化工原理实验报告-填料塔吸收实验

化工原理实验报告-填料塔吸收实验
化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定

课程名称:过程工程原理实验(乙)

指导老师:

成绩:__________________

实验名称:

同组学生姓名:

一、实验目的和要求(必填)二、实验内容和原理(必填)

三、主要仪器设备(必填)四、操作方法和实验步骤

五、实验数据记录和处理六、实验结果与分析(必填)

七、讨论、心得

一、实验目的

1.了解填料吸收塔的构造并熟悉吸收塔的操作。

2.观察填料吸收塔的液泛显现,测定泛点空塔气速。

3.测定填料层压降ΔP与空塔气速u的关系曲线。

4.测定含氨空气—水系统的体积吸收系数K Yα。

二、实验装置

1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。

2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。

1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1

填料塔吸收操作及体积吸收系数测定实验装置流程示意图

三、基本原理

(一)填料层压力降ΔP 与空塔气速u 的关系

气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。

在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。

原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。

塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。

Ω

=

'

V u (1)

式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s

Ω——塔截面积,m 2。

实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定

相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。

填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到

一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定

1.相平衡常数m

对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为:

mx y =* (2)

相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

P

E m =

(3)

式中:E ——亨利系数,Pa ;

P ——系统总压(实验中取塔内平均压力),Pa 。

亨利系数E 与温度T 的关系为:

T E /1922468.11lg -=

(4)

式中:T ——液相温度(实验中取塔底液相温度),K 。

根据实验中所测的塔顶表压及塔顶塔底压差ΔP ,即可求得塔内平均压力P 。根据实验

中所测的塔底液相温度T ,利用式(3)、(4)便可求得相平衡常数m 。 2.体积吸收系数K Y α

体积吸收系数K Y α是反映填料吸收塔性能的主要参数之一,其值也是设计填料塔的重

要依据。本实验中属于低浓度气体吸收,近似取Y ≈y ,X ≈x 。

吸收速率方程式为:

m Y A Y h a K G ???Ω?=

m

A

Y Y h G a K ???Ω=

(5)

式中:

K Y α——气相体积吸收系数,kmol/m 3·h ;

α——单位体积填料层所提供的有效接触面积,m 2/m 3; G A ——单位时间内NH 3的吸收量,kmol/h ; Ω——塔截面积,m 2; h ——填料层高度,m ;

ΔY m ——吸收推动力,气相对数平均浓度差。

为求得K Y α,需求取G A 及ΔY m 。

(1)被吸收的NH 3量G A ,可由物料衡算求得:

)()(2121X X L Y Y V G A -=-=

(6)

式中:V ——惰性气体空气的流量,kmol/h ; L ——吸收剂水的流量,kmol/h ;

Y 1——进塔气相的组成,比摩尔分率,kmol(A)/kmol(B);

Y 2——出塔气相(尾气)的组成,比摩尔分率,kmol(A)/kmol(B);

X 1——出塔液相的组成,比摩尔分率,kmol(A)/kmol(B);

X 2——进塔液相的责成,本实验中为清水吸收,X 2=0。

(a )进塔气相浓度Y 1的确定

V

V Y A

=

1 (7)

式中:V A ——氨气的流量,kmol/h 。

根据实验中转子流量计测取的空气和氨气的体积流量和实际测量状态(压力、温度),

对其刻度流量进行校正而得到其实际体积流量,再由气体状态方程得到空气和氨气的摩尔流量,并由式(7)可求取进塔气相组成Y 1。 (b )出塔气相(尾气)组成Y 2的确定

用移液管移取V a ml 浓度为M a 的标准H 2SO 4溶液置于吸收瓶中,加入适量去离子水机

2—3滴溴百里酚兰,将吸收瓶如图12-1连接在抽样尾气管线上。当吸收塔操作稳定时,尾气通过吸收瓶后尾气中的氨气被H 2SO 4吸收,其余空气通过湿式流量计计量。为使所取尾气样能反映塔内实际情况,在取样分析前应使取样管尾气保持流通,然后改变三通旋塞流动方向,使尾气通过吸收瓶。

air

NH n n Y 32=

(8)

式中:3NH n ——氨气的摩尔数,mol ;

air n ——空气的摩尔数,mol 。

(I )尾气样品中氨的摩尔数3NH n 可用下列方式之一测得:

(i )若尾气通入吸收瓶吸收至终点(瓶内溶液颜色由黄棕色变至黄绿色),则:

31023-?=MaVa n NH

(9)

式中:Ma ——标准H 2SO 4溶液的摩尔浓度,mol/l 。

(ii )若通入吸收瓶的尾气已过量(瓶中溶液呈兰色),可用同样标准H 2SO 4溶液滴定至

终点(瓶内溶液呈黄绿色)。若耗去的滴定用酸量为Va’,则:

310)'(23-?+=Va Va Ma n NH

(10)

(II )尾气样品中空气摩尔数air n 的测取

尾气样品中的空气量由湿式流量计读取,并测其温度、压力。

0RT V P n air =

(11)

式中:P 0——尾气通过湿式流量计时的压力(由室内大气压代替),Pa ; V 0——通过湿式流量计的空气量,l ; T 0——通过湿式流量计的空气温度,K ; R ——气体常数,R=8314N ·m/(mol ·K)。

由式(9)、(10)可求得3NH n 和air n ,代入式(8)中即可得到Y 2。

根据得到的Y 1和Y 2,代入式(6)中即可求得G A 。 (2)对数平均浓度差m Y ?

2

12

1ln Y Y Y Y Y m ???-?=

? 其中 11*

111mX Y Y Y Y -=-=?

222*

222Y mX Y Y Y Y =-=-=?

式中:*

1Y 、*

2Y ——与液相浓度1X 、2X 相对应的气相平衡浓度,kmolA/kmolB 。 出塔液相浓度1X 可取塔底液相样品进行化学分析得到,也可用物料衡算式(6)得到。求得G A 、m Y ?后,由式(5)即可求得K Y α。 四、操作步骤及注意事项

1.先开启吸收剂(水)调节阀,当填料充分润湿后,调节阀门使水流量控制在适当的数值,维持恒定。

2.启动风机,调节风量由小到大,观察填料塔内的流体力学状况,并测取读数,根据液泛时空气转子流量计的读数,来选择合适的空气流量,本实验要求在两至三个不同的气体流量下测定K Y α。

3.为使进塔气相浓度Y 1约为5%,须根据空气的流量来估算氨气的流量,然后打开氨气钢瓶,调节阀门,使氨气流量满足要求。

4.水吸收氨,在很短时间内操作过程便达到稳定,故应在通氨气之前将一切准备工作做好,在操作稳定后,开启三通旋塞,使尾气通入吸收瓶进行尾气组成分析。在实验过程中,尤其是在测量时,要确保空气、氨气和水流量的稳定。

5.改变气体流量或吸收剂(水)流量重复实验。

6.实验完毕,关闭氨气钢瓶阀门、水调节阀,切断风机电源,洗净分析仪器等。 五、实验数据记录和处理 实验数据记录:

1、转子流量计读数的校正

转子流量计在标定时采用水作为标定介质,测量气体的转子流量计则采用空气作为标定

介质,介质状态都为20℃、Pa 10013.15

?。当转子流量计测量水时,虽然水温的不同引起

密度和黏度的变化,但它对实验流量值影响较小,一般不予校正。当被测介质是气体时,校正公式为:0

00PT T

P Q Q N

ρρ=,气体的流量校正过程如下: ○1气体的绝压:实验测得大气压力为1025.3MB ,得到大气压的值为:1.025×105Pa ,用

得到的表压加上大气压值即为气体的绝压。

2气体的温度:均采用开尔文单位,温度的值为摄氏温度加上273K 。 ○

3气体的密度:由于空气和氨气在标准状态下的密度均已知,分别为 1.205kg/m 3和0.771kg/m 3,因此用气体状态方程RT PM ρ=可以得出T

P

ρ,因此在不同的气压和温度下的气体密度可以由公式0

0TP PT =ρρ得到。计算得到参数如下:

根据公式0

00PT T

P Q Q N

ρρ=得到修正后的气体流量为:

2、体积吸收系数a K Y 的测定 (1)相平衡常数m

对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为:mx y =* 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:P

E

m =

。 其中P 为系统总压(实验中取塔内平均压力)。 亨利系数E 与温度T 的关系为:lgE=11.468-1922/T 。

(2)体积吸收系数a K Y

(a )被吸收的3NH 量A G ,可由物料衡算求得:)()(2121X X L Y Y V G A -=-=

进塔气相浓度Y1的确定:

V Y A

=

1 出塔气相浓度组成Y2的确定:.32air

NH n n Y =

式中:3NH n 为氨气的摩尔数,a a NH V M n 23

=,

为空气的摩尔数0

0RT V P n air =

。 Ma=0.03mol/L 。X1可以利用物料衡算得到X1=GA/L.

(b )对数平均浓度差m Y ?。

2

12

1ln Y Y Y Y Y m ???-?=

?。 其中11111*mX Y Y Y Y -=-=?,222222*Y mX Y Y Y Y =-=-=?

(3)体积吸收系数a K Y

air

n

m A

Y Y h G a K ?Ω=

,其中2

20038465.04

m d ==Ωπ,h=0.36m.

计算式例

以第三组数据为例:

1. 转子流量计读数的校正

对于空气:0

00PT T P Q Q N

ρρ= QN=9.4m3/h ,空气温度T=23 +273.15=296.15K ,

0T =293.15K ,0ρ=1.205kg/m3

0P =Pa 10013.15?,P=1.66+102.53=104.19kPa ,

0TP PT =ρρ,得到ρ=1.205*104.19*293.15/(296.15*101.3)=1.227 kg/m3 h m PT T P Q Q N

/23.915

.29319.4101.22715

.296325.101205.19.43000空=?????==ρρ

同样得到:

对于氨气:0

00PT T P Q

Q N

ρρ=

QN=0.29m3/h ,氨气温度T=14 +273.15=287.15K ,0T

=293.15K ,

0ρ=0.771kg/m3

0P =Pa 10013.15?,P=1.98+102.53=104.51kPa ,

0TP PT =ρρ,得到ρ=0.771*104.51*293.15/(287.15*101.3)=0.812kg/m3 h m PT T P Q Q N

/275.015

.29351.4100.81215

.287325.101771.00.293000空=?????==ρρ

2. 体积吸收系数a K Y 的测定 (1)相平衡常数m

lgE=11.468-1922/T ,有T=15.5+273=288.5K,得E=69367

塔内平均压力kPa P P P P P 103.93

2大气塔顶塔顶=+++?= 则相平衡常数P

E

m =

=69367/103930=0.615482

(2)体积吸收系数αY K

(a )被吸收的3NH 量A G ,可由物料衡算求得:)()(2121X X L Y Y V G A -=-=

进塔气相浓度Y1的确定:V

V Y A

=

1

空气流量(摩尔值)为h kmol RT Q P V /903.015.296314.89.32

19.104'''=??==

氨气流量(摩尔值)为h kmol RT Q p V A

/2101.015

.287314.82754

.051.410氨氨氨=??==

Y 1=

V A V =0.0121

0.390

=0.03085

出塔气相浓度组成Y2的确定:.32air

NH n n Y =

式中:3NH n 为氨气的摩尔数,

a a NH V M n 23=,

为空气的摩尔数0

0RT V P n air =

a V =10ml, Ma=0.03mol/L

L V kPa P 42.3,53.10200==,K T 15.27615.273130=+=

得:mol ml L mol V M n a a NH 0006.010/03.0223=??== 得:mol RT V P n air

1474.015

.286314.842

.353.102000=??==

0041.01474

.00006

.03

2===air NH n n Y

据此我们可以得到:

h kmol Y Y V G A /0.0111)(21=-=

另外我们继续利用GA 求得X1:

水流量(摩尔值):h kmol M V L /6667.118

30===

X1=GA/L=0.00628

(b )对数平均浓度差m Y ?

2

12

1ln Y Y Y Y Y m ???-?=

?。 其中11111*mX Y Y Y Y -=-=?,222222*Y mX Y Y Y Y =-=-=?

得:027.000628.0615.003085.0*11111=?-=-=-=?mX Y Y Y Y

0041.0*222222==-=-=?Y mX Y Y Y Y

得:012.0ln 2

121=???-?=?Y Y Y Y Y m

(c )体积吸收系数a K Y

m A

Y Y h G a K ?Ω=

,其中2

20038465.04m d ==Ωπ,h=0.36m.

air

n

得:82.673012

.036.00038465.00111

.0=??=?Ω=

m A Y Y h G a K

六、实验结果与分析

本实验吸收的是具有碱性性质且易溶于水的氨气,故实验中气象阻力为主要阻力。根据理论知识推得132a K a K a K Y Y Y >>,上述实验结果显示为132a K a K a K Y Y Y >>,符合

实验推论。

组一组二对比,组二液体的流量增大了20%,液体的湍动加剧,因此传质效果应变好。

即出塔气相浓度变小,单位时间内氨气的吸收量变大。但是液体的浓度提升不如流量的提升,所以X 1减小,对数平均浓度差增大。体积吸收系数变大,符合实验结果。

组一组三对比,组三气相的流量增大了20%,因此气体的湍动加剧,在泛点气速以内的话传质效果变好,单位时间内氨气的吸收量变大,但是由于吸收量的变化不及流量的变化,出塔的气相组成变大,被吸收的氨气量增大。液相组成增大,从而体积吸收系数增大。符合实验结果。

组二组三对比,组三是气相的流量增大20%,组二是液相的流量增大20%。但是由于氨气是易溶于水的,使用双模理论分析气膜较厚液膜较薄。属于气膜控制的情况,因此增大气体的流量对于传质阻力的减小更有效果,从而气相体积吸收系数提高,故第二组体积吸收系数增加更加明显。符合实验结果。

本实验的误差来源可归结如下:

1.第三组实验是空气和氨气流量都增大20%,本实验是视进塔气相组成Y 1 不变,但实际上,进塔气相组成Y 1 是增大了的,这在一定程度上对实验结果造成了影响;

2.出塔气相组成Y 2 是通过与酸反应并靠人眼判断是否恰好反应,测量的精度不高,添加的指示剂的量以及人的判断都会带来一定的误差; 3.实验数据处理过程中也会产生一些舍入误差。

七、讨论、心得 思考题:

1.测定及△P~u 有什么实际意义?

答:a

K

Y 是吸收塔的体积传质系数,测定a

K

Y可以用来计算对应吸收塔的传质单元数,

进而推求塔高和吸收塔的吸收能力等参数,具有实际应用意义。测得△P~u之后可以估算改吸收塔的液泛气速,从而得到载点的气速,确定合适的进气流量。

2. 要确定,需测定哪些数据(在流程中标出测量点、控制点)?使用哪些仪表?

答:测量参数:进口水流量,进口空气流量、温度和压力;塔顶表压,塔顶底压差,塔顶液温,塔内液温,脱氨后空气量,吸收瓶加酸量,脱氨后空气温度,大气压,氨气温度,填料层高度。

使用仪表:转子流量计、U型管压差计、温度计等。

3.实验时,如何确定水、空气和氨气的流量?

答:实验中使用转子流量计测定三者流量,再根据各流体物性与标准水的物性(密度比例关系)比例进行修正。

4. 怎样判断实验过程处于稳定状态?

答:三个流量计显示稳定时,则可认为实验过程处于稳定状态。

5. 为什么吸收时氨气从气相转移到液相?空气量改变对有何影响?

答:因为进料时,氨气在气相中的摩尔浓度大于此时与液相浓度相平衡的气象浓度,因此存在传质推动力使得氨气从气相转移到液相。改变空气量会改变塔内的空气湍动程度,从而改变了气膜传质阻力,因为氨气易溶于水,所以在传质过程中气膜阻力较大,因此改变空气量会大大影响a

K

Y

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/。 从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素:

V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸收操作线和平衡线

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点” ,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力 实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速 u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为50L/h下(△P/z)─u?关系曲线,确定液泛气速

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定 课程名称:过程工程原理实验(乙) 指导老师: 成绩:__________________ 实验名称: 同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.了解填料吸收塔的构造并熟悉吸收塔的操作。 2.观察填料吸收塔的液泛显现,测定泛点空塔气速。 3.测定填料层压降ΔP与空塔气速u的关系曲线。 4.测定含氨空气—水系统的体积吸收系数K Yα。 二、实验装置 1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。 2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1 填料塔吸收操作及体积吸收系数测定实验装置流程示意图 三、基本原理 (一)填料层压力降ΔP 与空塔气速u 的关系 气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。 在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。 原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。 塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。 Ω = ' V u (1) 式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s Ω——塔截面积,m 2。 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定 相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。 填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到 一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定 1.相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为: mx y =* (2) 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

实验七填料塔吸收实验

实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学性能。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?P与空塔气速u的关系可用式?P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时,由于上升气流与下降液体间的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在?P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告 篇一:实验七填料塔吸收实验 实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。2.熟悉填料塔的流体力学性能。3.掌握总传质系数KYa测定方法。4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺

利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际 速度增大,因此床层阻力降比无喷淋时的值高。当气速增加

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

填料塔吸收实验数据及处理

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.5 1 1.5 2 空塔气速 单位高度压降 空气流量u(m 3) H1(cm) Ppa P/H 0.375 0.18 17.64 0.027 0.5 0.3 29.4 0.045 0.7 0.45 44.1 0.068 0.9 0.75 73.5 0.113 1.1 1.05 102.9 0.158 1.3 1.3 127.4 0.196 1.5 1.6 156.8 0.241 1.7 1.9 186.2 0.286 1.9 2.2 215.6 0.332

0.000 1.000 2.000 3.000 4.000 5.000 6.000 0.000 0.2000.4000.6000.800 1.000 1.200 1.400 1.600 流量 液体喷淋量20L /h 空气流量u H1 Ppa P/H 0.375 0.550 53.900 0.083 0.500 1.100 107.800 0.166 0.600 1.500 147.000 0.226 0.700 1.850 181.300 0.279 0.800 2.200 215.600 0.332 0.900 2.700 264.600 0.407 1.000 4.100 401.800 0.618 1.100 5.100 499.800 1.428 1.200 6.370 624.260 0.960 1.300 7.150 700.700 1.078 1.400 21.000 2058.000 3.166 1.500 33.000 3234.000 4.975

化工原理实验心得体会

化工原理实验心得体会 这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。 本学期我们共学习了五个实验,分别是: 实验一、离心泵的特性曲线实验; 实验二、流体流动阻力的测定; 实验三、空气—蒸汽对流传热系数的测定; 实验四、恒压过滤常数的测定; 实验五、填料塔的精馏实验, 通过对实验的学习并亲手操作,我掌握了许多知识。 这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。老师讲解完实验原

理并强调了注意事项后,我们开始实验。我们小组先进行了恒压 过滤常数测定实验,首先我们对两个小组的成员进行了各项职责 的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一 位同学负责数据的采集和记录的工作。每个三分钟记录床层温度 一次,取样一次,并由同组同学进行含水量的测定,由两位同学 负责装好板框,最后分别由其他两位同学负责压力阀的控制和滤 液进口阀、滤液出口阀的控制。这样一来整个实验的分工工作就 已经完成了。实验过程中,我们互相配合,进行的很顺利。但是 在第一次实验时由于我们的粗心大意,我们将四块滤板中的一块 方向装反了,使得我们第一次采集的数据无效了,因此指导老师 还对我们实验时的粗心大意进行了严厉的批评教育,这些批评教 育使我们牢记在这是一个教训,实验中细心认真完成每一步,我 们的动手能力才会在这个过程中得到提升。 在这一个学期短暂的实验学习过程中,使我们重新认识了在 大学学习生活中,在实验过程中一个实验者的认真预习和摈弃粗 心大意,认真、谨慎的进行好每一步的操作、合理的分工协同工 作对于一个实验的成败与否是至关重要的。或许在将来生活工作 中也一样,俗话说得好,所谓“细节决定成败”。一个做事粗心 大意,做事前从不做准备的人不管他将来从事什么样的工作都无 法取得好的成绩,因为在他的心理或许压根就没有重视过自己所 从事的事情或者是行业。俗话说“机遇永远是给有准备的人的”。 化工原理实验的任务主要是了解一些典型化工设备的原理和

化工原理实验—吸收

化工原理实验—吸收 一、实验目的 1.了解填料吸取塔的结构和流程; 2.了解吸取剂进口条件的变化对吸取操作结果的阻碍; 3.把握吸取总传质系数Kya 的测定方法 4. 学会使用GC 二、实验原理 吸取操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y2是度量该吸取塔性能的重要指标,但阻碍y2的因素专门多,因为吸取传质速率NA 由吸取速率方程式决定。 (一). 吸取速率方程式: 吸取传质速率由吸取速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m3.s ; A 填料的有效接触面积,m2; Δym 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m3; Kya 气相总容积吸取传质系数,mol/m2.s 。 从前所述可知,NA 的大小既与设备因素有关,又有操作因素有关。

(二).阻碍因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸取传质系数Kya 按照双膜理论,在一定的气温下,吸取总容积吸取传质系数Kya 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得 b a y L G C a K ?=,明显Kya 与气体流量及液体流量均有紧密关系。 比较a 、b 大小,可讨论气膜操纵或液膜操纵。 b .气相平均推动力Δym 将操作线方程为:22)(y x x G L y +-=的吸取操作线和平稳线方程为:y =mx 的平稳线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸取操作线和平稳线 其中 ;11*111mx y y y y -=-=?,22* 2 22mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平稳。 (三). 吸取塔的操作和调剂: 吸取操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸取时,回收率η可近似用下式运算:

填料塔吸收实验

序号:34 化工原理实验报告 实验名称:填料吸收传质系数测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-3班 姓名:曾学礼学号09402010337

同组者姓名:周锃刘翰卿 指导教师:王志强 日期:2011年9月20日 一、实验目的 1.熟悉填料塔的构造与操作。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数Kxa的测定方法并分析影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压 降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为 1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c 点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填 料的压降(图中bc段)。随气速增加,出现载点(图中c点),持 液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两 相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降–空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封?液封高度如何计算? 答:保证塔内液面,防止气体漏出,保持塔内压力.0.1 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)X10.2/Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)X10.2/Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量

为宜。 (2)测定填料塔的流体力学性能有什么工程意义? 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义? 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制? 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数? 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升

吸收(解吸)实验报告

实验名称:吸收(解吸)实验 一、实验目的 1 了解填料塔吸收装置的基本结构及流程; 2 掌握总体积传质系数的测定方法; 3 测定填料塔的流体力学性能; 4 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 5 了解气相色谱仪和六通阀在线检测CO2浓度和测量方法; 6 学会化工原理实验软件库的使用。 二、实验装置流程示意图及实验流程简述 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度2000mm.。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。 (2)填料规格和特性: 金属丝网板波纹填料:型号JWB—700Y,填料尺寸为φ100×50mm,比表面积700m2/m3。 (4)气泵:层叠式风机,风量0~90m3/h,风压40kPa; (5)二氧化碳钢瓶; (6)气相色谱仪(型号:SP6801); (7)色谱工作站:浙大NE2000。 三、简述实验操作步骤及安全注意事项 1 实验步骤 (1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;(2)打开仪表电源开关及风机电源开关; (3)开启进水总阀,使水的流量达到400L/h左右。让水进入填料塔润湿填料。 (4)塔底液封控制:仔细调节阀门○2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气。 (5)打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1Mpa左右; (6)仔细调节空气流量阀至1m3/h,并调节CO2调节转子流量计的流量,使其稳定在100L/h~160 L/h; (7)仔细调节尾气放空阀的开度,直至塔中压力稳定在实验值; (8)待塔操作稳定后,读取各流量计的读数及通过温度数显表、压力表读取各温度、压力,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成; (9)改变水流量值,重复步骤(6)(7)(8)。 (10)实验完毕,关闭CO2钢瓶总阀,再关闭风机电源开关、关闭仪表电源开关,清理实验仪器和实验场地。 2 注意事项 (1)固定好操作点后,应随时注意调整以保持各量不变。 (2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能读取有关数据。

相关文档
最新文档