饮用水 除氟除砷方法

载铁FeOOH球形棉纤维素吸附剂去除地下水砷_的研究

Vol.26高等学校化学学报 No.7 2005年7月 CHEM ICAL JOU RNAL OF CHINES E U NIVERS IT IES 1258~1263  载铁(B-FeOOH)球形棉纤维素吸附剂 去除地下水砷(Ⅲ)的研究 郭学军,陈甫华 (南开大学环境科学与工程学院,天津300071) 摘要 制备了一种载铁(B-F eOO H)球形棉纤维素吸附剂,并用于地下水中A s(Ⅲ)的去除.吸附剂对As(Ⅴ) 和A s(Ⅲ)在吸附容量、选择性和速率等方面都具有良好的性能,无需预氧化A s(Ⅲ),其适用pH范围宽, 不必调节原水的pH.吸附剂孔隙度大,机械强度好,活性成分铁的载入量高,吸附A s(Ⅲ)的活性好. L angmuir和Fr eundlich方程能较好地描述吸附平衡方程,其吸附动力学符合L ager g ren准二级方程.吸附 A s(Ⅲ)的最佳pH范围为6~9.SO2-4和Cl-等干扰离子均不影响A s(Ⅲ)的去除.柱吸附实验表明,即使在 较高流速和A s(Ⅲ)进水浓度下,吸附剂对As(Ⅲ)的去除依然具有很高的穿透容量和饱和容量.吸附剂可以 用N aO H溶液再生,洗脱和再生效率较高.活性成分B-FeO OH形态稳定,柱实验和再生时铁均无泄漏. 关键词 载铁(B-FeO O H)球形棉纤维素;吸附剂;砷(Ⅲ);吸附;去除 中图分类号 X523 文献标识码 A 文章编号 0251-0790(2005)07-1258-06 砷是最毒的元素之一,各种水体中砷的污染已经引起人们的广泛关注[1].WHO推荐饮用水的砷最高允许质量浓度从原来的50L g/L降至10L g/L[2].欧盟和美国已重新制定饮用水的砷卫生标准,砷的最高允许质量浓度为10L g/L[3].吸附法作为水体砷去除的有效方法,比膜法经济实惠,相对沉淀-过滤法操作更加简易[4].报道的吸附剂有活性氧化铝、活性炭、功能树脂、金属氧化物(如氧化铁)、稀土元素以及各种天然矿物如沸石等[5~8].地下水总砷中As(Ⅲ)较多或占大部分,而上述吸附剂大都只能有效地去除As(Ⅴ),去除As(Ⅲ)的效果较差,因此在吸附前,需要使用氧化剂如氯和高锰酸钾,使地下水中As(Ⅲ)转化为As(Ⅴ),增加了操作程序和费用.因此寻找对As(Ⅴ)和A s(Ⅲ)都具备良好选择性和去除效果的吸附剂,是除砷吸附剂研制中的难点. 我们用棉纤维素球作为载体,制成载铁(B-FeOOH)球形棉纤维素吸附剂,可以无需使用氧化剂而高效去除地下水中的As(Ⅲ).吸附剂对As(Ⅴ)和As(Ⅲ)在吸附容量、选择性和速率方面都具有良好的性能,去除效率高,适用pH范围宽,不必调节饮用原水的pH.该吸附剂主要活性成分为B-型羟基氧化铁(B-FeOOH,Akag aneite-type),铁的吸附活性好,含量可达50%(干重),是其它吸附剂的5~10倍[9~13].吸附剂的制备方法新颖,简单,且具有良好的机械强度和耐磨性能. 1 实验部分 1.1 材料与仪器 载铁(B-FeOOH)球形棉纤维素吸附剂由实验室制备.As(Ⅲ)储备液的制备:准确称取2.4730g 分析纯As2O3(M=197.84)于烧杯中,加入25m L质量分数为20%的NaOH溶液溶解,用去离子水适度稀释,再加10m L优级纯HCl,并用稀HCl调节pH至7.0,定容至250mL,此储备液含As(Ⅲ)为100mm ol/L,于4℃冰箱中避光保存.根据不同的需要将此储备液稀释成不同的浓度(现用现配).其它化学试剂为分析纯或优级纯.所有玻璃器皿在使用前均用质量分数为15%的硝酸溶液浸泡24h以上,分别用自来水和去离子水冲洗数次.用砷化氢发生-原子荧光分光光度计(AFS230,北京海光公 收稿日期:2004-07-30. 基金项目:南开大学-天津大学联合研究项目、废水和微污染水处理创新技术研究基金资助. 联系人简介:陈甫华(1936年出生),男,教授,博士生导师,从事水污染防治和控制研究.E-m ail:chen fuh ua2003@https://www.360docs.net/doc/4215829191.html,

国内外除砷技术研究现状_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国内外除砷技术研究现状 国内外除砷技术研究现状康雅,李涛,高红涛 (郑州市自来水总公司,河南郑州 450007) 摘要: 本文介绍了砷对人体的危害,饮用水去除砷的重要性,着重介绍了目前国内外应对饮用水砷超标问题的策略以及常用除砷技术及其优缺点,最后展望了除砷技术今后的发展趋势。 关键词: 饮用水;除砷; MCL 标准;零处理策略根据联合国世界卫生署的报道,自 1990 年起,全世界总人口净增了六亿,而人们赖以生存的水资源却日益枯竭。 水资源的枯竭大部分的原因直接来自水的资源污染,这引起全世界的高度关注。 目前,全世界 43% 的人口其饮用水没有达到足够的卫生标准,而有 22 %的人口其饮用水的情况非常糟糕[1]。 随着人口的增加和用水量的增加,地表水的供应已常常满足不了需要。 人们不得不转向地下,寻找地下水资源。 然而地下水的过度开发,又引起一系列新的问题。 P. Bagla 在《科学》期刊中披露[2],印度和孟加拉国由于地下水的污染,产生了种种新的疾病,严重地威协人类的健康。 在孟加拉湾三角州地区,大约 3600 万的居民喝了被砷污染的 1 / 10

水而导致中毒。 最新一期美国《化学与工程新闻》[3],又专门报道了孟加拉国砷污染的严重情况,并且有科学家义务前往该地,进行调查研究。 世界各地不断有关于饮用被砷污染的水而导致中毒的报道。 这其中有亚洲的印度、孟加拉国、越南、泰国、中国的台湾、新疆、陕西、内蒙古,南美的阿根挺、智利、巴西、墨西哥,欧洲的德国、西班牙、英国,以及北美的加拿大和美国。 砷是一种有毒元素,其化合物有三价和五价两种,三价砷的毒性更大。 五价砷对大鼠、小鼠径口半数致死量为 100mg/kg,三价则为10mg/kg,相差 10 倍。 天然地下水和地表水都可能含有砷,除来源于地壳外,砷污染也来自农药厂、玻璃厂和矿山排水。 地下水含砷量高于地表水,砷可通过呼吸道、食物或皮肤接触进入人体,在肝肾、骨胳、毛发等器官或组织内蓄积,破坏消化系统和神经系统,从而具有致癌作用[4] [5]。 欧洲、美国、日本等西方国家实行饮用水的最高允许含砷质量浓度 10 g/L 的标准,美国环境保护协会(EPA)规定: 2006 年 1 月 23 日,美国所有地区均强制实行饮用水的最高允许含砷质量浓度 10 g/L 的标准[6]。 我国目前实行的饮用水最高允许含砷质量浓度 50 g/L 的标准,随着经济实力的不断增强和全民健康意识的普遍提高,最近建设部

饮用水中常见的毒害及处理方法

饮用水中常见的毒害及处理方法 水是生命之源,水质的好坏与人们的身体健康密切相关。因水质不好而引起的地方疾病时有发生,因水质污染引起新发病种的情况越来越多。随着经济社会的发展,水资源短缺和水污染日益严重的状况已成为制约经济社会可持续发展和影响人民身体建康的重要因素。饮用水中主要超标物质有总硬度、硝酸盐氮、氟化物、锰、细菌总数和总大肠菌群数等,了解其危害并采取有效的处理措施,可以保障供水水质安全,减少疾病的发生。 一、总硬度 1、危害性 习惯上把总硬度定义为水中钙、镁浓度的总和。硬水对人们的身体健康有较大影响。如果长期饮用硬水,会导致肾结石发病率升高。高硬度水中钙镁离子与硫酸根结合,会使水产生苦涩味。人对水的硬度有一定的适应性,饮用不同硬度的水(特别高硬度的水)可引起胃肠功能的暂时性紊乱,但在短期内即能适应。据国内报道,饮用总硬度为707~935mg/L的水,第二天人们出现不同程度腹胀、腹泻和腹痛等肠道症状,持续一周开始好转,20天后恢复正常。 2、处理方法 硬水软化方法主要有离子交换法、药剂软化法和膜分离法。药剂软化是通过投加化学药剂以提高PH值,使Ca2+和Mg2+分别以CaCO3和Mg(OH)2的形式在水中沉析出来。常用的药剂软化法为石灰法、石灰-碱化法与石灰-石膏法,用石灰碱化法去除水中总硬度的同时,也可以去除不凡溶解性总固体的其他部分,从而达到降低水的总硬度和溶解性总固体的目的。离子交换法是利用离子交换剂,把水中的离子与离子交换剂中可扩散的离子进行交换作用,使水得到化的方法。膜分离法(反渗法)是以压力为驱动力,提高水的压力来克服渗透压,使水穿过功能性的半透膜而除盐净化。 二、氟化物 1、危害性 氟是人体微量元素。可以通过水、食物等多种途径进入人体,成年人每天约摄入0.3~0.5mg,婴儿每天需氟化物0.5mg,儿童则需1mg,以保证牙齿钙化期所必需的氟化物离子。人体中的氟35%来自食物,65%来自饮水,适宜的饮水含氟量0.6~1.0mg/L。饮水含氟量低

水处理除氟方案

技术文件 1、设计制造方案 1、设计原则 ?依据招标方的招标文件的要求而设计; ?系统出力:8000m3/d,出水氟含量:小于1mg/L; ?水处理系统保证出水水质稳定; ?因设备布置在潮湿的场所,因此,设备具有较好的防腐能力; ?设备技术系统是先进的、可靠的;后期日常运行成本保证在 低限范围内; 2、设计标准 ?出水水质达到生活饮用水水质卫生规范GB5749-2006,氟含 量低于1mg/L; ?低压水箱ISO、GB或JB标准; ?水泵ISO、GB标准; ?管道、管件、法兰及阀门采用公制; ?电气:IEC、GB标准; ?进口材料:ASTM标准; ?安全:OSHA;

3、制造标准 ?除氟滤池材质采用钢砼结构浇筑;内部防腐采用卫生级环氧 煤沥青漆;保证过水不会被污染;具有北京市卫生局颁发的 涉水产品卫生批件(附件1); ?管道、阀门(双由令的便于后期维护)材质为不锈钢材质; 有国家省级部门颁发的卫生批件(附件2); ?除氟滤料采用活性氧化铝,滤料经过再生,可多次使用,滤 料寿命长; ?产品设计寿命30年;保证需方的使用效果和应用效益; ?设备操作便捷性高,无需专业人员维护;节约需方未来人员 管理成本; 4、执行标准 ?处理后达到GB5749—2006《生活饮用水卫生标准》,氟含量 ≤1.0mg/L; ?设备接触水的材料应符合《生活饮用水输配水设备及防护材 料卫生安全评价规范》【2001年】; ?污水排放应符合GB8978-1996《污水综合排放标准》一级排 放标准设备操作便捷性高,无需专业人员维护;节约需方未 来人员管理成本; ?企业标准Q/FTYJ002—2010;

地下水砷污染与修复

地下水砷污染分析及修复 摘要 地下水砷污染是全球饮用水的主要威胁之一,目前全世界有超过一亿人受砷污染地下水问题的困扰。深入研究地下水砷污染的形成机制,对预测地下水中砷的分布及解决地下水砷污染问题具有重要意义。传统和改良的物理化学修复方法以及现在生物学基础上兴起的生物修复方法都为砷污染地下水的修复提供了良好的途径。 关键词:地下水;砷污染;修复 第一章地下水砷污染分析 1.地下水砷污染状况 目前, 由于各国的生活水平和技术的差异, 饮用水中砷的安全标准也就有所不同。世界卫生组织(WHO)在1993年将饮用水中砷的标准降低为10ug/ L 。美国环境保护署(USEPA) 在2006年 1 月将饮用水砷的标准从50 ug/ L 降低到10 ug / L, 欧盟将饮用水中砷的标准确定为20ug/ L, 而发展中国家饮用水中砷的标准一般为50 ug/ L。但是, 在全球地方性砷中毒地区, 地下水砷的含量远远超过该地区饮用水中砷的标准。据英国地质调查局报道,孟加拉国地下水砷污染面积达150000km2,该地区人口为3000万,地下水质量浓度为015~2500 ug/L,最高砷含量是该国饮用水砷标准(50 ug/L)的50倍。印度中心地下水部调查,印度孟加拉邦地下水砷的质量浓度为10~3200 ug/L,污染区面积为23000km2,总人口为600万。Welch等研究美国内华达州南部卡尔森沙漠地带地下水时,发现该地区地下水砷质量浓度达到2600 ug/L。Smedley等对阿根廷Chaco-Pampean 平原地下水进行研究时发现该地区地下水砷质量浓度为110~5300 ug/L,同时测得有些沉积物孔隙水的砷质量浓度高达7500 ug/L。在中国,地下水受到砷污染的地区有台湾、山西、新疆、内蒙古等。20世纪60年代台湾地区出现黑脚病,Kuo等对该地区地下水水样进行测试,得出地下水砷质量浓度为10~1800 ug/L。20世纪80年代在新疆发现了砷中毒问题。研究表明,该地区地下水砷质量浓度达1200 ug/L。Smedley等对内蒙古呼和浩特盆地地下水环境进行调查,该地区地下水处于强烈的还原环境,砷的质量浓度达1500 ug/L,同时所采地下水水样大部分(60%~90%)砷为三价As(Ⅲ)。在山西地下水污染最严重的是山阴县,研究表明,该地区地下水硫化氢气味较浓,砷质量浓度最高可达1530 ug/L。该地区的饮用水多取自地下水,地下水中砷的含量已远远大于国家规定的饮用水砷标准(<50 ug/L) [1]。

地下水除氟系统原理与工艺

地下水除氟系统原理与工艺 地下水、饮用水除氟设备(除氟过滤器)引进新技术、新工艺、新型装置,采用特殊活化氧化铝作为除氟吸附剂,除氟过程结合用酸或对原水PH值调解并进行吸附催化,获得对氟的高吸附性能,除氟装置以硫酸铝或氢氧化钠作为再生剂,采用大流量循环再生,快速中和。可最大限度地恢复活性氧化铝的吸附性能,从而达到除氟过程的连续进行。专用除氟材料作为吸附剂,罐体采用碳钢或玻璃钢制作。用浓度为1%-2%的硫酸铝或氢氧化钠溶液作为再生剂,滤料可重复使用。是不同于去离子法(电渗析器、反渗透)的新型除氟设备。 地下水除氟设备功能特点: 1.采用特殊活化的活性氧化铝作吸附剂,具有吸附速度快,吸附容量大,受PH值影响小,解吸容易等特点,各项性能优于常规活性氧化铝。 2.再生剂以氢氧化钠取代传统的硫酸铝,消除了出水中铝离子超标对人体造成的危害。 3.采用循环再生法,可将传统的再生时间缩短到4小时内完成。 4.采用调整PH值及催化吸附工艺使吸附容量大幅提高。 5.定量连续投加催化剂,增加氟的吸附速率。 6.彻底解决了活性氧化铝的“板结”问题及“假疲劳”现象。 地下水除氟设备的原理与工艺流程: 含氟水经过比表面积较大的活性氧化铝吸附过滤层。在PH值5~6的条件下,水中氟离子被吸附生成难溶解的氟化物而被除去,其反应式如下:R2SO4+2F-=R2F2+SO42-吸附剂失效后,用硫酸铝溶液进行再生,以恢复其吸附能力。当原水PH值大于7时,一般用二氧化碳气体进行调节。 地下水除氟设备工艺特点: 1、造价低、投资省; 2、运行费用低,制水成本低; 3、设备操作简便:实行自动化、半自动化操作不用调节pH值; 4、设备安装和使用便利,该设备可以直接与深井中的变频泵连接,设备出水直接进入

除氟设备原理

一、工作原理: 我国饮用水除氟方法中,应用最多的是吸附过滤法,作为滤料的吸附剂主要是活性氧化铝。 活性氧化铝是白色颗粒状多孔吸附剂,有较大的比表面积,是除氟比较经济有效的方法。活性氧化铝是两性物质,等电点约在9.5,当水的pH值小于9.5时可吸附阴离子,大于9.5时可去除阳离子。 因此,在酸性溶液中活性氧化铝为阴离子交换剂,对氟有极大的选择性。 1.活性氧化铝使用前可用硫酸铝溶液活化,使转化成为硫酸盐型,反应如下: (Al2O3)n?2H2O + SO42-→(Al2O3)n?H2SO4 + 2OH- 2.除氟时的反应为: (Al2O3)n?H2SO4 + 2F -→ (Al2O3)n?2HF + SO42- 3.活性氧化铝失去除氟能力后,可用1%-2%尝试的硫酸铝溶液再生: (Al2O3)n?2HF + SO42-→(Al2O3)n?H2SO4 + 2F- 每克活性氧化铝所能吸附氟的重量,一般为1.2~4.5mg,它取决于:原水的氟浓度、pH值、活性氧化铝的颗粒大小等。 二、应用范围: 我国地下水含氟地区的分布范围很广,因长期饮用含氟量高的水可引起慢性中毒,特别是对牙齿和骨骼产生严重危害。轻者患氟斑牙,表现为牙釉质损坏,牙齿过早脱落等,重者则骨关节疼痛,甚至骨骼变形,出现弯腰驼背等,完全丧失劳动能力。 所以高氟水的危害是严重的。我国饮用水标准中规定氟的含量不得超过1mg/L。 三、性能特点 1、设备造价低廉,运行费用低,管理简便; 2、滤料经过再生,可多次使用滤料寿命长; 3、除氟效果好,占地面积小。 四、产品结构:

本装置由除氟罐、滤料、再生装置、管路阀门等组成,根据不同的氟含量和处理水量,可选择不同大小的设备。 五、除氟器的选用方法: 除氟器的大小依据水量而定,根据用途不同可选用钢制或玻璃钢。除氟装置有固定床和流动床。固定床的水流一般为升流式,滤层厚度1.1~1.5m,滤速为3~6m/h。移动床滤层厚度为1.8~2.4m,滤速10~12m/h。 六、操作方法: 活性氧化铝在pH = 5~8范围内时,除氟效果较好,而在pH值为5.5时,吸附量最大。为减少酸的消耗和降低成本,我国多将pH控制在6.5~7.0之间,除氟装置的接触时间应在15min以上。 活性氧化铝失效后,出水含氟量超过标准时,运行周期即千结束须进行再生。再生时,活性氧化铝柱首先反冲洗10~15min,膨胀率为30~50%,以去除滤层中的悬浮物。 再生液浓度和用量应通过试验,一般采用Al2(SO4)2再生时为1~2%,采用NaOH时为1.0%。再生后用除氟水反冲洗8~10min,再生时间约1.0~1.5h。采用NaOH溶液时,再生后的滤层呈碱性,须再转变为酸性,以便去除F-离子和其它阴离子。 新型除氟设备的原理与工艺流程 含氟水经过比表面积较大的活性氧化铝吸附过滤层。在PH值5~6的条件下,水中氟离子被吸附生成难溶解的氟化物而被除去,其反应式如下:R2SO4+2F -=R2F2+SO42- 吸附剂失效后,用硫酸铝溶液进行再生,以恢复其吸附能力。当原水PH值大于7时,一般用二氧化碳气体进行调节。 除氟设备工艺特点:1、造价低、投资省;2、运行费用低,制水成本低;3、设备操作简便:实行自动化、半自动化操作不用调节pH值;4、设备安装和使用便利,该设备可以直接与深井中的变频泵连接,设备出水直接进入管网入户,无需原水池和出水池,无需二次加压;5、新型除氟设备的水利用率高,为98-99%以上;6、设备占地面积小。

地下水中砷是存在形态

砷是一种有毒元素,其化合物有三价和五价两种,三价砷的毒性大于五价。天然地下水和地表水砷主要以无机的H3AsO3、H2 AsO4-、HAsO42- 存在。 砷的来源主要有人为源和自然源,前者主要是指自然界局部的砷地球化学异常;后者是造成环境中砷污染的最主要因素。其中,工业上排放砷的主要部门有化工、冶金、焦炼、火力发电、造纸、皮革、电子工业等。在农业方面,曾经广泛利用含砷农药做杀虫剂和土壤消毒剂,其中用量较多的品种是砷化钙、砷酸铅、亚砷酸钙、亚砷酸钠等,另外有些有机砷被用来做除莠剂和防治植物病害,全世界每年通过各种途径进入水体的砷达11万吨。 人体砷中毒的剂量为10-50mg,致死剂量为100-300mg。砷主要通过呼吸道,食道,皮肤粘膜进入人体。砷中毒是一个以皮肤损害为主的全身性疾病,它可以危害人体的皮肤、呼吸、消化、泌尿、心血管、神经、造血系统等,按其发病过程可分为急性和慢性中毒。此外,砷还有三致作用,即致癌、致畸和致突变。砷的毒性主要是影响与硫氢基(SH)有关的酶的作用,妨碍细胞呼吸。一般来说,As(III)与SH基结合,会形成稳定的鳌合物,而As(V)对于SH 基几乎不具亲和性,故As(111)的毒性大于As(V)。 除砷工艺:砷的常规处理方法包括石灰或硫化物沉淀法,但其存在明显的缺点。如砷酸钙不稳定,能与二氧化碳反应生成碳酸钙和砷酸,再次进入水体中。在pH值0.6~1.6范围之内容易产生H2S气体,恶化工作环境;处理后的水含钙和硫化物超标,很难达到回用的要求等。 目前,国内外使用较多的除砷技术主要有混凝、吸附、氧化、离子交换、膜分离和生物法。 吸附法以其使用简便、经济、可再生等特点被广泛应用,是饮用水中砷去除的有效方法之一.该方法是以具有高比表面积、不溶性的固体材料作吸附剂,通过物理吸附、化学吸附或离子交换作用等机制将水中的砷污染物固定在自身的表面上,从而达到除砷的目的。主要的除砷吸附剂有活性氧化铝、活性炭、骨炭、沸石以及天然或合成的金属氧化物及其水合氧化物等。 用各种金属氧化物包括稀土元素氧化物如镧、锆和铈氧化物,铁的氧化物如针铁矿、赤铁矿和无定形氢氧化铁等去除砷的研究都已有报道,但这些氧化物大都不具备良好的孔结构,机械强度较差,易流失,难应用于固定床。水中砷酸根和亚砷酸根离子都有一定比例的存在,上述吸附剂大都不能有效去除亚砷酸根离子,因此当用它们去除砷时,必需预氧化过程如用氯和高锰酸钾氧化等,增加了操作难度和费用。将各种吸附载体载入铁、铜、锆、铈等配位中心,提高吸附砷的选择性和吸附容量,是现今吸附除砷技术的要点。 纤维素是天然可再生材料,载体亲水性好,孔隙度大,已广泛用作生物活性材料,用来吸 附和分离氨基酸、蛋白质和核酸,以及去除水中的重金属等,具有良好的机械强度和耐磨性能,且与相关吸附剂相比成本低廉.用纤维素粘胶包埋超细无机金属氧化物,制备复合球形纤维素,能增强球体力学强度,抑制纤维素的溶胀性能。 通过测量砷的X-射线吸收边精细结构,表明吸附反应没有改变砷的氧化还原价态.As(V)和 As(Ⅲ)均以内配位方式与吸附剂活性组分结合,且砷氧四面体和铁氧八面体的主要结合方式为双齿双核角配位.吸附剂的制备方法简单,具有良好的机械强度和耐磨性能,且与相关吸附剂相比成本低廉. 测定水中砷的国家标准方法有:二乙基二硫代氨基甲酸银光分光光度法 (GB7485-1987)和硼氢化钾一硝酸银分光光度法(GBll900-1989)等.

除氟技术汇总

处理方法 优点缺点 化学沉淀法石灰操作简单、方便、成本低出水15-20 mg/L(CaF2溶解度16.3 mg/L @18 o C)——不适用于饮水处理中性钙盐反应慢 混凝沉淀法铝盐药剂量小,处理量大,可达废水排放标 准(10 mg/L)单独处理出水难低于10 mg/L,废渣;适用于工业 铁盐 聚硅酸氯化物PAM 吸附法Al型活性氧化铝-传统除F剂,主要方法 OH->F->TOC>SO42->Cl->HCO3-技术成熟,适于大规模除氟处理,在我 国许多地区均有较大规模的活性氧化铝 除氟装置 pH值高、磷酸根(0.01 mg/L)、硫酸根等 阴离子影响吸附;Al易流失,Al对人体有 害;吸附容量小(0.8-2.0mg/g),导致再生 频繁、复杂;滤料易板结 氢氧化铝(pH 6.5-7.5)阴离子影响吸附,最佳pH 6.5-7.5 磷酸盐型羟基磷灰石(HAP)降氟容量大,不需调节pH值,易再生, 无二次污染 骨炭(主要成分为:碳酸磷灰石[Ca3(PO4)2·CaCO3]和羟基磷灰石[Ca10(PO4)6·(OH)2])价格较便宜,吸附容量较活性氧化铝高, 可达到2~3mg/g,吸附饱和后可用5% NaOH溶液再生;我国在70-80年代有很 多水厂采用 机械强度不如活性氧化铝,机械损耗率每 年可达5%,操作不当易造成骨炭流失, 且出水腥臭味 活性氧化镁类活性氧化镁吸附容量较高,约为6~14mg/g;最佳 pH值为6~7,操作简单,除氟后水中 往往残留少量镁离子,对人体预防和治 疗氟中毒有积极作用;在广大农村、厂 矿等一些分散地用作除氟剂使用 再生复杂,要在420-1000℃下进行灼烧

除氟设备原理

一、工作原理: 我国饮用水除氟方法中,应用最多的是吸附过滤法,作为滤料的吸附剂主要是活性氧化铝。 活性氧化铝是白色颗粒状多孔吸附剂,有较大的比表面积,是除氟比较经济有效的方法。活性氧 化铝是两性物质,等电点约在 9.5 ,当水的 pH 值小于 9.5 时可吸附阴离子,大于 9.5 时可去除阳离子。 因此,在酸性溶液中活性氧化铝为阴离子交换剂,对氟有极大的选择性。 1. 活性氧化铝使用前可用硫酸铝溶液活化,使转化成为硫酸盐型,反应如下: (AI 2Q ) n?2H0 + SO 42- T (AI 2Q ) n?HSO + 2OH - 2. 除氟时的反应为: - 2- (Al 2C 3) n?HSQ + 2F — ( Al 2^) n?2HF + SO 。 3. 活性氧化铝失去除氟能力后,可用 1%-2%尝试的硫酸铝溶液再生: 2- - ( Al 2O 3) n?2HF + SO 42- —( Al 2O 3) n?H 2SO 4 + 2F - 每克活性氧化铝所能吸附氟的重量,一般为 1.2?4.5mg ,它取决于:原水的氟浓度、 pH 值、活性 氧化铝的颗粒大小等。 二、应用范围: 我国地下水含氟地区的分布范围很广,因长期饮用含氟量高的水可引起慢性中毒,特别是对牙齿 和骨骼产生严重危害。轻者患氟斑牙,表现为牙釉质损坏,牙齿过早脱落等,重者则骨关节疼痛,甚至骨 骼变形,出现弯腰驼背等,完全丧失劳动能力。 所以高氟水的危害是严重的。我国饮用水标准中规定氟的含量不得超过 1mg/L 。 三、 性能特点 设备造价低廉,运行费用低,管理简便; 滤料经过再生,可多次使用滤料寿命长; 除氟效果好,占地面积小。 四、 产品结构: 本装置由除氟罐、滤料、再生装置、管路阀门等组成,根据不同的氟含量和处理水量,可选择不同 大小的设 备。 五、除氟器的选用方法: 除氟器的大小依据水量而定,根据用途不同可选用钢制或玻璃钢。除氟装置有固定床和流动床。固 定床的水流一般为升流式, 滤层厚度1.1?1.5m ,滤速为3?6m/h 。移动床滤层厚度为1.8?2.4m ,滤速10? 1、 2、 3、

氟超标饮用水降氟技术

氟超标饮用水降氟技术 一、 氟是人体生命必不可少的微量元素之一。适量的氟能使骨、牙坚固,减少龋齿发病率。饮用水适宜的氟质量浓度为0.5~1 mg/L。当饮用水中氟含量不足时,易患龋齿病;但若长期饮用氟质量浓度高于1 mg/L的水,则会引起氟斑牙病;长期饮用氟质量浓度为3~6 mg/L的水会引起氟骨病。氟长期积累于人体时能深入骨骼生成 CaF 2 ,造成骨质松脆,牙齿斑釉,韧带钙化,关节僵硬甚至瘫痪,严重者丧失劳动能力。氟慢性中毒还可产生软组织损害,甚至肿瘤发生,并有致白血病的危险性。据近年的资料报道,长期摄入过量的氟化物还有致癌、致畸变反应。为了防止和减少氟病发生率,控制饮用水中的氟含量是十分必要的。 我国不少地区饮用水源的氟含量较高,目前,全国农村约有7000多万人饮用高氟水 ( 氟含量 >1mg/L) ,水中含氟量最高可达 12 ~ 18mg/L,导致不同程度的氟中毒。如内蒙古雅布赖地区,东北克山地区,安徽北部、宁夏大部、河北部分地区、天津等。 有效降低饮水中的氟含量,其途径一是选用适宜水源,二是采取饮水除氟,使含量降到适于饮用的范围。选取适宜水源往往受到自然条件限制,多数情况下采用饮水除氟方式获得洁净饮水。饮水除氟是通过物理化学作用,将水中过量的氟除去。 氟(F)是与人体健康密切相关的微量生命元素,原生环境中氟过量或不足均会导致机体产生疾病。国家规定生活饮用水中适宜的氟含量为0.5~1.0 mg/ L[1]。高氟地下水指氟含量超过饮用水标准,并使人体产生氟中毒现象的地下水体。高氟地下水影响区域在我国广泛分布,我国内陆除上海市外,各省、市、自治区均有病区。全国饮水型地方氟病分布面积约220万km2,据全国重点地方病防治规划(2004—2010年),截至2003年底,全国有氟斑牙患者3 877万人、氟骨症患者284万人[2]。因此探讨我国高氟地下水形成的特点,并提出防止氟中毒方案具有现实意义。 1 我国高氟水形成特点的主要影响因子 氟的富集是长期地质作用和地球化学演变的结果,我国高氟水形成特点主要影响因子概括为背景岩石、蒸发作用、地温环境以及人类活动。 1.1 背景岩石 氟广布于自然界中,地壳岩土中的含氟矿物就在百种以上,绝对不含氟的岩土是很少见的。土壤中黏土矿物为氟源,在风化过程中,这些矿物促使土壤中的元素和循环水中的元素发生离子交换。一般情况黏土矿物土壤中除了云母、角闪石中的F-被氢氧基置换以外,磷灰石、冰晶石和萤石是循环水中F-的主要来源[3]。磷灰石、冰晶石、萤石风化淋溶产物见下式: Ca5(PO4)3F→F-+5Ca2++3PO3-4 Na3AlF6→6F-+3Na++Al3+CaF2→2F-+Ca2+ 以华北平原地下水背景岩石数据为例,作出地下水氟含量与岩石氟含量的相关关系图(如图1所示),显示富含氟的岩石含水层中地下水含氟量高,在地下水-岩石系统中,地下水中氟含量与含水层岩石氟含量呈正相关关系。可见含水层中的富氟岩石为高氟水的形成提供了条件。 1.1.1 地下水的pH值 在pH值低的酸性水中,氟离子与氢离子生成氢氟酸,氢氟酸溶解二氧化硅及硅酸盐岩石生成气态的氟化硅,使地下水中的氟减少,不利于氟的富集;另外由于氟离子(F-)和钙离子(Ca2+)能形成难溶的氟化钙(CaF2)[4],其反应式为2F-+Ca2+→CaF2pH值低的酸性水使反应物F-降低,而促使F-迁移,不利于氟的富集;pH值高的地下水可使铝硅酸盐矿物溶于水。当碱金属水解时,可增强水的碱性,促使含氟硅酸盐矿物的溶解,使岩石中的氟溶出,地下水中的氟含量增大。由此得出,pH值越高的地下水越有利于氟的富集。 1.1.2 水中各种离子 钠质水分布区氟含量高,钙质水分布区则相反。氟的钠盐和钙盐在水中的溶解度极不相同,氟化钙的溶解度为16 mg/L,氟化钠的溶解度为42×103mg/L,氟化钠在水中完全溶解时,氟在地下水中呈离子状态存在。前者在水中溶解度很低,大部分为白色沉淀,大部分氟赋存在矿物中而未游离出来,形成地下水中高钙低氟、高钠高氟的现象[3]。当水中钙离子为主要阳离子时,氟化钙溶解度减小,地下水中氟含量减小;当水中钠离子或者镁离子为主要离子时,氟化钙的溶解度增加。当水中钙离子含量增加时,氟的络合物遭到破坏,钙与氟结合成难溶的氟化钙,减少了地下水中氟含量。另外,由于碳酸根及碳酸氢根会促进氟化钙的溶解,使地下水中的氟含量增加。 1.2 蒸发作用

地下水除氟的净化 技术研究现状

Sustainable Development 可持续发展, 2019, 9(1), 17-24 Published Online January 2019 in Hans. https://www.360docs.net/doc/4215829191.html,/journal/sd https://https://www.360docs.net/doc/4215829191.html,/10.12677/sd.2019.91004 Research Status of Purification Technology for Fluoride Removal from Groundwater Lue Xiong, Kai Huang* School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing Received: Nov. 30th, 2018; accepted: Dec. 18th, 2018; published: Dec. 27th, 2018 Abstract Due to natural reasons and the increase in the production of fluorine industry in China in recent years, the fluoride content of groundwater in some areas exceeds the standard, leading to fre-quent occurrence of endemic fluorosis, which is harmful to people’s health, especially in remote rural areas. At present, some of the main methods for treating fluoride ions in water include coa-gulation sedimentation, lime precipitation, ion exchange, electrocoagulation, reverse osmosis, and adsorption. Compared with other methods, the adsorption method has advantages in terms of in-dustrial cost, fluorine removal efficiency, and process operation. This paper emphatically introduces the defluoridation by biosorption and briefly discusses its mechanism, which shows the feasibility of biosorption for defluoridation. Several suggestions for the treatment of high-fluorine groundwater are proposed, and the further development of biosorption in the future is expected. Keywords High Concentration of Fluoride Groundwater, Methods of Purification, Biosorption, Mechanism of Defluorination 地下水除氟的净化 技术研究现状 熊略,黄凯* 北京科技大学,冶金与生态环境工程学院,北京 收稿日期:2018年11月30日;录用日期:2018年12月18日;发布日期:2018年12月27日 *通讯作者。

废水除砷方案设计分析

密级保密 编号BJC20181203 应用TA-68mp树脂 废水除砷方案设计报告 编辑:*** 2018年12月03日·北京

1.光伏行业含砷废水深度处理方案设计分析 2. TA-68mp简介 2.1 TA-68mp基本技术参数 2.1.1 TA-68mp简要说明 TA-68mp由于其本身的大孔特性而显示出了优越的物理特性和化学稳定性,适合于在广泛的PH 范围内和温度条件下使用。 TA-68mp具有很强的抵抗有机物污染的能力,因此它可适用于含高浓度有机物和颜色的水质,可适用水处理砷的去除。 2.1.2 TA-68mp典型特性 型式/Type 强碱性阴离子交换树脂/strong base anion exchange resin 主体结构/Matrix structure 聚苯乙烯共聚物/Polystyrene copolymer 物理型式/Physical form 含水球状/Moist spherical beads 官能基/Functional group I 型季胺官能基/Quaternary Ammonium Type I 离子型式/Ionic form 氯/Chloride 总交换树脂( meq/ml ) 1.0meq/ml 目数/Screen size USS (湿) 16 to 50 粒度/Particle size(95% minm.) 0.3 - 1.2 mm 湿度/Moisture content 47±3% PH 范围/pH range 0 - 14 最大温度/Maximum Temperature Stability 60℃(140℉) 溶解性/Solubility 不溶于任何溶剂

水处理除氟方案(完整资料).doc

【最新整理,下载后即可编辑】 技术文件 1、设计制造方案 1、设计原则 ?依据招标方的招标文件的要求而设计; ?系统出力:8000m3/d,出水氟含量:小于1mg/L; ?水处理系统保证出水水质稳定; ?因设备布置在潮湿的场所,因此,设备具有较好的防腐 能力; ?设备技术系统是先进的、可靠的;后期日常运行成本保 证在低限范围内; 2、设计标准 ?出水水质达到生活饮用水水质卫生规范GB5749-2006,氟 含量低于1mg/L; ?低压水箱ISO、GB或JB标准; ?水泵ISO、GB标准; ?管道、管件、法兰及阀门采用公制; ?电气:IEC、GB标准; ?进口材料:ASTM标准;

?安全:OSHA; 3、制造标准 ?除氟滤池材质采用钢砼结构浇筑;内部防腐采用卫生级 环氧煤沥青漆;保证过水不会被污染;具有北京市卫生 局颁发的涉水产品卫生批件(附件1); ?管道、阀门(双由令的便于后期维护)材质为不锈钢材 质;有国家省级部门颁发的卫生批件(附件2); ?除氟滤料采用活性氧化铝,滤料经过再生,可多次使用, 滤料寿命长; ?产品设计寿命30年;保证需方的使用效果和应用效益; ?设备操作便捷性高,无需专业人员维护;节约需方未来 人员管理成本; 4、执行标准 ?处理后达到GB5749—2006《生活饮用水卫生标准》,氟 含量≤1.0mg/L;

?设备接触水的材料应符合《生活饮用水输配水设备及防 护材料卫生安全评价规范》【2001年】; ?污水排放应符合GB8978-1996《污水综合排放标准》一级 排放标准设备操作便捷性高,无需专业人员维护;节约 需方未来人员管理成本; ?企业标准Q/FTYJ002—2010; 5、除氟装置的工艺特色与运行原理 5.1除氟设备的工艺流程简介 氟是人体不可缺少的微量元素,氟元素可以通过饮用水、食物和呼吸等各种途径进入人体,其中最主要的途径是饮用水。但是,当饮用水中氟的浓度过高(大于1.5 mg/L)时,反而会损害人体的健康。近年来,我国因饮用水中氟含量超标而造成的氟中毒的现象已较为严重。目前,饮用水除氟的方法有很多,如:吸附法、化学沉淀法、混凝沉降法、电化学法、反渗透法和离子交换法等,其中吸附法对氟的吸附效果显著,是除氟的主要方法。

除氟工艺

6 吨小时除氟设备

2019 年8 月

一、设备主要技术参数描述 二、工艺流程及简介 三、设备报价 四、成本核算 五、除氟设备照片

一、设备主要技术参数描述等相关技术资料 (一)除氟设备 1.1 目的和依据 氟是人体生命必不可少的微量元素之一。适量的氟能使骨、牙坚固,减少龋齿发病率。 饮用水适宜的氟质量浓度为0.5?1 mg/L。当饮用水中氟含量不足时,易患龋齿病;但若长期饮用氟质量浓度高于1 mg/L的水,则会引起氟斑牙病;长期饮用氟质量浓度为2?6 mg/L 的水会引起氟骨病。氟长期积累于人体时能深入骨骼生成CaF 2 ,造成骨质松脆,牙齿斑釉,韧带钙化,关节僵硬甚至瘫痪,严重者丧失劳动能力。氟慢性中毒还可产生软组织损害,甚至肿瘤发生,并有致白血病的危险性。据近年的资料报道,长期摄入过量的氟化物还有致癌、致畸变反应。为了防止和减少氟病发生率,控制饮用水中的氟含量是十分必要的。 我国不少地区饮用水源的氟含量较高,目前,全国农村约有7000多万人饮用高氟水(氟 含量>1mg/L),水中含氟量最高可达2?12mg/L,导致不同程度的氟中毒。如山西南部.山西北部. 东北克山地区,安徽北部、宁夏大部、河北部分地区、天津等。 有效降低饮水中的氟含量,其途径一是选用适宜水源,二是采取饮水除氟,使含量降到适于饮用的范围。选取适宜水源往往受到自然条件限制,多数情况下采用饮水除氟方式获得洁净饮水。饮水除氟是通过物理化学作用,将水中过量的氟除去。 1.2 编制依据《中华人民共和国生活饮用水卫生标准》GB5749-2006 《水处理设备制造技 术条件》JB2932-1999 ;《水处理设备性能试验总则》GB/T13922.1-1992 ; (2)工程概况 1.3 工程说明 1.3.1 厂区情况 1.3.2 厂址地质及气象条件 厂址附近无大的断裂带通过,处于相对稳定地段,适宜建厂。 厂址区域地震基本烈度为切度,地震动峰值加速度为0.05g。 厂址地址为:砂质粘土,抗压强度 1.5kg/cm2以上,无地下水。 厂址地处暖温带季风区大陆性气候。主要的气象特征值: 最冷月平均气温:-20 C 最热月平均气温:28.8 C 极端温度:最高35.5 °C,最低-30.0 °C

富砷地下水研究进展_郭华明

第22卷 第11期2007年11月 地球科学进展 A D V A N C E S I NE A R T HS C I E N C E V o l.22 N o.11 N o v.,2007 文章编号:1001-8166(2007)11-1109-09 富砷地下水研究进展* 郭华明,杨素珍,沈照理 (中国地质大学水资源与环境学院,北京 100083) 摘 要:原生高砷地下水已对人类健康构成了极大威胁,许多国家和地区对此进行了较深入的研究。在阅读国内外大量文献资料的基础上,全面系统地总结了世界范围内原生高砷地下水概况、砷富集环境和砷来源、分析方法和技术、砷富集机理以及高砷区水源安全保障技术等。提出了高砷地下水研究的主要发展方向,包括:含水介质中砷形态研究、微生物影响下含水层中砷的释放研究、同位素技术在高砷地下水研究中的应用以及高砷饮用水安全保障技术研究等。 关 键 词:高砷地下水;迁移;富集;微生物;同位素 中图分类号:P641.3 文献标识码:A 1 引 言 砷是地壳的微量组分,其化合物广泛用于工农业生产和医药。微量的砷可促进人体新陈代谢,生血润肤。然而,砷也是一种有毒致癌物,当它在人体中聚积到一定量时,即会对人体健康造成危害,可导致器官癌变,如皮肤癌、肺癌等。自然界中的砷广泛分布于大气、水、土、岩石和生物体中。在天然过程和人类活动的影响下,砷可释放到环境中。其中,天然过程所导致的原生高砷地下水是当前国际社会面临的最严重的环境地质问题之一,它严重威胁全世界数亿居民的身体健康[1]。在孟加拉盆地有超过4千万人口饮用砷浓度超标的地下水,砷中毒患者超过20万[2]。在我国,高砷地下水主要分布于台湾、新疆、云南、湖南、贵州、山西、内蒙古等省(自治区)的40个县(旗、市),受影响人口约230万人。 原生高砷地下水及其导致的地方性砷中毒,已引起国际社会的高度重视。许多国家和地区投入巨力调查与研究高砷地下水的形成机制,以解决饮水型砷中毒问题,为低砷地下水的勘查、开发及除砷技术的研究提供科学依据。本文在查阅大量国内外相关研究成果的基础上,系统分析了世界范围内高砷地下水的分布、水文地球化学特征以及迁移富集规律,并归纳总结了高砷地下水的研究现状,指出了相关领域的研究热点和发展趋势。 2 全球原生高砷地下水概况 地球上很多地区的含水层中砷浓度高于50μg/L,尤其在阿根廷、孟加拉国、智利、中国大陆、中国台湾、匈牙利、印度孟加拉州、墨西哥中部、罗马尼亚、越南、美国的西南部等。另外,在尼泊尔、缅甸、柬埔寨的部分地区也存在高砷地下水。世界范围内高砷地下水分布如图1所示。 2.1 国外原生高砷地下水的分布及特点 2.1.1 印度和孟加拉 在全球范围的高砷地下水区,孟加拉国和孟加拉州是人类受高砷地下水威胁最严重的地区。孟加拉国和印度孟加拉州的高砷地下水主要分布于喜马拉亚隆起带以南,印度洋孟加拉(B e n g a l)海湾以北的布拉马普特拉河(B r a h m a p u t r a)、恒河(G a n g e s)、梅克纳河(M e g h n a)3条河流形成的浅、中层全新世冲洪积及三角洲含水层中。受影响区地下水中砷的 * 收稿日期:2007-07-18;修回日期:2007-10-15. *基金项目:国家自然科学基金项目“原生高砷浅层地下水系统中砷的迁移转化复合界面效应研究”(编号:40572145)资助.  作者简介:郭华明(1975-),男,江西乐安人,副教授,主要从事水文地球化学、地下水污染控制等方面的教学与科研工作. E-m a i l:h m g u o@c u g b.e d u.c n

相关文档
最新文档