化工原理 第8章 吸收作业 传质速率方程

化工原理 第8章  吸收作业 传质速率方程
化工原理 第8章  吸收作业 传质速率方程

姓名:;学号:;班级:

第8章吸收(传质速率方程)

一、填空题:

1. 化工生产中吸收可应用在1、______,2、_______

___,3、_____。

2. 吸收质是指________;而吸收剂则是指_______

____;惰性组分是指____________________。

3. 图所示为同一温度下A.B.C三种气体在水中的溶解度曲线。由图可知,它们溶解度大小的次序是______;同一平衡分压下,它们的液相平衡浓度大小顺序是________________。

4. 对接近常压的低浓度溶质的气液平衡系统,当总压增加时,亨利系数E____,相平衡常数m____,溶解度系数H____。

5. 吸收中, 温度不变,压力增大,可使相平衡常数_______ (增大, 减小,不变),传质推动力_____(增大,减小,不变)

6.实验室用水逆流吸收空气中的CO2,当水量和空气量一定时,增加CO2,则入塔气体浓度________,出塔气体浓度______,出塔液体浓度________. 2.吸收总推动力用气相浓度差表示时,应等于__________________和______________________________之差。

7. 当平衡线为直线时,总传质系数与分传质系数之间的关系可以表示为

y x y 1

1k k m K +

=,x k m 表示_____,当_______项可忽略时,表示该吸收过程为气膜控制。 8.

对于难溶气体,吸收时属于______控制的吸收,强化吸收的手段是_______________________。

二、计算题

1.某系统温度为10℃,总压101.3kPa ,试求此条件下在与空气充分接触后的水中,每立方米水溶解了多少克氧气?(10℃时,氧气在水中的亨利系数E 为3.31×106kPa 。)

2.在总压101.3kPa ,温度30℃的条件下, SO 2摩尔分率为0.3的混合气体与SO 2摩尔分率为0.01的水溶液相接触,试问:

从液相分析SO 2的传质方向;

从气相分析,其它条件不变,温度降到0℃时SO 2的传质方向;

其它条件不变,从气相分析,总压提高到202.6kPa 时SO 2的传质方向,并计算以液相摩尔分率差及气相摩尔率差表示的传质推动力。

3.在温度为20℃、总压为101.3kPa 的条件下,CO 2与空气混合气缓慢地沿着Na 2CO 3溶液液面流过,空气不溶于Na 2CO 3溶液。CO 2透过1mm 厚的静止空气层扩散到Na 2CO 3溶液中,混合气体中CO 2的摩尔分率为0.2,CO 2到达Na 2CO 3溶液液面上立即被吸收,故相界面上CO 2的浓度可忽略不计。已知温度20℃时,CO 2在空气中的扩散系数为0.18cm 2/s 。试求CO 2的传质速率为多少?

4.在总压为100kPa 、温度为30℃时,用清水吸收混合气体中的氨,气相传质系数G k =3.84×10-6 kmol/(m 2·s ·kPa ),液相传质系数L k =1.83×10-4 m/s ,假设此操作条件下的平衡关系服从亨利定律,测得液相溶质摩尔分率为0.05,其气相平衡分压为6.7kPa 。求当塔内某截面上气、液组成分别为y =0.05,x =0.01时

以*

A A p p -、A *A

c c -表示的传质总推动力及相应的传质速率、总传质系数; 分析该过程的控制因素。

一、填空题:

1. 制取液体产品, 回收和分离有用组分, 净化气体。

2. 被液体吸收的组分,用于吸收的液体,不被吸收剂吸收的组分。

3. C >B >A ; 在同一平衡分压下液相平衡浓度A >B >C

4. 不变; 减少; 不变

5. 减小 增大 6 1.增加; 增加; 增加

2.气相主体摩尔浓度; 同液相主体浓度相平衡的气相浓度 7. 液膜阻力, 气膜阻力 ,x k m

8. 液膜、 增大液相侧的传质分系数或液流湍动程度。

二、计算题

1.解:空气按理想气体处理,由道尔顿分压定律可知,氧气在气相中的分压为:

py p =*A =101.3×0.21=21.27kPa

∴ S

A

S *

A

EM p c ρ=

故 =???=18

1031.327

.2110006

*A

c 3.57×10-4kmol/m 3

m A =3.57×10-4×32×1000=11.42g/m 3

2.解:(1)查得在总压101.3kPa ,温度30℃条件下SO 2在水中的亨利系数

E =4850kPa

所以 ==

p

E m =3.1014850

47.88 从液相分析00627.088

.473.0*

===

m y x

< x =0.01 故SO 2必然从液相转移到气相,进行解吸过程。

(2)查得在总压101.3kPa ,温度0℃的条件下,SO 2在水中的亨利系数E =1670kPa

==

p E m 3

.1011670

=16.49 从气相分析y *=mx=16.49×0.01=0.16

(3)在总压202.6kPa ,温度30℃条件下,SO 2在水中的亨利系数E =4850kPa

==

p E m 6

.2024850 =23.94 从气相分析

y *=mx=23.94×0.01=0.24

故SO 2必然从气相转移到液相,进行吸收过程。

0125.094

.233.0*===

m y x 以液相摩尔分数表示的吸收推动力为:

?x=x *-x =0.0125-0.01=0.0025

以气相摩尔分数表示的吸收推动力为:

?y= y - y *=0.3-0.24=0.06

3.解 : CO 2通过静止空气层扩散到Na 2CO 3溶液液面属单向扩散,可用式(5-42)计算。

已知:CO 2在空气中的扩散系数D =0.18cm 2/s=1.8×10-5m 2/s 扩散距离z =1mm=0.001m , 气相总压p =101.3kPa 气相主体中溶质CO 2的分压

p A1=py A1=101.3×0.2=20.27kPa 气液界面上CO 2的分压p A2=0

所以,气相主体中空气(惰性组分)的分压

p B1=p -p A1=101.3-20.27=81.06kPa 气液界面上的空气(惰性组分)的分压

p B2=p -p A2=101.3-0=101.3kPa

空气在气相主体和界面上分压的对数平均值为:

B1

B2

B1B2Bm ln

p p p p p -=

=

kPa 8.9006.813.101ln 06

.813.101=- )(A2A1Bm

A p p RTzp Dp

N -==

)027.20(8.903.101001.0293314.8108.15-?????- =1.67×10-4kmol/(m 2·s)

4.解:(1)根据亨利定律kPa 13405

07

6A ==

=..x p E * 相平衡常数34.1100

134

===

p E m 溶解度常数4146.018

1341000

s

s

=?=

=

EM H ρ

*

A

A p p -=100×0.05-134×0.01=3.66kPa G L G 1

11k Hk K +==253797240617131801086.3110

83.14146.0164=+=?+??-- 6G 1094.3-?=K kmol/(m 2·s ·kPa )

)(*

A A G A p p K N -==3.94×10-6×3.66=1.44×10-5 kmol/(m 2·s )

56.01000

/1899.001

.0A =?=

c kmol/m 3

A *A c c -=0.4146×100×0.05-0.56=1.513 kmol/m 3

m/s 105.94146

.01094.366G L --?=?==H K K

)(A *

A L A c c K N -==9.5×10-6×1.513=1.438×10-5 kmol/(m 2·s )

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

化工原理下册 吸收 课堂笔记

化工原理第八章吸收 8.1 概述 一、吸收的目的和依据 目的: (1)回收有用物质; (2)脱除有害物质组分; (3)制备溶液。 依据:混合气体中各组分在溶剂中溶解度的差异。 二、吸收的流程 溶质——A;惰性组分——B;溶剂——S。 吸收过程的主要能耗在解吸上。 三、溶剂的选择: 技术方面:溶解度要高,选择性要强,对温度要敏感,容易解吸。 经济及安全方面:不易挥发,较好的化学稳定性;价廉、易得;无毒、不易爆易燃。 四、吸收的分类: 物理吸收与化学吸收 等温吸收与非等温吸收 单组份吸收与多组分吸收 低浓度吸收(直线)与高浓度吸收(曲线)

8.2 相际传质过程 8.2.1 单相传质速率方程 ()() A G A Ai G i K P P K P y y →=-=-气相主体界面: N ()A y i K P y y =-N y G K PK =,G K ——气相传质分系数,P ——总压。 ()() A L Ai A L i k C C k C x x →=-=-总界面液相主体:N ()A x i k x x =-N x L k C k =总,L k ——液相传质分系数,C 总——总浓度。 8.2.2 界面浓度 亨利定律适用时,有解析法: ()();A y i x i i i i i k y y k x x y x y mx =-=-??=? N 联立求解得、 图解法: 画图 8.2.3 相际传质速率方程 假设亨利定律适用, 1、以气相分压(*)A A P P -表示总推动力 ()()A G A Ai L Ai A K P P k C C =-=-N

111=+G G L K k Hk 2(*)/()A G A A G K P P K kmol m s Pa =-??N ,——气相总传质系数 2、以液相浓度(*)A A C C -表示总推动力 (*)A G A A K C C =-N 11=+L L G H K k k /L K m s ——液相总传质系数 比较之,有=G L K HK 3、以气相摩尔分率(*)y y -表示总推动力 2(*)/(A y y K y y K kmol m s =-?N ——气相总传质系数,) 11=+y y x m K k k =P y G K K 4、以液相摩尔分率(*)x x -表示总推动力 2 (*)/(A x x K x x K kmol m s =-?N ——液相总传质系数,) 111=+x x y K k mk =m ,=C x y x M L K K K K

化工原理答案第四章 传热

第四章 传 热 热传导 【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。试求加热器平壁外表面温度。 解 2375℃, 30℃t t == 计算加热器平壁外表面温度1t ,./()W m λ=?016℃ (1757530025005016016) t --= ..145 025********t =?+=℃ 【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。软木的热导率λ= W/(m·℃)。若外表面温度为28℃,内表面温度为 3℃,试计算单位表面积的冷量损失。 解 已 知 .(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==?=, 则单位表面积的冷量损失为 【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。若所测固体的表面积为0.02m 2 ,材料的厚度为0.02m 。现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。 解 根据已知做图 热传导的热量 .28140392Q I V W =?=?= .().() 12392002 002280100Qb A t t λ?= = -- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。 耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。 (1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。 (2) 若普通砖层厚度为240mm ,试计算普通砖层外表面温度。 解 (1)确定绝热层的厚度2b 温度分布如习题4-4附图所示。通过耐火砖层的热传导计算热流密度q 。 绝热砖层厚度2b 的计算 每块绝热砖的厚度为023m .,取两块绝热砖的厚度为 习题4-1附图 习题4-3附图 习题4-4附图

化工原理第四章习题及答案

第四章传热 一、名词解释 1、导热 若物体各部分之间不发生相对位移,仅借分子、原子与自由电子等微观粒子得热运动而引起得热量传递称为热传导(导热)。 2、对流传热 热对流就是指流体各部分之间发生相对位移、冷热流体质点相互掺混所引起得热量传递。热对流仅发生在流体之中, 而且必然伴随有导热现象。 3、辐射传热 任何物体, 只要其绝对温度不为零度(0K), 都会不停地以电磁波得形式向外界辐射能量, 同时又不断地吸收来自外界物体得辐射能, 当物体向外界辐射得能量与其从外界吸收得辐射能不相等时, 该物体就与外界产生热量得传递。这种传热方式称为热辐射。 4、传热速率 单位时间通过单位传热面积所传递得热量(W/m2) 5、等温面 温度场中将温度相同得点连起来,形成等温面。等温面不相交。 二、单选择题 1、判断下面得说法哪一种就是错误得()。 B A 在一定得温度下,辐射能力越大得物体,其黑度越大; B 在同一温度下,物体吸收率A与黑度ε在数值上相等,因此A与ε得物理意义相同; C 黑度越大得物体吸收热辐射得能力越强; D 黑度反映了实际物体接近黑体得程度。 2、在房间中利用火炉进行取暖时,其传热方式为_______ 。 C A 传导与对流 B 传导与辐射 C 对流与辐射 3、沸腾传热得壁面与沸腾流体温度增大,其给热系数_________。 C A 增大 B 减小 C 只在某范围变大 D 沸腾传热系数与过热度无关 4、在温度T时,已知耐火砖辐射能力大于磨光铜得辐射能力,耐火砖得黑度就是下列三数值之一,其黑度为_______。 A A 0、85 B 0、03 C 1 5、已知当温度为T时,耐火砖得辐射能力大于铝板得辐射能力,则铝得黑度______耐火砖得黑度。 D A 大于 B 等于 C 不能确定就是否大于 D 小于 6、多层间壁传热时,各层得温度降与各相应层得热阻_____。 A A 成正比 B 成反比 C 没关系 7、在列管换热器中,用饱与蒸汽加热空气,下面两项判断就是否正确: A

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理第四章重点习题

解 () ln ln ln 14234 112233 2111l t t q r r r r r r πλλλ-= ++ () ln ln ln ..230040185111511454580006585021115 π-= ++ /W m =284 .42845014210l Q q l W ==?=? .kW =142 【4-7】水蒸气管路外径为108mm ,其表面包一层超细玻璃棉毡保温,其热导率随温度/℃t 的变化关系为 ../()0033000023t W m K λ=+?。水蒸气管路外表面温度为150℃,希望保温层外表面温度不超过50℃,且每米管路的热量损失不超过/160W m 。试确定所需保温层厚度。 解 保温层厚度以b 表示 (..)220033000023l dt dt q r t r dr dr λππ=-=-+ (..)2 21 1 20033000023r t l r t dr q t dt r π=-+? ? .ln .()()2221212100023200332l r q t t t t r π? ?=-+-???? 已知/12150℃,50 160t t q W m ===℃, ,.1210.0540054r m r r b b ==+=+ ..()..() ln .220066314150500000233141505016010054b ??-+??-= ? ?+ ??? ..ln .2073144510054160b +? ?+= ??? 解得保温层厚度为 ..00133133b m mm == 保温层厚度应不小于【4-9】空气以4m s /的流速通过..755375mm mm φ?的钢管,管长5m 。空气入口温度为32℃,出口温度为68℃。(1)试计算空气与管壁间的对流传热系数。(2)如空气流速增加一倍,其他条件均不变,对流传热系数又为多少?(3)若空气从管壁得到的热量为578W ,钢管内壁的平均温度为多少。 解 已知/,.,,,124 0068 5 32 68℃u m s d m l m t t =====℃ (1)对流传热系数α计算 空气的平均温度 3268 502 m t += =℃ 查得空气在50℃时的物性数据./31093kg m ρ=, .,./(),./()p Pa s W m c kJ kg μλ--=??=??=?5219610 28310 1005℃℃

化工原理实验—吸收

化工原理实验—吸收 一、实验目的 1.了解填料吸取塔的结构和流程; 2.了解吸取剂进口条件的变化对吸取操作结果的阻碍; 3.把握吸取总传质系数Kya 的测定方法 4. 学会使用GC 二、实验原理 吸取操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y2是度量该吸取塔性能的重要指标,但阻碍y2的因素专门多,因为吸取传质速率NA 由吸取速率方程式决定。 (一). 吸取速率方程式: 吸取传质速率由吸取速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m3.s ; A 填料的有效接触面积,m2; Δym 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m3; Kya 气相总容积吸取传质系数,mol/m2.s 。 从前所述可知,NA 的大小既与设备因素有关,又有操作因素有关。

(二).阻碍因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸取传质系数Kya 按照双膜理论,在一定的气温下,吸取总容积吸取传质系数Kya 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得 b a y L G C a K ?=,明显Kya 与气体流量及液体流量均有紧密关系。 比较a 、b 大小,可讨论气膜操纵或液膜操纵。 b .气相平均推动力Δym 将操作线方程为:22)(y x x G L y +-=的吸取操作线和平稳线方程为:y =mx 的平稳线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸取操作线和平稳线 其中 ;11*111mx y y y y -=-=?,22* 2 22mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平稳。 (三). 吸取塔的操作和调剂: 吸取操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸取时,回收率η可近似用下式运算:

化工原理 第8章 吸收作业 吸收塔的计算

姓名:;学号:;班级: 第8章吸收(吸收塔的计算) 一、填空题: 1. 计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:______、______、______。 2. 吸收过程物料衡算时的基本假定是: (1)____________________________。 (2)___________________________。 3. 由于吸收过程气相中的溶质分压总____液相中溶质的平衡分压,所以吸收操作线总是在平衡线的____。增加吸收剂用量,操作线的斜率____,则操作线向____平衡线的方向偏移,吸收过程推动力(y-ye)_____。 4. 在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将____,操作线将___平衡线。 5. 一般吸收塔中常采用逆流操作,其目的是 ____________________________________________________________。 5. 某吸收塔中,物系的平衡线方程为y=2.0x,操作线方程为y=3.5x+0.001,当 y1=0.06,y2=0.0030时,x1=_______,x2=_____________,L/V=______,气相传质单元数 N=_______. OG 6. 某逆流吸收塔,用纯溶剂吸收混合气中易溶组分,设备高为无穷大,入塔Y1=8%(体积),平衡关系Y=2X。试问: ⑴.若液气比(摩尔比,下同)为2.5时,吸收率= ______% ⑵.若液气比为1.5 时,吸收率=________% H将_____,7. 对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的 OG N将_____(增加,减少,不变)。 OG

化工原理课后习题答案详解第四章.doc

第四章多组分系统热力学 4.1有溶剂A与溶质B形成一定组成的溶液。此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。 解:根据各组成表示的定义 4.2D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液在20 C时的密度。求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。 解:质量分数的定义为

4.3在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于 和之间时,溶液的总体积 。求: (1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。(2)时水和醋酸的偏摩尔体积。 解:根据定义

当时 4.460 ?C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。二者可形成理想液态混合物。若混合物的组成为二者的质量分数各50 %,求60 ?C 时此混合物的平衡蒸气组成,以摩尔分数表示。 解:质量分数与摩尔分数的关系为 求得甲醇的摩尔分数为

根据Raoult定律 4.580 ?C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。两液体可形成理想液态混合物。若有苯-甲苯的气-液平衡混合物,80 ?C时气相中苯的摩尔分数,求液相的组成。 解:根据Raoult定律 4.6在18 ?C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。现将 1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 ?C下的体积及其组成。设空气为理想气体混合物。其组成体积分数为:,

化工原理答案 第四章 传热

第四章 传 热 热传导 【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。试求加热器平壁外表面温度。 解 2375℃, 30℃t t == 计算加热器平壁外表面温度1t ,./()W m λ=?016℃ (1757530025005016016) t --= ..145 025********t =?+=℃ 【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。软木的热导率λ= W/(m·℃)。若外表面温度为28℃,内表面温 度为3℃,试计算单位表面积的冷量损失。 解 已 知 .(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==?=, 则单位表面积的冷量损失为 【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。若所测固体的表面积为0.02m 2 ,材料的厚度为0.02m 。现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。 解 根据已知做图 热传导的热量 .28140392Q I V W =?=?= .().() 12392002 002280100Qb A t t λ?= = -- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。 耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。 (1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。 (2) 若普通砖层厚度为240mm ,试计算普通砖层外表面温度。 解 (1)确定绝热层的厚度2b 温度分布如习题4-4附图所示。通过耐火砖层的热传导计算热流密度q 。 习题4-1附图 习题4-3附图

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L(x G 21A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-= -=?2 11 2 Ω=a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

化工原理课后习题答案第4章传热习题解答

习 题 1. 如附图所示。某工业炉的炉壁由耐火砖λ1=(m·K )、绝热层λ2=(m·K )及普通砖λ3=(m·K )三层组成。炉膛壁内壁温度1100o C ,普通砖层厚12cm ,其外表面温度为50 o C 。通过炉壁的热损失为1200W/m 2,绝热材料的耐热温度为900 o C 。求耐火砖层的最小厚度及此时绝热层厚度。 设各层间接触良好,接触热阻可以忽略。 已知:λ1=m·K ,λ2=m·K ,λ3=m·K ,T 1=1100 o C ,T 2=900 o C ,T 4=50o C ,3δ=12cm ,q = 1200W/m 2,Rc =0 求: 1δ=2δ= 解: ∵δ λ T q ?= ∴1δ =m q T T 22.01200 900 11003.1211 =-?=-λ 又∵3 3 224 23 4 33 2 3 22 λδλδδλδλ+-= -=-=T T T T T T q ∴ W K m q T T /579.093 .012.01200509002334222?=--=--=λδλδ 得:∴m 10.018.0579.0579.022=?==λδ 习题1附图 习题2附图 2. 如附图所示。为测量炉壁内壁的温度,在炉外壁及距外壁1/3厚度处设置热电偶,测得t 2=300 o C ,t 3=50 o C 。求内壁温度t 1。设炉壁由单层均质材料组成。 已知:T 2=300o C ,T 3=50o C

求: T 1= 解: ∵δ λ δ λ 3 13 23 T T T T q -=-= ∴T 1-T 3=3(T 2-T 3) T 1=2(T 2-T 3)+T 3=3×(300-50)+50=800 o C 3. 直径为60×3mm 的钢管用30mm 厚的软木包扎,其外又用100mm 厚的保温灰包扎,以作为绝热层。现测得钢管外壁面温度为–110o C ,绝热层外表面温度10o C 。已知软木和保 温灰的导热系数分别为和 W/(m·o C ),试求每米管长的冷量损失量。 解:圆筒壁的导热速率方程为 ()2 3212131ln 1ln 12r r r r t t L Q λλπ+-= 其中 r 1=30mm ,r 2=60mm ,r 3=160mm 所以 ()2560 160 ln 07.013060ln 043.01101002-=+--=πL Q W/m 负号表示由外界向系统内传热,即为冷量损失量。 4. 蒸汽管道外包扎有两层导热系数不同而厚度相同的绝热层,设外层的平均直径为内层的两倍。其导热系数也为内层的两倍。若将二层材料互换位置,假定其它条件不变,试问每米管长的热损失将改变多少说明在本题情况下,哪一种材料包扎在内层较为合适 解:设外层平均直径为d m,2,内层平均直径为d m,1,则 d m,2= 2d m,1 且 λ2=2λ1 由导热速率方程知 1 111112 2114522λππλπλλλb L d t L d b L d b t S b S b t Q m m m m m ???= + ?= + ?= 两层互换位置后 1 1111122λππλπλb L d t L d b L d b t Q m m m ??= + ?= ' 所以 25.14 5 =='='q q Q Q

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m 3.s ; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/m 2.s 。

从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ?

化工原理--第八章 气体吸收

第八章气体吸收 1.在温度为40℃、压力为101.3kPa 的条件下,测得溶液上方氨的平衡分压为15.0kPa 时,氨在水中的溶解度为76.6g (NH 3)/1000g(H 2O)。试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。解:水溶液中氨的摩尔分数为 76.6 170.07576.610001718 x ==+由*p Ex =亨利系数为*15.0kPa 200.00.075 p E x ===kPa 相平衡常数为t 200.0 1.974101.3E m p = ==由于氨水的浓度较低,溶液的密度可按纯水的密度计算。40℃时水的密度为992.2ρ=kg/m 3溶解度系数为 kPa)kmol/(m 276.0kPa)kmol/(m 18 0.2002.99233S ?=??==EM H ρ 2.在温度为25℃及总压为101.3kPa 的条件下,使含二氧化碳为 3.0%(体积分数)的混合空气与含二氧化碳为350g/m 3的水溶液接触。试判断二氧化碳的传递方向,并计算以二氧 化碳的分压表示的总传质推动力。已知操作条件下,亨利系数51066.1?=E kPa ,水溶液的密 度为997.8kg/m 3。 解:水溶液中CO 2的浓度为 33 350/1000kmol/m 0.008kmol/m 44 c ==对于稀水溶液,总浓度为3t 997.8kmol/m 55.4318c = =kmol/m 3水溶液中CO 2的摩尔分数为 4 t 0.008 1.4431055.43 c x c -===?由54* 1.6610 1.44310kPa 23.954p Ex -==???=kPa 气相中CO 2的分压为 t 101.30.03kPa 3.039p p y ==?=kPa <* p

化工原理课后习题(第四章)

第4章 传热 4-1、燃烧炉的平壁由下列三种材料构成: 耐火砖的热导率为,K m W 05.111 --??=λ 厚度 mm 230=b ;绝热砖的热导率为11K m W 151.0--??=λ;普通砖的热导率为11K m W 93.0--??=λ。若耐火砖内侧温度为C 10000 , 耐火砖与绝热砖接触面最高温度为C 9400 ,绝热砖与普通砖间的最高温度不超过C 1300 (假设每两种砖之间接触良好界面上的温度相等) 。试求:(1)绝热砖的厚度。绝热砖的尺寸为:mm 230mm 113mm 65??; (2) 普通砖外测的温度。普通砖的尺寸为:mm 240mm 1200mm 5??。(答: ⑴m 460.02=b ;⑵C 6.344?=t ) 解:⑴第一层: 1 1 2 1λb t t A Q -= 第二层: 223 2λb t t A Q -= ? ()()3222 2111 t t b t t b -=-λλ ?()()130940151.0940100023.005 .12 -=-b ?m 446.02=b 因为绝热砖尺寸厚度为mm 230,故绝热砖层厚度2b 取m 460.0, 校核: ()()3940460.0151.0940100023.005 .1t -=- ?C 3.1053?=t ; ⑵ ()()433 3211 1 t t b t t b -=-λλ ?C 6.344?=t 。 4-2、某工厂用mm 5mm 170?φ的无缝钢管输送水蒸气。为了减少沿途的热损失,在管外包两层绝热材料:第一层为厚mm 30的矿渣棉,其热导率为11K m 0.065W --?? ;第二层为厚mm 30的石棉灰,其热导率为11K m 0.21W --??。管内壁温度为C 3000,保温层外表面温度为C 400。管道长m 50。试求该管道的散热量。无缝钢管热导率为11K m 45W --?? (答:kW 2.14=Q ) 解:已知:11棉K m 0.065W --??=λ,11 灰K m 0.21W --??=λ 查表得:11 K m W 54--??=钢λ ()3 4323212141ln 1ln 1ln 12d d d d d d t t l Q λλλπ++-= 其中: 0606.016 .017.0ln ln 12==d d ,

化工原理氧解吸实验报告

北京化工大学 化原实验报告 学院:化学工程学院 姓名:娄铮 学号: 2013011345 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15

实验名称: 氧 解 吸 实 验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压 降与空塔气速的关系,利用双对数坐标画出关系。其次做传质实验求取传质单元高度,利用 K x a =G A /( V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----=?X G A =L (x 2-x 1)求出 H OL = Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓 l g △p

化工原理课后习题(第四章)

化工原理课后习题(第四章)

第4章 传热 4-1、燃烧炉的平壁由下列三种材料构成: 耐火砖的热导率为,K m W 05.111 --??=λ 厚度 mm 230=b ;绝热砖的热导率为1 1 K m W 151.0--??=λ;普通砖的热导率为11K m W 93.0--??=λ。若耐火砖内侧温度为C 10000 , 耐火砖与绝热砖接触面最高温度为C 9400 ,绝热砖与普通砖间的最高温度不超过C 1300 (假设每两种砖之间接触良好界面上的温度相等) 。试求:(1)绝热砖的厚度。绝热砖的尺寸为:mm 230mm 113mm 65??; (2) 普通砖外测的温度。普通砖的尺寸为:mm 240mm 1200mm 5??。(答: ⑴m 460.02=b ;⑵C 6.344 ?=t ) 解:⑴第一层:1 1 2 1λb t t A Q -= 第二层:2 2 32 λb t t A Q -= ? ()()322 22111 t t b t t b -=-λλ ?()()130940151.0940100023.005 .12 -=-b ?m 446.02 =b 因为绝热砖尺寸厚度为mm 230,故绝热砖层厚度2 b 取m 460.0, 校核: ()()3 940460 .0151.0940100023.005 .1t -=- ?C 3.1053 ?=t ; ⑵()()4 33 3 2111t t b t t b -=-λλ ?C 6.344?=t 。

4-2、某工厂用mm 5mm 170?φ的无缝钢管输送水蒸气。为了减少沿途的热损失,在管外包两层绝热材料:第一层为厚mm 30的矿渣棉,其热导率为 11 K m 0.065W --?? ;第二层为厚mm 30的石棉灰, 其热导率为1 1 K m 0.21W --??。管内壁温度为C 3000 ,保温层外表面温度为C 400 。管道长m 50。试求该管道的散热量。无缝钢管热导率为1 1K m 45W --?? (答:kW 2.14=Q ) 解:已知:11棉K m 0.065W --??=λ,1 1灰 K m 0.21W --??=λ 查表得:1 1K m W 54--??=钢 λ ()3 4 323 2 1 2 1 4 1ln 1ln 1ln 12d d d d d d t t l Q λλλπ++ -= 其中:0606.016.017.0ln ln 12==d d , 302.017.023.0ln ln 23==d d , 231.023 .029.0ln ln 34==d d ()1 m W 28421 .0231.0065.0302.0450606.0403002-?=++-=πl Q , kW 2.14W 1042.1502844 =?=?=Q 。 4-3、冷却水在mm 1mm 19?φ,长为m 0.2的钢管中以1 s 1m -?的流速通过。水温由88K 2升至K 298。求管壁对水的对流传热系数。 (答:1 2 K m 4260W --??) 解:设为湍流 水的定性温度K 2932 298 288=+=t , 查表得:1 1 C kg kJ 183.4--???=p c , 1 1 K m W 5985.0--??=λ, s Pa 10004.13 ??=-μ,

化工原理实验报告吸收实验要点

姓名 院 专业 班 年 月 日 实验内容 指导教师 一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a . 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知 Z P ?~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段, Z P ?值较小时为恒持液区,Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,吸收实验

姓名 院 专业 班 年 月 日 实验内容 指导教师 Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收

化工原理课后习题答案第4章传热习题解答

化工原理课后习题答案第4章传热习题解答

习 题 1. 如附图所示。某工业炉的炉壁由耐火砖λ1=1.3W/(m·K )、绝热层λ2=0.18W/(m·K )及普通砖λ3=0.93W/(m·K )三层组成。炉膛壁内壁温度1100o C ,普通砖层厚12cm ,其外表面温度为50 o C 。通过炉壁的热损失为1200W/m 2,绝热材料的耐热温度为900 o C 。求耐火砖层的最小厚度及此时绝热层厚度。 设各层间接触良好,接触热阻可以忽略。 已知:λ1=1.3W/m·K ,λ2=0.18W/m·K , λ3=0.93W/m·K ,T 1=1100 o C ,T 2=900 o C ,T 4=50o C ,3 δ=12cm ,q = 1200W/m 2,Rc =0 求: 1 δ=?2 δ=? 解: ∵δλT q ?= ∴1 δ=m q T T 22.01200 900 11003.12 1 1 =-? =- λ 又∵3 3 224 23 4 33 2 3 22 λδλδδλδλ+-= -=-=T T T T T T q ∴W K m q T T /579.093 .012 .0120050900233422 2?=--=--= λδλ δ 得:∴m 10.018.0579.0579.022 =?==λδ

习 题1附图 习题2附图 2. 如附图所示。为测量炉壁内壁的温度,在炉外壁及距外壁1/3厚度处设置热电偶,测得t 2=300 o C ,t 3=50 o C 。求内壁温度t 1。设炉壁由单层均质材料组成。 已知:T 2=300o C ,T 3=50o C 求: T 1=? 解: ∵δ λ δλ3 13 2 3 T T T T q -=-= ∴T 1-T 3=3(T 2-T 3) T 1=2(T 2-T 3)+T 3=3×(300-50)+50=800 o C

相关文档
最新文档