最新完全生物降解材料

最新完全生物降解材料
最新完全生物降解材料

完全生物降解材料

摘要:可完全生物降解材料是指在适当和可表明期限的自然环境条件

下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。

关键词:生物降解,测试,应用

前言:人类在创造现代文明的同时,也带来负面影响----白色污染。

一次性餐具、一次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费与加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。

1、生物降解材料

理想的生物降解塑料是一种具有优良的使用性能、废气后可被环境微生物完全分解、最终被无机化合成为自然界中碳素循环的一个组成部分的高分子材料。

1.1、生物降解材料的分类

生物降解材料按其生物降解过程大致可分为两类。

一类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解;

③其他各种因素造成的自由基连锁式降解。

另一类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏并削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。

生物崩解性材料大多采用添加淀粉和光敏剂的方法,与聚乙烯和聚苯乙烯共混生产。研究表明,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。一定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到一定的“保鲜”作用。

对于解决环境污染,尽管含淀粉基的塑料比一次性塑料制品有效,但由于仍采用不能生物降解的聚乙烯或聚酯材料为原料,故除了添加的淀粉能够降解外,剩余的大量聚乙烯或聚酯仍会残存而不能完全生物降解,只是分解为碎片,无法回收,进入土壤后情况更糟,对废弃物的处理造成混乱,因而完全生物降解材料成为降解材料的研究重点。

1.2、完全生物降解材料的品种和性能

完全生物降解材料包括天然高分子纤维素、人工合成的聚己内酯、聚乙烯醇等。自然界本身有分解吸收和代谢天然高分子纤维素的自净化能力。该材料在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢。

(1)聚己内酯(PCL)是目前价格较低的全微生物分解性合成高分子,所用的聚己内酯是环状单体——己内酯,己内酯是利用有机金属化合物进行开环聚合而制得的脂肪族聚酯。主要性能有:熔点和玻璃化温度较低,分别只有60℃、60℃,结晶温度为22℃;其纤维强度和聚酰胺6纤维几乎相当,拉伸强度可以达到70.56cN/tex以上,结节强度也在44.1cN/tex以上,而且在湿态情况下的强度损失很小;生物降解性和人造纤维相似,其产品大约在一周内即降解成不可能测试的薄片。PCL是高分子材料具有良好的生物分解性,与PE、PP、PC等多种树脂具有良好的相容性,可以提高其熔点。生物降解速度仅次于PHB和纤维素。天津科技大学翼玲芳等将PCL

与热塑性淀粉、聚乙烯进行共混复合,得到加工性能、力学性能、生物降解性能优良的高分子材料。

(2)聚乙烯醇为可生物降解树脂,故淀粉基聚乙烯醇塑料可完全生物降解。乙烯和变性淀粉基共聚的产品具有良好的成型加工性、二次加工性、力学性能和优良的生物降解性能。日本合成化学工业公司开发出具有热塑性、水溶性、生物降解性的聚乙烯醇树脂,可熔融成型,其熔点为199℃,可在214℃-230℃下采用挤塑、吹塑、注塑等工艺成型。产品的透明性、水溶性、耐药品性均十分优越,可用于涂布复合成型容器和包装材料。

(3)聚乳酸(PLA)最早由日本岛津公司和钟纺公司联合开发,以乳酸为主要原料聚合所得到的高分子聚合物,而乳酸是一种在动植物和微生物体内常见的天然化合物,极易自然分解,其纤维具有优良的性能,介于合成纤维和天然纤维之间。亲水性优于聚酯纤维,比重低于聚酯纤维,有极好的手感、悬垂性和外观,好的回弹性,优良的卷曲和卷曲保持性,有可控的收缩性,强度达62cN/tex,不受紫外光影响,可用多种染料染色,杰出的可加工性,热粘合温度可控制,晶体熔融温度高达120℃-230℃,低可燃性。此外,聚乳酸还具有优良的生物相容性,其降解产物能参与人体代谢,可用作医用缝合线、注射用胶囊、骨架用固定材料、眼科材料等新型功能医用高分子材料。

乳酸单体的主要特征是其以两种旋光性形式存在,聚乳酸技术利用该独特的聚合物性能,通过控制D和L异构体在聚合物链上的比例及其分布来控制产品的结晶熔点。

聚L-乳酸(PLLC)是以淀粉、糖蜜等生物资源为原料发酵制得L-乳酸,再用化学方法合成的高分子材料。PLLC是热塑性材料,其可塑性与聚苯乙烯和聚酯相似,其结晶性和刚性都比较高,抗张强度优良。

2、生物降解材料的降解性能及其评价

对生物降解材料的降解性能的测试目前还没有制订统一的标准,可采用包括被美国材料试验标准(ASTM)采纳或准备采纳的方法作为标准的方法,通过生物化学和微生物的实验手段来评价的主要方法有下列几种。

2.1、土埋法

土埋法有室外土埋法和室内土埋法两种,其微生物源主要是土壤中的微生物群,经一定时间后,取出试样测定其失重、机械性能变化,或用电子显微镜确定其被土壤中微生物侵袭的状况。优点是能反映出自然环境条件下的生物分解性能;缺点是试验周期长,试验结果因土质不同而不同,重复性差。

2.2、陪替氏培养器定量法

在容器中加入试验样品和营养琼脂,接种微生物进行培养,经一定时间后,分析试样的失重情况以及某些物理变化或化学变化。优点是可快速降解,在短时间内获得试验结果,重复性好,定量性好;缺点是不能反映自然界中的实际情况。

2.3、酶分析法

在容器中加入缓冲液和试验样品,让酶作用一定的时间后,分析试样的失重情况,目测霉菌的生长情况,显微镜分析试样物理性能或化学性能的变化。优点是试验周期短,重复性好,定量性好;缺点是不能反映自然界中的实际情况。

2.4、放射性C14示踪法

用C14标记聚合物产品,在微生物的作用下产生CO2,用碱性溶液吸收,用滴定法测出CO2总量,再用放射性衰减率法测定C14的CO2量,用C14

的CO2占产生的CO2的百分数表示微生物侵蚀的程度。优点是实验结果可靠、明确。生物降解性能的测试可以检测样品生物降解性能的优劣。

3、生物降解材料的应用

生物降解材料广泛应用于各行各业,可以部分代替通用塑料。使用量最大的是环保材料、包装材料以及医用材料。

3.1、农业用途

理想的农用材料是能与其他生物降解材料协同作用转化为提高土质的

材料,生物降解材料在农业上主要用作农用地膜和农作物生长容器。

3.1.1、农用地膜

传统的薄膜在帮助农作物生长,增加农作物产量方面发挥了重大的作用,但致使的缺点是使用后的处理十分困难。经过整个农作物生长期的风吹日晒,薄膜的强度下降并都裂为小碎片残留在土壤中,小碎片会引起土壤板结,阻碍作物根部发育和对水分的吸收,还会随风飘散,造成环境污染。生物降解农用地膜除具有传统塑料薄膜的优点外,最重要的是其使用后可以自动降解,不必收集,同时农肥和水的需求量相应减少,可以进行下一季的耕作,因而既可以减少白色污染,又可以降低生产成本。

3.1.2、农作物生长容器

农作物生长容器用于播种和移栽树苗、花卉、蔬菜以及盆景。如果容器不是生物降解性的,在移栽之前必须除去容器才能使根系快速生长,而且裸根容易受损,很难用机械栽插,而生物降解塑料容器在栽种时保护了根系,成活率高,用这种方法种植和移栽可以使许多植物降低成本,移栽季节延长,成活率提高。

研究发现,以聚己内酯为主要成分的农作物生长器,在土壤中会发生明显的生物降解,6个月后失重48%,一年后失重约95%。

生物降解材料在农业方面的其他应用还有草皮种植片、堆肥用袋以及农用药物的摈释材料等。

3.2、包装用途

生物降解塑料制成的食品袋、包装袋、垃圾袋因其生物降解性而大受青睐。生物降解包装材料一般是将可降解的高分子聚合物加入到层压膜中或直接与层压材料共混成膜。食品包装材料和容器一般要求能保证食品不腐烂、隔离氧气且材料无毒。其中最具代表性的是聚羟基丁酸酯(PHB)与聚羟基戊酸酯(PHV)及其共聚物(商品名Biopol),其物性与聚乙烯和聚丙烯相近,且热封性良好,Biopol用过后可生物降解或被焚烧,两者的耗氧量仅相当于其光合作用放入大气的氧,处理后产生的CO2即为光合作用摄入的全部CO2量,因此可认为完全进入生物循环。

生物降解塑料还可用作一次性缓冲材料。据报道,日本幸和株式会社开发的聚乙烯醇淀粉型生物降解塑料是性能较优良的缓冲材料,表观密度比传统的聚苯乙烯缓冲材料稍高。

3.3、医用生物降解材料

医用材料不仅需要有医效,而且还要安全、无毒、无刺激性,与人体有良好的生物相容性。医用生物降解材料是指完成医疗功能后,可被生物体内的溶解酶分解而吸收,生物降解塑料已被广泛用于手术缝合线、人造皮肤、矫形外科、体内药物缓释剂和吸收性缝合线等领域。

3.3.1、外科手术缝合线

理想的缝合线应在体内有良好的适应性、无毒、无刺激性,且在体内保持一定时间的强度后能被组织吸收,其缝合、打结性能以及柔性等方面

都应符合操作要求。以前使用的羊肠线易产生抗原体反应,在人体内的适应性不太理想,且保存不便。研究表明,甲壳素与壳聚糖制成的医用缝合线可被体内溶菌酶分解,生成CO2排出体外,生成糖蛋白可被组织吸收,免除了手术后拆线的麻烦,减轻了病人的痛苦。在尿、胆汁、胰液中能保持良好的强度,使用后自行吸收,不引起过敏,还能加速伤口愈合。

3.3.2、人造皮肤

人的皮肤是一种再生能力很强的组织,但大面积的烧伤则不能单靠自身皮肤或自体移植皮肤来愈合,需要人造皮肤作为治疗过程中的一种暂时性的创面保护覆盖材料来帮助愈合。

人造皮肤的作用有:防止水分与体液经创面蒸发与流失;防止感染;能促进肉芽或上皮成长,促进治愈。人造皮肤还要可以消毒和灭毒,防止细菌感染,且不能对人体有害。现在大量商业用的人造皮肤有胶原蛋白、甲壳素、聚L-亮氨酸等酶催化生物降解材料。

3.3.3、药物缓释剂

药物口服后进入人体,在血液中的浓度必须达到一定的程度才可以起生理活性作用,当药物的血药深度高过一定的限度时,会出现副作用,而当血液中的药物被肌体代谢排出体外后,血药浓度下降不具备药效。用生物降解高分子材料制作的药物缓释剂,可使药物保持在人体内长期恒量释放,提高了疗效,对于癌症、心脏病、高血压等的长期治疗方便而有效。

除上述用途外,医用生物降解材料还可用于骨折固定材料、人工肾、医用抗粘剂等用途。

4、结语

生物降解材料在环境保护中得应用已经引起了人们的关注,但是仍然面临着许多问题:

(1)价格高。生物降解高分子材料的价格比普通的高2~15倍,成为其进入市场的阻力。

(2)技术问题。生物降解材料在不同的领域要求不同的降解速度,如做包装材料时要求有一定的使用期,做医药材料时要求降解速度。

(3)评价问题。国际上没有统一、完整的评价试样方法。

(4)安全问题。生物降解材料虽然消灭了白色污染,但也有可能损害环境。德国包装行业协会最近在巴黎Plat Euro Film会议上指出生物降解材料有可能产生甲烷,而甲烷是一种导致温室效应的气体,其危害性要比二氧化碳高21倍。

如何解决目前的环境问题,我认为首先应强调废旧塑料的回收、分类、加工,使有限的资源循环利用;其次是研究完全生物降解性高分子材料,利用价廉易得的原料经微生物的发酵和利用转基因植物生产生物降解性高分子材料。

参考文献:

[1]俞文灿.可降解塑料的应用、研究现状及其发展方向.中山大学研究学刊.2007,28(1)

[2]王琳霞.生物降解高分子材料.塑料科技.2002

[3]赖承钺,郑宽,赫丽萍,李辉章,杨科珂,李方.高分子材料生物降解性能的分析研究进展.化学研究与进展.2010,22(1)

[4]杨在志.可完全生物降解高分子材料在环境保护中的应用及发展前景.科教文汇.2006,10

[5]郭子耕,苑静.完全生物降解的发展.包装工程.2010,5

[6]吕方,朱光明,刘代军.可完全生物降解的应用进展.塑料科技.2007,7

[7]王均,陈建喜,陈德炳,江昕.完全生物降解性高分子材料—聚乳酸的合成及应用.2002,6

[8]余红伟,夏苹清,王源升.生物降解材料及其在医学中的应用.云南大学学报.2004,26

[9]白立涛,崔占臣.可降解高分子材料.塑料.2001,5,30

生物降解材料

生物降解材料: 1.天然生物材料如淀粉、纤维素的改性材料制成的塑料; 2.化学合成聚脂:PLA、PCL、PBS、PPC等; 3.微生物发酵合成高分子化合物:PLA、PHA; 4.转基因植物合成高分子化合物:PHA。 生物基含量和价格 材料优缺点

1.可完全生物降解 2.可替代大部分塑料,价格可以和石油塑料 竞争 3.分子结构多样性,综合性能好 4.可单独使用或和淀粉等其他生物质共同 使用 5.可取代PCL、Ecoflex等石油基可降解材 料 6.核心技术门槛高竞争者很难模仿进入材料具体价格

生物降解塑料生产厂家 种类公司型号产能(吨/年)

PLA PLA产业链

→ → → 产业链分析: 1.PLA改性材料生产企业:其生产受到上下游的影响比较严重。 2.PLA生产企业:此类企业上游供给影响不大,来源和供应量很充足,关键在于企业的生产技术和产能。美国的natureworks处于领先地位,每年14万吨的产能,巴斯夫、日本三井和荷兰普拉克都有超万吨的产能。国内海正生物和金发科技分别拥有5000吨左右的产能,在国内PLA生产商中实力较强。 3.PLA原料(中间物)生产商:PLA生产主要有一步法和两步法两种工艺,两步法应用较多,即先由乳酸聚合并解聚得到中间体丙交酯,再由丙交酯开环聚合得到PLA,两步法中,中间体丙交酯的生产成本和纯度直接影响PLA产品的成本和性能。 4.PLA改性材料使用企业:这些企业使用PLA改性材料作为生产进一步产品的原料,成品涵盖范围包括农业、工业、门用等等领域。PLA材料经过改性和复合,其理化性质得到相应改进,可以采用传统吹塑、热塑机械生产成品,传统成品生产企业的转换成本并不高,而此类企业在国内数量巨大,并不构成对于PLA改性材料生产企业的直接瓶颈。 5.消费者终端:消费者的最终需求,决定了PLA改性和复合材料使用企业对PLA改性材料的间接需求,成为真正的、可能的需求瓶颈。因此,分析PLA改性和复合材料行业下游的关键,在于消费者终端的分析。 PLA改性材料企业

可生物降解高分子材料的分类及应用

四川工业学院学报 Journa l of S ich ua n Uni vers ity o f Sc ience and Tec hnolog y 文章编号:1000-5722(2003)增刊-0145-03 收到日期:2003-03-22 基金项目:中国石油天然气集团公司中青年创新基金项目(部(基)349):四川工业学院人才引进项目(0225964) 作者简介:王周玉(1977-),女,四川省彭州市人,西华大学生物工程系助教,硕士,主要从事高聚物的合成、改性性质及其应用的研究。 可生物降解高分子材料的分类及应用 王周玉,岳 松,蒋珍菊,芮光伟,任川宏 (西华大学生物工程系,四川成都 610039) 摘 要: 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 关键词: 生物降解;高分子材料;应用 中图分类号:O631.2 文献标识码:B 0前言 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料[1]是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳 的高分子材料。根据降解机理[1,2] 的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光-生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景,所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全 生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestruc tible ma terials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 [3,4] 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合成量超过1010 吨。利用它们制备的生物高分子材料可完全降解、具有良好的生物相容性、安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视,特别是日本。如日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳聚糖复合,采用流延工艺制成的薄膜,具有与通用薄膜同样的强度,并可在2个月后完全降解;他们还对壳聚糖)淀料复合高分子材料进行了大量的研究工作,发现调节原料的比例、热处理温度,可改变高分子材料的强度和降解时间。 天然高分子材料虽然具有价格低廉、完全降解等诸多优点,但是它的热力学性能较差,不能满足工程高分子材料加工的性能要求,因此对天然高分子进行化学修饰、天然高分子之间的共混及天然高分子与合成高分子共混以制得具有良好降解性、实用性的生物降解高分子材料是目前研究的一个主要方向。1.2 微生物合成高分子材料[3,4,5] 微生物合成高分子材料是由生物通过各种碳源发

最新完全生物降解材料

完全生物降解材料 摘要:可完全生物降解材料是指在适当和可表明期限的自然环境条件 下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。 关键词:生物降解,测试,应用 前言:人类在创造现代文明的同时,也带来负面影响----白色污染。 一次性餐具、一次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费与加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。 1、生物降解材料 理想的生物降解塑料是一种具有优良的使用性能、废气后可被环境微生物完全分解、最终被无机化合成为自然界中碳素循环的一个组成部分的高分子材料。 1.1、生物降解材料的分类 生物降解材料按其生物降解过程大致可分为两类。 一类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解; ③其他各种因素造成的自由基连锁式降解。 另一类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏并削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。 生物崩解性材料大多采用添加淀粉和光敏剂的方法,与聚乙烯和聚苯乙烯共混生产。研究表明,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。一定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到一定的“保鲜”作用。

辽宁生物降解塑料项目投资建议书

辽宁生物降解塑料项目 投资建议书 规划设计/投资方案/产业运营

辽宁生物降解塑料项目投资建议书说明 《关于进一步加强塑料污染治理的意见》指出,到2020年,率先在部分地区、部分领域禁止、限制部分塑料制品的生产、销售和使用;到2022年底,一次性降解塑料制品消费量明显减少,替代品得到推广,在电商、快递、外卖等新兴领域,形成一批可复制、可推广的塑料减量和绿色物流模式;到2025年,塑料制品生产、流通、消费和回收处置等环节的管理制度基本建立,替代产品开发应用水平进一步提升,重点城市塑料垃圾填埋量大幅降低。2025年前,国内将逐渐限制、禁止使用不可降解塑料袋、一次性塑料餐具、宾馆和酒店一次性塑料制品和快递塑料袋。 该PBAT生物降解塑料项目计划总投资5851.90万元,其中:固定资产投资4682.58万元,占项目总投资的80.02%;流动资金1169.32万元,占项目总投资的19.98%。 达产年营业收入8873.00万元,总成本费用6729.64万元,税金及附加101.62万元,利润总额2143.36万元,利税总额2540.62万元,税后净利润1607.52万元,达产年纳税总额933.10万元;达产年投资利润率36.63%,投资利税率43.42%,投资回报率27.47%,全部投资回收期5.14年,提供就业职位135个。

项目建设要符合国家“综合利用”的原则。项目承办单位要充分利用国家对项目产品生产提供的各种有利条件,综合利用企业技术资源,充分发挥当地社会经济发展优势、人力资源优势,区位发展优势以及配套辅助设施等有利条件,尽量降低项目建设成本,达到节省投资、缩短工期的目的。 ...... 报告主要内容:项目总论、项目必要性分析、项目市场研究、投资方案、项目选址规划、土建方案说明、工艺先进性、项目环保分析、项目安全保护、投资风险分析、项目节能情况分析、实施进度、投资方案计划、项目盈利能力分析、综合评价结论等。 随着全球环境保护力度加大,“限塑”已在60多个国家实行。我国自2004年开始鼓励降解塑料的推广应用,2008年开始实行“限塑”。近几年法规措施不断趋严,2020年1月19日,国家发展改革委、生态环境部公布《关于进一步加强塑料污染治理的意见》,提出分阶段(2020、2022、2025年)限制、禁止使用不可降解塑料产品的行动目标与措施。在严格的限塑、禁塑令下,开发应用可降解塑料势在必行。PBAT是一种全生物可降解塑料,可广泛应用于超市购物袋、外卖餐盒、农用地膜等领域。随着“限塑令”的推出和绿色消费市场的扩大,PBAT等可生物可降解塑料呈现出良好的市场前景,成为当前国内降解塑料领域投资和关注的热点。

生物降解高分子材料

生物降解高分子材料 肖群 (东北林业大学材料科学与工程学院,黑龙江哈尔滨 150040) 摘要:高分子材料在日常生活中的使用量越来越大.然而高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量塑料废弃物也与日俱增。给人类赖以生存的环境造成了不可忽视的负面影响。本文简要介绍生物降解高分子材料的定义、降解机理及影响因素的基础上,较为全面的阐述了当前生物降解高分子材料的应用领域。 关键词:生物降解,医用生物材料, 1 前言 聚合物工业蓬勃发展的同时也导致了环境污染的加剧,引起了人们对聚合物废料处理的关注。目前全世界每年生产塑料约1.2亿吨.用后废弃的大约占生产量的50%~60%。废塑料的处理以掩埋和焚烧为主,但这两种处理方法会产生新的有害物质。对此,一些国家实行了3R工程,即减少使用、重复使用和回收循环。但对一些回收困难、不宜回收或需要追加很大能量才能回收的领域(如食品包装、卫生用品),实施3R工程很困难,而如果使用生物降解材料则十分有利[1]。 2生物降解高分子材料定义降解机理 2.1生物降解高分子定义 根据美国ASTM定义生物降解高分子材料是指在一定的条件下.一定的时间内能被细菌、霉菌、藻类等微生物降解的高分子材料[2,3,4]。真正的生物降解高分子在有水存在的环境下,能被酶或微生物水解降解,从而高分子主链断裂,分子量 逐渐变小,以致最终成为单体或代谢成CO 2和H 2 O[5]。 2.2生物降解高分子材料的降解机理 生物降解机理和光一生物降解机理.完全生物降解机理大致有三种途径:①生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏.分裂成低聚物碎片:②生物化学作用:微生物对聚合物作用而产生新 物质(CH 4、C0 2 和H 2 0):③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩 裂。而光一生物降解机理则是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成含氧化物,并氧化断裂.分子量下降到能被微生物消化的水平。进一步研究发现.不同的生物降解高分子材料的生物降解性与其结构有很大关系,包括化学结构、物理结构、表面结构等。 对不同种类的生物降解材料而言.它们降解机理的不同决定了它们具有不同的性质。天然降解高分子材料.其本身来源于生物体,能保证足够的细胞及组织亲和性.降解周期一般较短.最终降解产物为多糖或氨基酸.容易被机体吸收.但是这种材料力学性能差。难于满足组织构建的速度要求,应用时需要进行改性。化学合成的生物降解材料的组成、结构和降解行为更易于控制。比如降解速度和强度可调.易构建高孔隙率三维支架.但材料本身对细胞亲和力弱.往往需要引入适量能促进细胞黏附和增值的活性基团、生长因子或黏附因子等。[6] 3生物降解高分子材料的种类及降解过程

福建生物降解塑料项目投资分析报告

福建生物降解塑料项目投资分析报告 规划设计/投资方案/产业运营

报告说明— 生物降解塑料是指在土壤、沙土等自然条件下,可与微生物作用降解成为二氧化碳、水等小分子的塑料材料。PBAT是生物降解塑料研究中非常活跃和市场应用最好降解材料之一。PBAT是己二酸丁二醇酯(PBA)和对苯二甲酸丁二醇酯(PBT)的共聚物,兼具PBA和PBT的特性,既有良好的延展性、断裂伸长率、耐热性和抗冲击性能,又具有优良的生物降解性。PBAT成膜性能良好,通常与PLA树脂等共混改性制成终端产品,可用于塑料包装薄膜、农用地膜、一次性用具等。 该PBAT生物降解塑料项目计划总投资8033.42万元,其中:固定资产投资6236.18万元,占项目总投资的77.63%;流动资金1797.24万元,占项目总投资的22.37%。 达产年营业收入14198.00万元,总成本费用10984.45万元,税金及附加139.18万元,利润总额3213.55万元,利税总额3795.98万元,税后净利润2410.16万元,达产年纳税总额1385.82万元;达产年投资利润率40.00%,投资利税率47.25%,投资回报率30.00%,全部投资回收期4.83年,提供就业职位283个。 全球塑料产量约为3.59亿吨,其中生物塑料约占1%,2018年全球生物可降解塑料的市场金额超过11亿美元,产能合计约91.2万吨,预计2023年有望实现17亿美元与128.8万吨。欧洲是可降解塑料的主要市场,

占全球55%、亚太地区占全球25%,北美需求占19%。可降解塑料的应用范围不断扩大,包括包装、纺织纤维、汽车运输等。包装占比最大为58%。国内2019年塑料制品产量为8184万吨,其中可降解塑料优先推广的农用塑料薄膜使用量为246万吨。根据智研咨询国内可降解塑料的消费量在50万吨左右,市场潜能巨大。据统计,中国每年约消耗购物袋400万吨、农膜246万吨、外卖包装260万吨,且随着快递、外卖业务的快速发展,塑料需求持续增长。而对于这些领域,特别适用可降解塑料。假设替代10%,即可新增90万吨以上可降解塑料需求。我们认为随着技术进步、规模化生产、成本下降、环保理念提升,可降解塑料未来成长空间10倍以上。

生物降解材料

生物降解材料https://www.360docs.net/doc/4216305991.html,work Information Technology Company.2020YEAR

生物降解材料: 1.天然生物材料如淀粉、纤维素的改性材料制成的塑料; 2.化学合成聚脂:PLA、PCL、PBS、PPC等; 3.微生物发酵合成高分子化合物:PLA、PHA; 4.转基因植物合成高分子化合物:PHA。

6.核心技术门槛高竞争者很难模仿 进入 生物降解塑料生产厂家 种类公司型号产能(吨/

PLA PLA 产业链 产业链分析: 1.PLA 改性材料生产企业:其生产受到上下游的影响比较严重。

2.PLA生产企业:此类企业上游供给影响不大,来源和供应量很充足,关键在于企业的生产技术和产能。美国的natureworks处于领先地位,每年14万吨的产能,巴斯夫、日本三井和荷兰普拉克都有超万吨的产能。国内海正生物和金发科技分别拥有5000吨左右的产能,在国内PLA生产商中实力较强。 3.PLA原料(中间物)生产商:PLA生产主要有一步法和两步法两种工艺,两步法应用较多,即先由乳酸聚合并解聚得到中间体丙交酯,再由丙交酯开环聚合得到PLA,两步法中,中间体丙交酯的生产成本和纯度直接影响PLA产品的成本和性能。 4.PLA改性材料使用企业:这些企业使用PLA改性材料作为生产进一步产品的原料,成品涵盖范围包括农业、工业、门用等等领域。PLA材料经过改性和复合,其理化性质得到相应改进,可以采用传统吹塑、热塑机械生产成品,传统成品生产企业的转换成本并不高,而此类企业在国内数量巨大,并不构成对于PLA改性材料生产企业的直接瓶颈。 5.消费者终端:消费者的最终需求,决定了PLA改性和复合材料使用企业对PLA改性材料的间接需求,成为真正的、可能的需求瓶颈。因此,分析PLA改性和复合材料行业下游的关键,在于消费者终端的分析。 PLA改性材料企业 PLA PHA 基本性能: 生物相容性,良好的力学性能,非线性光学性,气体隔离性,耐水解性能,压电性,良好的加工性能,耐热性。 性能指标: 分子量: 1000-1000000 玻璃态温度: -60℃~+60℃ 熔点: 40℃~190℃ 结晶度: 10%~60% 断裂伸长率: 5%~1000%

2020年(生物科技行业)完全生物降解材料

(生物科技行业)完全生物 降解材料

完全生物降解材料 摘要:可完全生物降解材料是指在适当和可表明期限的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。 关键词:生物降解,测试,应用 前言:人类在创造现代文明的同时,也带来负面影响----白色污染。壹次性餐具、壹次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费和加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为壹个研发热点。1、生物降解材料 理想的生物降解塑料是壹种具有优良的使用性能、废气后可被环境微生物完全分解、最终被无机化合成为自然界中碳素循环的壹个组成部分的高分子材料。 1.1、生物降解材料的分类 生物降解材料按其生物降解过程大致可分为俩类。 壹类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性

崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解;③其他各种因素造成的自由基连锁式降解。 另壹类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏且削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。 生物崩解性材料大多采用添加淀粉和光敏剂的方法,和聚乙烯和聚苯乙烯共混生产。研究表明,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。壹定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到壹定的“保鲜”作用。 对于解决环境污染,尽管含淀粉基的塑料比壹次性塑料制品有效,但由于仍采用不能生物降解的聚乙烯或聚酯材料为原料,故除了添加的淀粉能够降解外,剩余的大量聚乙烯或聚酯仍会残存而不能完全生物降解,只是分解为碎片,无法回收,进入土壤后情况更糟,对废弃物的处理造成混乱,因而完全生物降解材料成为降解材料的研究重点。 1.2、完全生物降解材料的品种和性能 完全生物降解材料包括天然高分子纤维素、人工合成的聚己内酯、聚乙烯醇等。自然界本身有分解吸收和代谢天然高分子纤维素的自净化能力。该材料在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢。 (1)聚己内酯(PCL)是目前价格较低的全微生物分解性合成高分子,所用的聚己内酯是环状单体——己内酯,己内酯是利用有机金属化合物进行开环

生物降解材料行业分析报告

生物降解材料行业分析报告 二0一二年十二月二十日

目录 1 概述----------------------------------------------------------- 1 2 可生物降解材料概况--------------------------------------------- 1 2.1 定义--------------------------------------------------------- 1 2.2 种类及性能--------------------------------------------------- 1 2. 3 降解机理----------------------------------------------------- 2 2.4 应用范围----------------------------------------------------- 3 3 常见可生物降解材料及发展趋势----------------------------------- 4 3.1 淀粉基生物降解材料------------------------------------------- 4 3.2 聚乳酸(PLA)------------------------------------------------ 5 3.3 聚丁二酸丁二醇酯(PBS)-------------------------------------- 6 3.4 微生物合成聚羟基脂肪酸酯(PHA)------------------------------ 7 3.5 聚己内酯(PCL)---------------------------------------------- 8 4 国内外制定的相关政策------------------------------------------- 8 4.1 国外相关政策------------------------------------------------- 8 4.2 我国相关的政策----------------------------------------------- 9 5 发展面临的问题------------------------------------------------- 9 6 产业化现状---------------------------------------------------- 10 7 未来五年市场需求预测------------------------------------------ 11 8 投资建议------------------------------------------------------ 12

全生物降解材料聚乙烯醇(PVA)淀粉合金项目简介

全生物降解材料聚乙烯醇(PVA)/淀粉合金项目简介 塑料包装材料质轻、强度高,可制成适应性强的多功能包装材料,因此人 们对塑料包装的依赖愈来愈大。但塑料包装物的大量一次性使用也产生大量废 弃物,由于这些废弃物量大、分散、收集再生利用成本高昂,而且其原料大部分属惰性材料,很难在自然环境中降解等原因,使得它们对环境造成的污染和 生态平衡的破坏不断积累,已经成为二十一世纪社会与生态的噩梦。 因此解决塑料的自然降解,使塑料进入生态良性循环,解除其对自然与环 境的破坏,成为各国科学家与企业开发热点。 降解塑料的研究开发可追溯到20世纪70年代,当时在美国开展了光降解 塑料的研究。20世纪80年代又研究开发了淀粉填充型“生物降解塑料”,其 曾风靡一时。但经过几年应用实践证明,这种材料没有获得令人信服的生物降解效果。20世纪90年代以来降解塑料技术有了较大进展,并开发了光生物降 解塑料、光热降解塑料、淀粉共混型降解塑料、水溶性降解塑料、完全生物降解塑料等许多新品种。近年来,生物降解塑料特别是生物物质塑料,完全可以 融入自然循环,是最有社会与市场前景的降解材料,已在业界成为共识,并有成果不断涌现。 降解塑料是塑料家族中的一员,对它既要求在用前保持或具有普通塑料的 特性,而用后又要求在自然环境条件下快速降解。稳定与降解本是一对矛盾, 而要求它在同一产品不同阶段实现,难度很大,是集合尖端高新技术的材料。 降解塑料由于它具有易降解功能,只适于特定的应用领域和某些塑料产品,如一次性包装材料、地膜、医用卫生材料等。这些产品受污染严重,不易回收,或即使强制收集利用价值不大,效益甚微或无效益。 当前市场所见的相当部分降解塑料属崩坏性降解,尚不能快速降解和完全 降解。它在一定环境条件下和一定周期内可劣化、碎裂成相对较易被环境消纳 的碎片(碎末),再经过很长时间,最终能降解,但降解的速度远赶不上废物产生的速度。完全生物降解塑料在一定环境条件下,能较快和较完全生物降解 成CO2和水,它与堆肥化处理方法相结合,作为回收利用的补充,被认为是治理塑料包装废弃物污染环境的好办法,是当前国际上的开发方向。 生物降解塑料(BDP)是指在自然界中能被酶或微生物(如细菌、霉菌和藻类)及其分泌物分解利用(包括高分子化合物及其配合物)的材料。 生物降解塑料的降解机理,即生物降解塑料被细菌、霉菌等作用消化吸收 的过程,大致有3种方式: 生物的物理作用——由生物细胞的生长而使物质发生机械性毁坏; 生物的化学作用——微生物对聚合物的作用而产生新的物质; 酶的直接作用——微生物侵蚀部分导致塑料分解或氧化崩裂。 BDP是高分子化学结构等分子层次的研究。其研究无论从地球环境保护的 实际角度,或从开发取之不尽的可再生资源角度,还是从合成高分子的学术研

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

可降解生物材料

可降解生物材料 摘要:本文介绍了可降解生物材料的定义,阐述生物降解材料的降解机理及分类(掺混型、化学合成型、天然高分子型以及微生物合成型材料)。指出降解材料当前存在的主要问题, 并对其发展前景进行展望。 关键词:生物材料;可降解性;降解机理;分类 前言 合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,成为白色污染源,严重危害环境,造成地下水及土壤污染,危害人类生存与健康,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料——石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而可生物降解材料正是解决这两方面问题的有效途径。 1.可生物降解材料定义及降解机理 生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[3]。理想的生物降解材料在微生物作用下,能完全分解为CO2和H2O。 生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。 首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄入体内,经过种种代谢路线,合成微生物体物或转化为微生物活动的能量,最终转化成CO2和H2O[4]。在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,其降解作用的形式有3种[5]: 生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;生物的生化作用,微生物对材料作用而产生新的物质;酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解或氧化崩溃。 2.可生物降解材料的分类及应用 根据降解机理生物降解材料可分为[6]生物破坏性材料和完全生物降解材料。生物破坏性材料属于不完全降解材料,是指天然高分子与通用型合成高分子材料

关于生物降解材料

关于生物降解材料 篇一:浅谈生物可降解高分子材料的开发利用 [摘要]我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。本文探讨了生物可降解高分子材料现阶段的开发应用情况。 [摘要]我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。本文探讨了生物可降解高分子材料现阶段的开发应用情况。 [关键词]高分子材料可降解生物 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1、生物可降解高分子材料概念及降解机理 生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、ph值、微生物等外部环境有关。 2、生物可降解高分子材料的类型 按来源,生物可降解高分子材料可分为天然高分子和人工

常州生物降解塑料项目投资建议书

常州生物降解塑料项目投资建议书 规划设计/投资分析/实施方案

常州生物降解塑料项目投资建议书 《关于进一步加强塑料污染治理的意见》指出,到2020年,率先在部分地区、部分领域禁止、限制部分塑料制品的生产、销售和使用;到2022年底,一次性降解塑料制品消费量明显减少,替代品得到推广,在电商、快递、外卖等新兴领域,形成一批可复制、可推广的塑料减量和绿色物流模式;到2025年,塑料制品生产、流通、消费和回收处置等环节的管理制度基本建立,替代产品开发应用水平进一步提升,重点城市塑料垃圾填埋量大幅降低。2025年前,国内将逐渐限制、禁止使用不可降解塑料袋、一次性塑料餐具、宾馆和酒店一次性塑料制品和快递塑料袋。 该PBAT生物降解塑料项目计划总投资23107.43万元,其中:固定资产投资16297.67万元,占项目总投资的70.53%;流动资金6809.76万元,占项目总投资的29.47%。 达产年营业收入46041.00万元,总成本费用35185.44万元,税金及附加399.98万元,利润总额10855.56万元,利税总额12752.86万元,税后净利润8141.67万元,达产年纳税总额4611.19万元;达产年投资利润率46.98%,投资利税率55.19%,投资回报率35.23%,全部投资回收期 4.34年,提供就业职位986个。

报告目的是对项目进行技术可靠性、经济合理性及实施可能性的方案分析和论证,在此基础上选用科学合理、技术先进、投资费用省、运行成本低的建设方案,最终使得项目承办单位建设项目所产生的经济效益和社会效益达到协调、和谐统一。 ...... 随着全球环境保护力度加大,“限塑”已在60多个国家实行。我国自2004年开始鼓励降解塑料的推广应用,2008年开始实行“限塑”。近几年法规措施不断趋严,2020年1月19日,国家发展改革委、生态环境部公布《关于进一步加强塑料污染治理的意见》,提出分阶段(2020、2022、2025年)限制、禁止使用不可降解塑料产品的行动目标与措施。在严格的限塑、禁塑令下,开发应用可降解塑料势在必行。PBAT是一种全生物可降解塑料,可广泛应用于超市购物袋、外卖餐盒、农用地膜等领域。随着“限塑令”的推出和绿色消费市场的扩大,PBAT等可生物可降解塑料呈现出良好的市场前景,成为当前国内降解塑料领域投资和关注的热点。

生物全降解材料项目投资计划书

生物全降解材料项目投资计划书 xxx有限责任公司

生物全降解材料项目投资计划书目录 第一章概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设背景 一、产业政策及发展规划 二、鼓励中小企业发展 三、宏观经济形势分析 四、区域经济发展概况 五、项目必要性分析 第三章建设规划方案 一、产品规划 二、建设规模 第四章选址可行性研究 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价 第五章项目工程方案分析

一、建筑工程设计原则 二、项目工程建设标准规范 三、项目总平面设计要求 四、建筑设计规范和标准 五、土建工程设计年限及安全等级 六、建筑工程设计总体要求 七、土建工程建设指标 第六章风险防范措施 一、政策风险分析 二、社会风险分析 三、市场风险分析 四、资金风险分析 五、技术风险分析 六、财务风险分析 七、管理风险分析 八、其它风险分析 九、社会影响评估 第七章实施安排方案 一、建设周期 二、建设进度

三、进度安排注意事项 四、人力资源配置 五、员工培训 六、项目实施保障 第八章投资方案分析 一、项目估算说明 二、项目总投资估算 三、资金筹措 第九章经营效益分析 一、经济评价综述 二、经济评价财务测算 二、项目盈利能力分析 第十章附表 附表1:主要经济指标一览表 附表2:土建工程投资一览表 附表3:节能分析一览表 附表4:项目建设进度一览表 附表5:人力资源配置一览表 附表6:固定资产投资估算表 附表7:流动资金投资估算表

生物降解材料

生物降解材料: 1?天然生物材料如淀粉、纤维素的改性材料制成的塑料; 2?化学合成聚脂:PLA、PCL PBS PPC等; 3?微生物发酵合成高分子化合物:PLA、PHA; 4?转基因植物合成高分子化合物:PHA。

PLA PLA产业链 产业链分析: 1. PLA改性材料生产企业:其生产受到上下游的影响比较严重。 2. PLA生产企业:此类企业上游供给影响不大,来源和供应量很充足,关键在于企业的生产技术和产 能。美国的natureworks处于领先地位,每年14万吨的产能,巴斯夫、日本三井和荷兰普拉克都有超万吨的产能。国内海正生物和金发科技分别拥有5000吨左右的产能,在国内PLA生产商中实力较 强。 3. PLA原料(中间物)生产商:PLA生产主要有一步法和两步法两种工艺,两步法应用较多,即先由 乳酸聚合并解聚得到中间体丙交酯,再由丙交酯开环聚合得到PLA,两步法中,中间体丙交酯的生产 成本和纯度直接影响PLA产品的成本和性能。 4. PLA改性材料使用企业:这些企业使用PLA改性材料作为生产进一步产品的原料,成品涵盖范围包括农业、工业、门用等等领域。PLA材料经过改性和复合,其理化性质得到相应改进,可以采用传统吹塑、热塑机械生产成品,传统成品生产企业的转换成本并不高,而此类企业在国内数量巨大,并不 构成对于PLA改性材料生产企业的直接瓶颈。 5?消费者终端:消费者的最终需求,决定了PLA改性和复合材料使用企业对PLA改性材料的间接需求,成为真正的、可能的需求瓶颈。因此,分析PLA改性和复合材料行业下游的关键,在于消费者终端的分析。

PLA改性材料企业 PLA改性企业主要集中在国外为主。 PHA 基本性能: 生物相容性,良好的力学性能,非线性光学性,气体隔离性,耐水解性能,压电性,良好的加工性能,耐热性。 性能指标: 分子量: 玻璃态温度:-60 C ~+60C 熔点:40 C ~190 C 结晶度:10%~60% 断裂伸长率:5%~1000% 空气与水的阻隔性类似于PET 印刷性能类似于PET 非常好的抗紫外线功能 在淡水中稳定,可在海水、土壤中完全生物降解 水相浆可形成很好的薄膜 对环节没有二次污染 下游应用: 农业:农药缓释剂 环保:电子产品、包装 生化:高性能滤膜 微电:热封闭组件 能源:P3HB醇解产物 医药:缓释长效药物载体 医用:骨钉、手术缝合线、人体整形填充材料 PCL 性能特点:形状温控记忆性:有形状记忆性,具有初始形状的制品,经形变固定后,通过加热等外部条件刺 激的处理,又可使其恢复初始形状的现象。生物相容性:在体内与生物细胞相容性很好,细胞可在其基架上正常生长,并可降解成CO2 和 H2O。 生物降解性:在土壤和水环境中,6-12月可完全分解成C02和H20。 良好相容性:可和PE、PP、ABS AS、PC、PVAG PVB PVE PA天然橡胶等很好地互容。

生物可降解材料

可生物降解的材料有天然高分子、生物合成高分子、人工合成高分子、生物活性玻璃、磷酸三钙等。天然高分子均为亲水性材料,如胶原、明胶、甲壳素、淀粉、纤维素、透明质酸等,它们在人体内的降解速度与材料在人体生理环境下的溶解特性有关。例如明胶分子能够溶于与体液相似pH 值为714 的生理盐水中,因而必须先进行交联才能作为材料在人体中使用[4~6 ] ,其交联产物在人体内降解2溶解的速度很快,几天内就可被人体完全吸收。与此相对应,在正常生理环境下不溶解的天然高分子,如甲壳素(在酸性环境下溶解) [7 ] ,其降解速率就要慢得多。 磷酸三钙具有良好的生物相容性、生物活性以及生物降解性,是理想的人体硬组织修复和替代材料,在生物医学工程学领域一直受到人们的密切关注。医学上通常使用的是磷酸三钙的一种特殊形态—β-磷酸三钙。 β-磷酸三钙主要是由钙、磷组成,其成分与骨基质的无机成分相似,与骨结合好。动物或人体细胞可以在β-磷酸三钙材料上正常生长,分化和繁殖。通过大量实验研究证明:β-磷酸三钙对骨髓造血机能无不良反应,无排异反应,无急性毒性反应,不致癌变,无过敏现象。因此β-磷酸三钙可广泛应用于关节与脊柱融合、四肢创伤、口腔颌面的外科、心血管外科,以及填补牙周的空洞等方面。随着人们对β-磷酸三钙研究的不断深入,其应用形式也出现了多样化,幵在临床医学中体现了较好的性能。

梁戈等通过实验发现其溶血程度<5%,当β-磷酸三钙被植入人体内后,其在体液中能发生降解和吸收,钙、磷被体液吸收后进入人体循环系统,一定时间后植入人体的β-磷酸三钙逐渐溶解消失,形成新骨。 Arai等利用β-磷酸三钙多孔陶瓷填充8~15cm 的腓骨节段缺损,获得了腓骨再生。平均术后2个月即可达到重建。不会发生踝关节及胫骨的移位。 郑承泽等将β-磷酸三钙与自体骨髓复合应用于临床,修复包括肿瘤性骨缺损和陈旧性骨折骨缺损,经术后调查,结果显示植入材料的成骨作用明显,说明β-磷酸三钙与自体骨髓复合是一种治疗骨缺损理想的方法。 张汉东等将磷酸三钙陶瓷用于修复兔下颌骨缺损,研究表明,植入后局部组织无明显炎症等反应。 张建设等将两种不同组成的β-磷酸三钙陶瓷植入免颌骨人工缺损区,掺杂的磷酸三钙陶瓷降解速度较慢,但具有较好的生物相容性。 张亮等利用β-磷酸三钙/DL—PLA 作为一种新型治疗骨缺损的材料,研究表明其降解特点有利于骨组织细胞长入。 Mitenmuller 等利用带微孔的陶瓷颗粒作为抗结核药及抗菌素的载体,填塞至骨髓炎患部,缺损骨基本修复。 生物合成高分子是一类由细菌发酵产生的聚酯高分子,其最具代表性的例子是聚(β2羟基丁酸酯) [8~9 ] (PHB) 。该材料的降解速率与一种称为PHB 降解酶的存在密切相关[10 ,11 ] ,在海洋,土壤等富含PHB 降解酶的自然环境下,材料能够 被较快地降解[12~14 ] ;在与体液相似的缓冲溶液中,因为缺乏PHB 降解酶,而PHB 又是一种高结晶度的材料,疏水性强,因而其降解速率就非常缓慢[15~ 17 ] 。PHB为热塑性聚酯,物理性质与结构与聚丙烯相似(熔点、玻璃态温度、

相关文档
最新文档