识点,下面是WTT给大家带来的高二数学必修5等比数列知识点总结,希望对你有帮助。 高二数学必修5等比数列知识点 高二数学学习方法 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由

一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 看了“高二数学必修5等比数列知识点总结”的人还看了: 1.高二数学等比数列公式归纳 2.高中数学必修五等比数列及其前n项和知识点总结 3.高二数学必修5等差数列知识点 4.高中数学必修5等比数列练习 5.高一数学必修5等比数列的前n项和知识点总结

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

高二数学数列练习题含答案

高二《数列》专题 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列 3.数列通项公式求法。(1)定义法(利用等差、等比数列的定义);(2)累加法

(3)累乘法( n n n c a a =+1型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足???≤≥+00 1m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高二数学数列测试题

高二数学第一次月考试题 (满分:150分 时间:120分钟) 一、选择题:(本大题共12小题,每小题5分,共60分) 1、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .8 2.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .8 3.已知数列{}n a 对任意的* p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165- B .33- C .30- D .21- 4.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A. b=10, A=450, C=600 B. a=6, c=5, B=600 C. a=7, b=5, A=600 D. a=14, b=16, A=450 5.在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =( ) A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 6.(理)在△ABC 中,若 c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 (文)在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7.小长方形按照下图中的规律排列,每个图形中的小长方形的个数构成数列}{n a 有以下结论,①155=a ; ②}{n a 是一个等差数列; ③数列}{n a 是一个等比数列; ④数列}{n a 的递堆公式),(11* +∈++=N n n a a n n 其中正确的是( ) A .①②④ B .①③④ C .①② D .①④ 8.甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( ) A . 7 150 分钟 B . 7 15 分钟 C .21.5分钟 D .2.15分钟 9.在下列表格中,每格填上一个数字后,使每一横行成等差..数列,每一纵列成等比..数列,则a b c ++的值为( )

相关文档
最新文档