玉米淀粉厂物料衡算知识讲解

玉米淀粉厂物料衡算知识讲解
玉米淀粉厂物料衡算知识讲解

4.1衡算依据说明

由于从玉米到本设计产品结晶葡萄糖的过程中还有胚芽,纤维,蛋白粉等副产品产出,而设计的产品是结晶葡萄糖,为了计算方便,所以固定副产品干物,去除水分影响,以副产品带出的主产品干淀粉损失计算损失。

糖化车间把淀粉变成单分子的葡萄糖是增重反应,理论收率为111%,总算法直接算为收率的损耗,设定为108%标准收率。

由于糖液从离交出来以后设备内都是封闭的物理循环过程,损失可以不计,不合格产品又回配到前端工序,重新加工损失可以忽略[15]。

4.2主产品基础数据

胚芽占百分比7%

玉米浆占百分比6%

蛋白粉占百分比6%

纤维渣占百分比11%

胚芽分离损耗0.7%

蛋白粉分离损耗0.8%

纤维渣分离损耗 1.5%

淀粉洗涤损耗0.23%

工艺控制损耗0.9%

转鼓过滤损耗0.05%

板框过滤损耗0.1%

离子交换损耗0.1%

包装损耗0.01%

4.3辅料基础数据

辅料消耗以每吨纯糖消耗为标准,单位:kg 硫磺 0.186 淀粉酶 0.54 糖化酶 0.95 活性炭 0.47

离子交换树脂 视树脂使用情况 硅藻土 7 盐酸30% 0.85 纯碱 0.19

4.4过程指标控制标准

原料淀粉含水率 14% 亚硫酸含量 0.2-0.3% 稀玉米浆 6% 成品玉米浆干物 40% 破碎进料干物 30%

胚芽分离进料浓度 6-9 16.2% 精磨前浆浓度 50%

分离机进料浓度 6-9 16.2% 底流浓度 17-19 34.5% 洗涤前精淀粉浓度 18-20 33% 洗涤后精淀粉浓度 20-22 40.1% 胚芽脱水前含水率 85% 纤维脱水前含水率 85% 胚芽脱水后含水率 60% 纤维脱水后含水率 60% 蛋白粉气浮后含水率 85% 蛋白粉脱水后含水率 60%

3

2co Na /

Be /Be /Be /Be /Be

胚芽干燥后含水率 2% 纤维干燥后含水率 10% 蛋白粉干燥后含水率 12%

液化喷射浓度 16.3 29.5% 糖化液浓度 16 29% 过滤糖液糖含量 32% 蒸发出料干物 72.5-73.5% 结晶出料干物 53% 分离卸料水分 13% 烘干卸料水分 1%

4.5物料平衡计算

为了计算的简便,我们以100kg 干玉米原料能生产多少结晶糖产品来进行计算 4.5.1 主产品损耗计算

100kg 干玉米淀粉计算: 100-7-6-6-11=70kg 胚芽分离损失结余计算:(1-0.7%) 蛋白粉分离损失结余计算:(1-0.8%) 纤维渣分离损失结余计算:(1-1.5%) 淀粉洗涤损失结余计算:(1-0.23%) 工艺控制损失结余计算:(1-0.9%) 总计算:

70(1-0.7%)(1-0.8%)(1-1.5%)(1-0.23%)(1-0.9%)=67.15kg 糖化损失计算:67.15×108%=72.52kg

转鼓过滤损耗计算: 72.52×(1-0.05%)=72.484kg 板框过滤损耗计算:72.484kg×(1-0.1%)=72.412kg 离子交换损耗计算: 72.412kg×(1-0.1%)=72.34kg 包装损耗计算: 72.34×(1-0.01%)=72.33kg

Be /Be ?????

物料衡算

3.物料衡算 3.1生产过程的总物料衡算 3.1.1生产能力 年生产商品味精(99%)50000t,折算为100%味精为49500t/a。 日生产商品味精(99%):50000/320=156.25(t/d),折算为100%味精为155t/d。 3.1.2计算指标(以淀粉质为原料) 计算指标[10]见表3.1。 表3.1计算指标 项目指标 淀粉糖化转化率98.5% 发酵产酸率(浓度)11% 发酵对糖转化率60% 培养菌种耗糖为发酵耗糖的 1.5% 谷氨酸提取收率96% 精制收率95% 商品淀粉中淀粉含量86% 发酵周期(含辅助时间)40h 全年工作日320d 3.1.3物料衡算 (1)1000kg纯淀粉理论上产100%MSG量 1000×1.11×81.7%×1.272=1153.5kg 式中81.7%——谷氨酸对糖的理论转化率 1.272—— 纯味精相对分子质量 纯谷氨酸相对分子质量 = 184 147 =1.272 (2)1000kg纯淀粉实际产100%MSG量 1000×1.11×98.5%×60%×(100%-1.5%)×96%×95%×1.272=749.6kg (3)1000kg商品淀粉(含量86%的玉米淀粉)产100%MSG量 749.6×86%=644.7kg (4)淀粉单耗 ①1t100%MSG消耗纯淀粉量 1000 749.6 =1.334t/t ②1t100%MSG实耗商品淀粉量 1000 644.7 =1.5511t/t ③1t100%MSG理论上消耗纯淀粉量 1000 1153.5 =0.8669 t/t ④1t100%MSG理论上消耗商品淀粉量 0.8669 86% =1.008t/t (5)总收率可按以下两种方法计算

酒精生产总物料衡算

1、全厂物料衡算内容:原料消耗计算、中间产物量计算、成品及副产品量计算。 2、生产工艺流程图:生产工艺采用改良湿法、双酶糖化、连续发酵和半直接式三塔蒸馏流程,如图 燃料酒精 图改良湿法双酶糖化连续发酵燃料酒精流程示意图 3、工艺技术指标及基础数据 (1)生产规模:10000t/a燃料酒精 空压机 过滤器 酶母种 DDGS 分子筛脱水*杂醇油 原料(玉米) 摇瓶培养 斜面试管 无菌空气 车间

(2)生产方法:改良湿法、、双酶糖化、连续发酵和塔蒸馏。 (3)生产天数:300d/a (4)燃料酒精日产量:34t (5)燃料酒精年产量:10200t (6)产品质量:国际燃料酒精,乙醇含量鸠上(V)。 (7)主原料:国内酒精企业玉米粉(脱胚去皮)淀粉含量68%利用率为80%-92%, 水分14% (8)酶用量:耐高温a -淀粉酶用量8u/g原料,糖化酶用量为100u/g原料,酒母糖化醪用糖化酶量200u/g原料。 (9)硫酸铵用量:8kg/t酒精(提供氮源)。 (10)硫酸用量:t酒精(调节pH)。 二、10000t/a玉米淀粉燃料酒精厂全厂总物料衡算 1、原料消耗计算 现以生产%( V)成品酒精1000kg作为计算的基准。 (1)淀粉原料生产乙醇的总化学反应式为: (C6H10O5)糖化阶段:n+n H2O n C6H12O62C2H5OH+2CO 2(4 —2— 1) (C6H10O5)n+nH 2。nC6H12O6 (4 —2 —2) 162 18 180 发酵阶段: C6H12O6 2C2H5OH+2CO2 (4 —2 —3) 180 2 X 46 2 X 44 (2)每生产1000kg燃料酒精的理论淀粉消耗量:由式(4 —2-2)和(4 —2 —3)可求得理论上生产1000kg燃料酒精(%(V)的燃料酒精相当于%(W))所消耗淀粉量为: 1000 99.18% ------ 1746.5kg 2 46 (3)生产1000kg燃料酒精实际淀粉耗量:实际上,整个年产过程经历的各工序,如原料处理、发酵及蒸馏等,要经过复杂的物理化学和生物化学反应,所以产品得率必然低于理论产率。据实际生产经验,生产中各过程各阶段淀粉损失率如表4—1所示。 表4—1 生产过程淀粉损失一览表

第四章 物料衡算

第四章物料衡算 1.教学目的与要求 掌握化工过程物料衡算的基本方法,包括无化学反应的物料衡算、有化学反应的物料衡算。 2.主要教学内容 物料衡算式、物料衡算的基本方法、无化学反应的物料衡算、有化学反应的物料衡算以及物料衡算的计算机解题。 3.重点与难点: 重点:无化学反应及有化学反应的物料衡算方法 难点:具有循环、排放及旁路过程的物料衡算 4.学时分配: 8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。 通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另—些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在—个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,团为核反应能量变比非常大,此定律不适用)。

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,

生物工程工厂设计-物料衡算

红霉素生产物料衡算 1、红霉素发酵工艺流程示意图 工艺流程如下:沙土管包子母瓶斜面培养子瓶斜面培养种子培养液小罐种子液中罐种子液大罐发酵放罐放罐发酵液预处理碱化(使PH为8.0-8.4)板框过滤滤液(加萃取溶媒)轻液结晶洗水干燥成品检验合格产品包装(不合格产品回收)。 一般红霉素工艺如下图所示: 空气原料孢子 加压配料斜面培养 冷却发酵摇瓶培养 除水碱化一级种子 过滤补萃取补二级种子 料料 豆油离心糖 丙醇成盐水 淋洗 烘干包装销售 图1:红霉素生产工艺流程示意图 2、工艺技术指标及基础数据 (1)主要技术指标见表

表1:红霉素发酵工艺主要技术指标 指标名称单位指标数指标名称单位指标数 生产规模m t/a 1600 二级种子罐通气及取样 损失比s 1 % 10 生产方法发酵,萃取,成盐一级种子罐通气及取样 损失比s 2 % 10 年生产天数t d/a 330 发酵罐接种比j0% 14 产品质量μ 1 750 U/mg 二级种子罐接种比j1% 14 倒罐率r % 3 一级种子罐接种比j2% 12 发酵罐发酵周期T1h 168 发酵罐补料比i0% 10 二级种子罐发酵周期T2h 28 发酵罐装料系数k0% 87 一级种子罐发酵周期T3h 30 二级种子罐装料系数k1% 84 发酵液密度ρ Kg/m31050 一级种子罐装料系数k2% 84 二级种子罐发酵液密度ρ 1 Kg/m31150 放罐发酵单位μ2 U/ml 6000 一级种子罐发酵液密度ρ 2 Kg/m31200 提取总收率n % 84 发酵罐通气及取样损失比s % 10 表2:培养基配比(质量分数): 成分大罐配比% 中罐配比% 小罐配比% 补全料配比% 淀粉 5.00 1.80 1.80 4.380 豆粉 2.20 1.50 1.50 3.000 玉米粉 1.80 0.60 0.60 1.250 氯化钠0.65 0.30 0.30 1.630 豆油0.50 0.60 0.60 0.880 碳酸钙0.65 0.50 0.50 0.063 碳酸铵0.18 0.12 0.12 0.175 生物氮0.80 0.00 0.00 0.000 糊精0.00 1.20 1.20 1.500

物料衡算

第二章物料衡算 2.1反应器物料衡算 将原料及产品规格换算成摩尔分率,即 原料:甲醇含量(99.73%),水含量(0.27%) 产品:合成产品粗二甲醚中二甲醚回收率不小于99% 精馏工段二甲醚含量不小于99.95% 已知:二甲醚的摩尔质量M A =46.07 kg/kmol 甲醇的摩尔质量M B =32.04kg/kmol 水的摩尔质量M C =18.02 kg/kmol 假设年工作时间8000h,要求年产10万吨二甲醚,则每小时应生产二甲醚的量为: 100000×1000/(8000×46.07)=271.326 kmol/h 又因合成产品粗二甲醚中二甲醚回收率不小于99% 故而生产二甲醚的量为: F=271.326/0.99=274.067 kmol/h 图1 反应器物流简图 反应式: 2CH 3OH → CH 3 OCH 3 + H 2 O 本次设计由于采用的催化剂是γ-A1 20 3 ,甲醇的转化率为60%-80%,设定转化率 为75%,反应器应加入甲醇的量为: 274.067×2/0.75=730.845 kmol/h 原料中甲醇含量(99.73%),水含量(0.27%),则原料进料量为:

730.845/0.9973=732.824 kmol/h 水的量为:732.824×0.0027=1.979 kmol/h 按化学计量关系计算反应器出口气体各组分的量: CH 3OH: 730.845×25%=182.711 kmol/h H 2O: 1.979+274.067=276.046 kmol/h 进入反应器的气体总量Ft 0=732.824kmol/h ,给定空速S V =5000h -1,所以,催化剂床层体积V R 为: V R =q vn /s v =732.824×22.4/5000 =3.283m 3 表1 反应器阶段的物料组成 2.2二甲醚精馏塔物料衡算 粗产品进入二甲醚精馏塔,二甲醚从塔顶分离出来,而甲醇和水由塔底分离出来,接着进入甲醇精馏塔。 图2 二甲醚精馏塔物流简图

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算 化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反” 即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守 恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡 算。正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程 学科的特点。为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、 能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。 物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料 之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的 基础。一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。 绘制流程图时应注意: 1.用简洁的长方形来表达一个单元,不必画蛇添足; 2.每一条物质流线代表一个真实的流质流动情况; 3.区别开放与封闭的物质流 4.区别连续操作与分批操作(间歇生产) 5.不必将太复杂的资料写在物质流线上 确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。 合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种: 1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。 2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb

等。 3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。 4.干湿基准:水分算在内和不算在内是有区别的,惯例如下: 烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基; 奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。 化肥、农药常指湿基,而硝酸、盐酸等则指干基。 选取基准后,就要确定着眼物料了。通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。对于有化学反应的过程,参加反应的组分不能被选作着眼物料。 列物料衡算方程式时计算中要注意单位一致。列方程时,要注意:物料平衡是关于质量的平衡,而不是关于体积或者摩尔数的平衡。只有密度相同时才可列关于体积的方程,根据元素守恒可列相应的关于摩尔数的方程。 物料衡算方程的基本形式为:(以下均为质量,若密度不变,也可用体积或体积流速) 输入+产生=输出+积累+消耗。 对于无反应的物理过程,没有产生和消耗,所以输入=输出+积累,如果是稳态过程,积累=0,则方程变为:输入=输出。以下分别对特定的单元操作讨论物料衡算关系。 1.输送:连续性方程,进管液体=出管液体;进泵液体=出泵液体 2.过滤:总平衡:输入的料浆=输出的滤液+输入的滤饼; 液体平衡:料浆中的液体=滤液中的液体+滤饼中的液体 3.蒸发:原料液=积累+母液+晶体+水蒸气 其他过程类似。值得注意的是,如果对于每个组分列物料衡算方程,则总衡算方程不用列出,因为其不独立。一般来说,对于无反应的物理过程,如果有n 个组分,就可以列出n个方程。 对于有化学反应的过程,物料衡算要更复杂一些,因为反应中原子重新组合,消耗旧物质,产生新物质,所以每一个物质的摩尔量和质量流速不平衡。此外,在化学反应中,还涉及化学反应速率、转化率、产物的收率等因素。为了有利于反应的进行,往往一种反应物要过量。因此在进行反应过程的物料衡算时,应考虑以上因素。对于不参加反应的惰性物质列衡算方程通常比较方便。通常来讲,总质量衡算和元素衡算用得较多,组分衡算对于有化学反应的过程不可以用。 有化学反应的过程物料衡算通常有以下几种方法:直接计算法、利用反应速率进行物料衡算、元素衡算法、化学平衡常数法、结点衡算法、联系组分衡算法等。

物料衡算

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,按正确的解题方法和步骤进行。尤其是对复杂的物料衡算题,更应如此,这样才能获得准确的计算结果。 4-3 画物料流程简图方法

求解物料衡算问题,首先应该根据给定的条件画出流程简图。图中用简单的方框表示过程中的设备,用线条和箭头表示每个流股的途径和流向。并标出每个流股的已知变量(如流量、组成)及单位。对一些未知的变量,可用符号表示。4—4 计算基准及其选择 进行物料、能虽衡算时,必须选择一个计算基准。从原则上说选择任何一种计算基准,都能得到正确的解答。但是,计算基准选择得恰当,可以使计算简化,避免错误。 对于不同化工过程,采用什么基准适宜,需视具体情况而定,不能什硬性规定。 根据不同过程的特点,选样计算基准时,应该注意以下几点: 1. 应选择已知变量数最多的流股作为计算基准。 2.对液体或固体的体系,常选取单位质量作基准。 3. 对连续流动体系,用单位时间作计算基准有时较方便。 4. 对于气体物料,如果环境条件(如温度、压力)已定,则可选取体积作基准。

淀粉原料燃料酒精厂全厂总物料衡算

淀粉原料燃料酒精厂全厂 总物料衡算 任务:42t/d的酒精厂发酵车间的设计 姓名: 班级: 学号: 酒精厂全厂总物料衡算 一.生产工艺 (一).生产产量及方案 产量:日产酒精42吨 产品品种:含乙醇95%(V)相当于92.1%(W)食用酒精 (二).生产方法的选择 工艺方法:利用玉米为原料,双酶糖化,添加酒精酵母连续发酵、三塔蒸馏的工艺是目前最成熟、最典型的生产工艺。 酒精生产工艺流程简图: (三)主要工艺参数: 年生产天数:300天玉米含水:15% 玉米粉产率:87% 玉米含淀粉:63% 玉米淀粉实际出酒率:53% 发酵周期: 60h 原料粉碎率: 2.5mm

原料加水比:1:3 α-淀粉酶用量: 6u/原料 蒸煮温度:100℃ 蒸煮时间:100min 糖化酶用量:100u/g 原料 糖化温度: 60℃ 糖化时间:45min 糖化醪固形物浓度:18% 糖化醪PH 值:4.0 接种量:10% 稀释速率: 0.1 发酵温度: 33℃ 发酵罐装料系数:90% 发酵醪酒精浓度: 10%(V/V )相当于8.01%(质量分数) 二. 全厂物料衡算的内容 淀粉原料酒精厂的物料衡算包括两部分,第一部分是生产过程全厂总物料衡算,主要计算内容有: 2.1 原料消耗的计算: 主要原料为玉米,其它原料有淀粉酶、糖化酶、硫酸、硫酸铵等。 (1)中间厂品,蒸煮醪、酒母醪、发酵醪等。 (2)成品、副产品以及废气、废水、废渣既酒精、杂醇油。二氧化碳和废糟等。 2.2 原料消耗的计算 2.2.1 淀粉原料生产酒精的总化学反应式为: 糖化:()610526126n C H O nH O nC H O +→ (1) 162 18 180 发酵:612625222C H O C H OH CO →+ (2)

物料衡算

物料衡算 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。 3-1物料衡算式 1、化工过程的类型 化工过程操作状态不同,其物料或能量衡算的方程亦有差别。 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。 闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

连续操作过程:在整个操作期间,原料不断稳定地输入生产设备,同时不断从设备排出同样数量(总量)的物料。设备的进料和出料是连续流动的,即为连续操作过程。在整个操作期间,设备内各部分组成与条件不随时间而变化。 半连续操作过程:操作时物料一次输入或分批输入,而出料是连续的,或连续输入物料,而出料是一次或分批的。 稳定状态操作就是整个化工过程的操作条件(如温度、压力、物料量及组成等)如果不随时间而变化,只是设备内不同点有差别,这种过程称为稳定状态操作过程,或称稳定过程。如果操作条件随时间而不断变化的,则称为不稳定状态操作过程,或称不稳定过程。 间歇过程及半连续过程是不稳定状态操作。连续过程在正常操作期间,操作条件比较稳定,此时属稳定状态操作多在开、停工期间或操作条件变化和出现故障时,则属不稳定状态操作。 2、物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。所谓体系就是物料衡算的范围,它可以根据实际需要人为地选定。体系可以是一个设备或几个设备,也可以是一个单元操作或整个化工过程。 进行物料衡算时,必须首先确定衡算的体系。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积果量之和。所以,物料衡算的基本关系式应该表示为: ???? ?????? ?????? ??物料量积累的+物料量输出的=物料量输入的

物料衡算和热量衡算..

3 物料衡算 依据原理:输入的物料量=输出的物料量+损失的物料量 3.1 衡算基准 年生产能力:2000吨/年 年开工时间:7200小时 产品含量:99% 3.2 物料衡算 反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。在此基础上,只要计算第一个批次的投料量,以后加料一样。 反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。所以在正常的生产后,每22小时可以生产出一批产品。每年按300天生产来计算,共开工7200小时,可以生产327个批次。要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。产品纯度99 %( wt %) 实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。 3.2.1 各段物料 (1) 原料对叔丁基甲苯的投料量 设投料中纯的对叔丁基甲苯为X kg,则由 C11H16C11H14O2 M 148.24 178.23 m x 6054.8 得x=6054.8×148.24÷178.23=5036.0 kg 折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg 实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg (2)氧气的通入量 生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。实

际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg 3/2O2C11H14O2 M 31.99 178.23 m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg 此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。 (3)催化剂 催化剂采用乙酰丙酮钴(Ⅲ),每批加入量10.4 kg (4)水的移出量 设反应生产的水为x kg H2O C11H14O2 M 18.016 178.23 m x 6054.8 得x=6054.8×18.016÷178.23=612 kg 产生的水以蒸汽的形式从反应釜上方经过水分离器移出。 3.2.2 设备物料计算 (1)计量槽 对叔丁基甲苯计量槽: 一个反应釜每次需加入的对叔丁基甲苯质量为3475.1÷2=3475.15 kg 对叔丁基甲苯回收计量槽:每批反应结束后产生母液1834.8kg 甲苯计量槽:每批需加入甲苯做溶剂,加入量为396.1 kg (2)反应釜:反应结束后,经过冷却、离心分离后,分离出水612kg,剩余的对叔丁基甲苯1834.8kg循环进入下一批产品的生产。分离出来的固体质量为:6950.3+10.4+1646.6-612-1834.8=6160.5 kg 。 (3)进入离心机的物料:6950.3+10.4+1646.6-1834.8-612=6160.5kg (4)脱色釜:分离机分离出来的粗产品移入脱色釜,加入甲苯做溶剂,加入量为396.1 kg,搅拌升温将产品溶解,再加入76.5 kg活性碳进行脱色。进入

玉米淀粉生产厂家推荐排名

玉米淀粉又称玉蜀黍淀粉。俗名六谷粉。白色微带淡黄色的粉末。将玉米用0.3%亚硫酸浸渍后,通过破碎、过筛、沉淀、干燥、磨细等工序而制成。普通产品中含有少量脂肪和蛋白质等。 玉米淀粉由于其多种用途而成为烹饪中流行的成分。它也是天疱疮的天然盟友:它是一种不含麸质的碳水化合物。 玉米淀粉除部分直接用于食品、烹饪和工业使用外,可以分别通过变性生产变性淀粉、水解生产淀粉糖和发酵生产氨基酸、有机酸、酶制剂、抗菌素、多糖、酒精等生化产品。酒精不但可以用作燃料乙醇,而且通过化学反应制成乙烯、乙酸乙酯、丁二烯和乙醛等中间产品,进一步加工生产精细化工产品。 普通淀粉在冷水中不能成糊、回生、黏度不稳定,但经过物理、化学处理改变淀粉分子的结构,就能改变其原有性质,赋予新的功能特性,以满足不同用途,经过变性后形成变性淀粉。主要用于食品、饲料、造纸、纺织、医药、铸造、建筑、石油钻井、选矿、环境保护等领域。 一、玉米淀粉有以下用途:

1、玉米淀粉与水或牛奶混合后有独特的外观和质感,常用来掺在白糖粉作为抗粘结剂。 2、玉米淀粉常用作布丁等食品的凝固剂。利用双层蒸锅,以牛奶、砂糖、玉米粉和增香剂等配料就可轻易制作出简单的玉米粉布丁。 3、玉米淀粉也在中国菜和法国菜里用作增稠剂。中国菜里的“勾芡”,一般就是用玉米淀粉加上水制成的。 二、玉米淀粉制得玉米面的营养价值: 1、玉米面中含有亚油酸和维生素E,能使人体内胆固醇水平降低,从而减少动脉硬化的发生。 2、玉米面中含钙、铁质较多,可防止高血压、冠心病。 3、粗磨的玉米面中含有大量的赖氨酸,可抑制肿瘤生长。

4、玉米面含有微量元素硒,硒能加速人体内的氧化物分解,抑制恶性肿瘤 5、玉米面中丰富的膳食纤维,能缩短食物通过消化道的时间,减少有毒物质的吸收和致癌物质对结肠的刺激,因而可减少结肠癌的发生。 以上就是玉米淀粉的相关内容,希望能帮到您,感谢您的阅读!

物料衡算

三.工艺设计计算 3.1 物料横算 3.1.1物料衡算的意义 物料横算,是在已知产品规格和产量前提下算出所需原料量、废品量及消耗量。同时,还可拟定出原料消耗定额,并在此基础上做能量平衡计算。通过物料横算可算出: (1)实际动力消耗量 (2)生产过程所需热量或冷量 (3)为设备选型、决定规格、台数(或台时产量)提供依据 (4)在拟定原料消耗定额的基础上,可进一步计算日消耗量,每小时消耗量 等设备所需的基础数据。 综上所述,物料衡算是紧密配合车间生产工艺设计而进行的,因此,物料衡算是工艺设计过程的一项重要的计算内容。 3.1.2物料横算的方法 塑料制品的生产过程多采用全流程、连续操作的形式。 物料衡算的步骤如下: (1)确定物料衡算范围,画出物料衡算示意图,注上与物料衡算有关的数据。 物料衡算示意图如下:

(2)说明计算任务。如:年产量、年工时数等。 (3)选定计算基准。生产上常用的计算基准有:①单位时间产品数量或单位 时间原谅投入量,如:kg/h,件/h,t/h(连续操作常采用此种基准);②加入设备的原料量(间歇操作常采用此种基准)。 (4)由已知数据,根据下列公式进行物料衡算: ΣG1=ΣG1+ΣG3 式中:ΣG1——进入设备的物料量总和 ΣG2——离开设备的正品量和次品量总和 ΣG3——加工过程中物料损失量总和 (5)收集数据资料。一般包括以下方面: ①年生产时间:连续生产300~350 d 间歇生产200~250 d 连续生产时,年生产的天数较多,在300d左右,其他时间将考虑全长检修,车间检修或5%~10%意外停机。当间歇生产时,就要减去全年的休息日,目前为双休日加上法定假日全年约为110d,所以间歇生产比连续生产少110个工作日。 总之,确定了每年有效地工作时数后就能正确定出物料衡算的时间基准,算出每小时的生产任务,进而在以后的计算中选定设备的规格。 具体的选择天数要通过分析得出。 ②有关定额、合格率、废品率、消耗率、回收率等。在任何一个产品加 工过程中,合格产品都不是百分之百。由于设备原因、原材料原因以及人为原因都可能造成废品的出现。加工不同的产品出现废品的几率有差异,要具体情况具体分析。才外还应考虑车间管理水平、设备先进水平等,取高值与低值都应有充分的论据。经过电铲研究后发现:塑料制品合格率为85%~95%、自然损耗率为0.1%~0.15%,这主要是贮存、运输、

玉米淀粉厂物料衡算讲课稿

4.1衡算依据说明 由于从玉米到本设计产品结晶葡萄糖的过程中还有胚芽,纤维,蛋白粉等副产品产出,而设计的产品是结晶葡萄糖,为了计算方便,所以固定副产品干物,去除水分影响,以副产品带出的主产品干淀粉损失计算损失。 糖化车间把淀粉变成单分子的葡萄糖是增重反应,理论收率为111%,总算法直接算为收率的损耗,设定为108%标准收率。 由于糖液从离交出来以后设备内都是封闭的物理循环过程,损失可以不计,不合格产品又回配到前端工序,重新加工损失可以忽略[15]。 4.2主产品基础数据 胚芽占百分比7% 玉米浆占百分比6% 蛋白粉占百分比6% 纤维渣占百分比11% 胚芽分离损耗0.7% 蛋白粉分离损耗0.8% 纤维渣分离损耗 1.5% 淀粉洗涤损耗0.23% 工艺控制损耗0.9% 转鼓过滤损耗0.05% 板框过滤损耗0.1% 离子交换损耗0.1% 包装损耗0.01% 4.3辅料基础数据

辅料消耗以每吨纯糖消耗为标准,单位:kg 硫磺 0.186 淀粉酶 0.54 糖化酶 0.95 活性炭 0.47 离子交换树脂 视树脂使用情况 硅藻土 7 盐酸30% 0.85 纯碱 0.19 4.4过程指标控制标准 原料淀粉含水率 14% 亚硫酸含量 0.2-0.3% 稀玉米浆 6% 成品玉米浆干物 40% 破碎进料干物 30% 胚芽分离进料浓度 6-9 16.2% 精磨前浆浓度 50% 分离机进料浓度 6-9 16.2% 底流浓度 17-19 34.5% 洗涤前精淀粉浓度 18-20 33% 洗涤后精淀粉浓度 20-22 40.1% 胚芽脱水前含水率 85% 纤维脱水前含水率 85% 胚芽脱水后含水率 60% 纤维脱水后含水率 60% 蛋白粉气浮后含水率 85% 蛋白粉脱水后含水率 60% 3 2co Na / Be /Be /Be /Be /Be

玉米淀粉厂工程设计规范 编制说明

《玉米淀粉厂工程设计规范》行业标准 编制说明 随着食品工业化的发展,玉米深加工的增值效益明显;以及化工、纺织、医药、饲料、造纸、石油等行业对变性淀粉的需求量越来越大,玉米淀粉的应用快速发展,玉米深加工扩建、再建的形势非常积极。同时,对生产规模、产业链条、产品结构、产品质量、产品发放、节能环保、生产安全和食品安全等方面提出了新的要求。 制定《玉米淀粉厂工程设计规范》,不仅提升玉米淀粉生产设计水平和规范程度,满足玉米淀粉生产厂建设需求,推动玉米淀粉生产向规模化、产业化、安全化、智能化、专用化可持续发展;还将适应现代农业发展的需要,满足市场配置资源和政府宏观调控的需求,对支撑国家粮食安全战略有着深远的意义。 1工作简况 1.1任务来源及起草单位 1.1.1任务来源 本标准来源于国家粮食局办公室《关于下达2017年第二批粮油行业标准制修订计划的通知》(国粮办发〔2017〕177号),明确由河南工业大学牵头制定《玉米淀粉厂工程设计规范》粮食行业标准。于2017年8月接到计划下达及签订通知后,于次月完成粮油标准制修订计划项目委托协议的签订。 1.1.2起草单位 根据国家粮食局粮油行业标准制定计划的要求,由河南工业大学牵头,河南工大设计研究院、郑州精华实业有限公司、河南亿德制粉工程技术有限公司共同负责《玉米淀粉厂工程设计规范》标准起草工作。起草单位成立的标准起草组负责进行本标准的各项工作。 1.2主要工作过程 2017年粮油行业标准计划下达后,标准起草组根据项目内容确定该项工作的具体方案和工作计划,按照项目任务要求,迅速开展工作。

1.2.1收集、查阅、整理相关资料 收集整理玉米淀粉厂生产工艺等信息。对玉米淀粉的原料、生产工艺、销售、应用等情况进行了调查和研究。查阅了大量的有关玉米淀粉生产的国内外文献,对其生产工艺的文献资料进行了归纳、总结,并了解了玉米淀粉加工整个行业的生产工艺现状。收集、查阅、更新与玉米淀粉相关的原料质量标准、生产加工、计量等需遵循的国内外法规、标准、规范、办法。 1.2.2企业调研 调查近20年来,特别是近10年来,已建成典型的玉米淀粉厂的实际技术经济指标,如占地面积、绿化率、工艺、设备、造价等;玉米淀粉厂建成的时间、功能、规模、构成、投资及运营情况等;玉米淀粉厂的仓储、运输等情况;玉米淀粉的加工工艺、设备类型、规格、功率、能耗指标、环保情况等;调查了解国有企业和民营企业的建设和使用情况;机械化、自动化、信息化、数字化建设与运营情况;工厂富足设施与配套设施建设与运营情况,如种类构成、规模、标准、实际作用、使用率及效率等;玉米淀粉厂发展需求预测;玉米淀粉厂建设工期;玉米淀粉厂定员与用工数量;玉米淀粉厂安全设施情况,如消防、安全保护等。 做好调查研究,进行专题研究,使所制定的标准能支撑玉米淀粉生产建设,作为国家行政主管部门审批或核准时的重要参考依据,具有前瞻性,以推动技术进步、促进管理水平提高,努力实施新技术、新设备、新工艺、电子信息及数字化,力求节能、高效、绿色、环保。 1.2.3编制《玉米淀粉厂工程设计规范》行业标准征求意见稿 标准起草小组根据确定的工作方案,于2017年8月~12月广泛收集、查阅、整理相关资料,同时进行企业调研。随后在2018年1月~5月,经过多次讨论论证,标准起草单位河南工业大学、河南工大设计研究院、郑州精华实业有限公司、河南亿德制粉工程技术有限公司,在调研企业的协助下完成了详细的设计玉米淀粉厂的各项技术标准,并对设计标准条文进行说明。依据《中华人民共和国标准化法》《中华人民共和国标准化法实施条例》《行业标准制定管理办法》《标准化工作导则》《标准化工作指南》等法律、法规、条例、办法、标准的要求,起草《玉米淀粉厂工程设计规范》行业标准征求意见稿初稿。

氯碱物料衡算

1.氯气、氢气处理物料衡算 题目200 kt/a烧碱装置氯气、氢气处理工序的初步设计 原始数据 200 kt/a烧碱装置Cl2、H2处理,年工作日330天,其余数据以工厂实际收集数据为准。 说明书内容: (1)生产方法以及今后的发展前途 (2)生产方法的选择及流程简述。根据前面介绍的方法,你选择什么方法生产,并说明理由。简述你的流程 (3)物料衡算整个计算过程的整理 (4)设备计算 (5)热量衡算 (6)选择其他设备 (7)生产过程应控制的指标 (8)附带控制点的工艺流程图一份、设备简图一张 (9)可以谈谈你的设计体会(有无都可) 目录 第一篇氯气处理 1 第一章总论 1 一概述 1 二氯气处理的任务和方法 1 三工艺流程简介 2 第二章氯气工艺计算 4 一氯气处理工艺流程 4 二计算依据 4 三工艺计算 5 (一)钛冷却器 5 (二)硫酸干燥塔(填料塔)10 第三章主要设备设计及选型13 一钛冷却器13 二硫酸干燥塔(填料塔)25 第二篇氢气处理29 第一章总论29 一概述29 二氢气处理工艺流程确定30 第二章工艺计算31 一氢气处理工艺流程31 二计算依据31 三工艺计算32 (一)洗涤冷却塔32 第三章主要设备设计及选型36 一洗涤塔36 二主要管径38

三氢气输送设备39 四水输送泵39 五液封循环水池39 六氢气缓冲罐39 主要设备一览表40 设计评述41 参考文献42 第一篇氯气处理 第一章总论 一. 概述 1. 氯气 氯气Cl2,分子量70.906,常温下,氯是黄绿色,具有使人窒息气味的气体,有毒。氯气对人的呼吸器官有强烈的刺激性,吸入过多时还会致死。氯气比空气重,约为空气的2.5倍。氯气能溶于水,但溶解度不大,温度越高氯气在水中的溶解度越小。氯气溶于水同时与水反应生成盐酸和次氯酸,因此氯水具有极强的腐蚀性。氯气在四氯化碳,氯仿等溶剂中溶解度较大,比在水中的溶解度约大20倍。工业上利用氯气在四氯化碳中有较大溶解度这一特点,用四氯化碳吸收氯碱厂产生的所有废氯,然后再解吸回收氯气。 氯气的用途极为广泛,重要用途如:杀菌消毒、漂白及制浆、冶炼金属、制造无机氯化物、制造有机氯化物及有机物。 二. 氯气处理的任务和方法 从电解槽出来的湿氯气,一般温度较高,并伴有大量水蒸汽及盐雾等杂质。这种湿氯气,对钢铁及大多数金属有强烈的腐蚀作用,只有某些金属材料或非金属材料在一定条件下,才能耐湿氯气的腐蚀。例如金属钛,聚氯乙烯、酚醛树脂、陶瓷、玻璃、橡胶、聚酯、玻璃钢等因而使得生产及运输极不方便。但干燥的氯气对钢铁等常用材料的腐蚀在通常情况下时较小的,所以湿氯气的干燥时生产和使用氯气过程中所必须的。 氯气干燥前通常先使氯气冷却,使湿氯气中的大部分水蒸汽被冷凝除去,然后用干燥剂进一步出去水分。干燥后的氯气经过压缩,再送至用户。 在不同的温度与压力下气体中的含水量可以用水蒸汽分压来表示。在同一压力下,温度愈高,含水量愈大。其水蒸汽分压也就愈高。 为了使氯气能用钢铁材料制成的设备及管道进行输送或处理,要求氯气的含水量小于0.05%(如果用透平压缩机输送氯气,则要求含水量小于100ppm)。因此必须将氯气中的水分进一步除去。在工业上,均采用浓硫酸来干燥氯气,因为浓硫酸具有:(1)不与氯气发生化学反应;(2)氯气在硫酸中的溶解度小;(3)浓硫酸有强烈的吸水性;(4)价廉易得;(5)浓硫酸对钢铁设备不腐蚀;(6)浓硫酸可以回收利用等特点,故浓硫酸时一种较为理想的氯气干燥剂。 三.工艺流程简介 1 氯处理工艺 根据氯处理的任务氯处理的工艺流程包括氯气的冷却、干燥脱水、净化和压缩、输送几个部分。

物料衡算

物料衡算 1.教学目的与要求 掌握物料衡算的基本方法,学会对无化学反应的物料衡算及有化学反应的物料衡算进行计算。 2.主要教学内容 掌握物料衡算式、画物料流程简图的方法;计算基准的选择;无化学反应的物料衡算,有化学反应的物料衡算。 3.重点与难点: 重点:无化学反应及有化学反应物料衡算的计算方法 难点:有化学反应物料衡算的计算方法 4.学时分配:8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。 第一节物料衡算式 1 物料衡算式 1、化工过程的类型 化工过程操作状态不同,其物料或能量衡算的方程亦有差别。 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。 闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

三万吨味精发酵工厂设计包括物料衡算热量衡算和设备选型

年产3万吨谷氨酸发酵罐的设计 目录 前言 第一章年产3万吨谷氨酸的发酵罐 2.1 生产规模及计算 2.2通用发酵罐的系列尺寸 2.3发酵罐主要设计条件 2.4 发酵罐的型式 2.5发酵罐的用途 2.6冷却水及冷却装置 2.7设计压力罐内0.4MPa;夹套0.25 MPa 第二章谷氨酸生产工艺流程 3.1谷氨酸发酵工艺技术参数 3.2谷氨酸生产原料及处理 3.3谷氨酸生产工艺流程图 第三章工艺计算 4.1主要工艺技术参数 4.2总物料衡算 第四章发酵罐选型及工艺计算 5.1 发酵罐空罐灭菌蒸汽用量计算 5.1.1发酵罐体加热用蒸汽量 5.1.2 填充发酵罐空间所需蒸汽量 5.1.3 灭菌过程的热损失 5.1.4 灌壁附着洗涤水升温所需蒸汽量 5.2发酵罐的设计与选型 5.2.1发酵罐的选型 5.2.2生产能力,数量和容积的确定 5.2.3主要尺寸的计算 5.2.4冷却面积的确定 5.2.5 搅拌器的设计 5.2.6搅拌器功率的确定 5.2.7设备结构的工艺设计 5.2.8竖直蛇管冷却装置设计 5.2.9设备材料的选择 5.2.10发酵罐厚壁计算 5.2.11接管设计 第六章发酵罐设计图

第一章前言 谷氨酸是一种氨基酸, 其用途非常广泛,可用于食品、医学、化妆品等。谷氨酸生产,始于1910年日本的味之素公司用水解法生产谷氨酸。1956年日本协和发酵公司分离得到谷氨酸棒杆菌,使发酵法生产谷氨酸成为可能,由于发酵法生产氨基酸具有生产能力大、成本低、设备利用率高等特点,使氨基酸工业得到突飞猛进的发展[1]。我国1958年开始研究,1965年在上海天厨味精厂投产。目前我国谷氨酸的年产量已达170万吨,产销量占世界第一位[2]。经过几十年的发展,在该行业诸多工程人员的努力研究下,使我国谷氨酸生产四大收率指标(糖化收率、发酵糖酸转化率和产酸率、提取收率、精制收率)均达到历史最好水平。其质量已达国际领先水平。但是,在谷氨酸生产中仍然存在原料利用率低,生产成本高,自动化控制水平低,环境污染日趋严重等问题。因此,目前对谷氨酸行业的研究方向主要集中在提高自动化生产程度,改进生产工艺,处理三废,解决环境污染等方面。 第二章年产3万吨谷氨酸的发酵罐 2.1生产规模及计算 2.1.1生产规模:年产3万吨谷氨酸 2.1.2生产规格:纯谷氨酸 2.1.3生产制度:全年生产日320天;2~3班作业,连续生产。 2.1.4生产能力 日产量:30000t÷320d=93.75t/d 发酵周期:48h(包括发酵罐清洗、灭菌、进出物料等辅助操作时间) 发酵罐个数: 需要200 m3发酵罐25个 2.2 通用发酵罐的系列尺寸 表--通用发酵罐的系列尺寸

物料衡算

5 物料衡算 本设计是目标为年产1000吨苦荞抛光米的生产加工工艺,主要加工原料为苦荞麦,加工过程中的副产物为苦荞壳、废料肥料壳粉、黄粉等。对该工艺流程进行物料衡算,能较为直观清楚地了解各个工艺环节的物料流向,为苦荞企业生产和苦荞产业的发展提供一定的借鉴指导作用。 5.1 生产加工工艺流程 苦荞麦粒去杂蒸煮烘干脱壳精碾(添加植物油炒制)苦荞精米包装成品米 苦荞麦粒蒸煮烘干后脱壳产生苦荞糙米和苦荞壳,脱壳后产生的苦荞壳用于制作特色保健养生枕头。脱壳苦荞粒进过精碾工艺产生抛光米与黄粉,黄粉常用作其他食品加工基料。 5.2 加工过程中的各项基料计算 5.2.1 苦荞原料的需求量计算 由实际测取的苦荞抛光米的产出得率C1为46.88%,则年产T1为1000吨苦荞抛光米所需要的苦荞麦粒原料为W1吨: T1= W1*C1 W1= T1 C1 =1000 46.88% =2133.11 (吨) 5.2.2 副产物苦荞壳、黄粉的产量计算 由表3.1可知,脱壳工艺产生的苦荞壳的得率C2为29.76%;精碾抛光工艺产生的黄粉得率为C314.02%,则该年产1000吨精米生产线每年可产生副产物苦荞壳W2、黄粉W3吨: W2 = W1*C2 = 2133.11×29.76%=634.81 (吨)

W3 = W1*C3 = 2133.11×14.02% = 299.06 (吨) 5.2.3 废料壳粉的计算 废料壳粉是由脱壳工艺产生苦荞壳的同时产生的,大多未加二次利用,造成损失。废料壳粉的得率C4由表3.1可知为9.34%,则年产1000吨苦荞抛光米所产生的废料壳粉量为W4吨: W4 = W1*C4 = 2133.11×9.34% = 199.23 (吨) 通过物料计算可知,年产1000吨苦荞精米的生产线需要投入原料苦荞麦2133.11吨,产生苦荞壳、苦荞黄粉分别为634.81吨、299.06吨,产生未加利用的废料壳粉为199.23吨。

相关文档
最新文档