高压差调节阀

高压差调节阀
高压差调节阀

高压差调节阀

TJ9261H-25DN100A

用途

安装在670T/H超高压锅炉,配定速泵的给水旁路管道上,作为锅炉启动或低负荷运行时,调节给水流量的装置,本阀门能满足0~30%负荷的调节,在30%以上的负荷运行时,应切换到主给水管路,由DN300:PN25调节阀调节锅炉给水。技术特性

1、结构特性曲线为直线型。

2、流通能力:Kv=273t/h。

3、最大允许差值:△P-19.6MPa。

4、噪音量<85分贝。

5、阀门在关闭状态下无泄漏密封性好。

结构筒述

1、阀门采用四级节流,主要由阀体、阀座、阀盖、阀杆、支架等组成.整体呈Z型布置。

2、采用压力自紧式密封结构,介质压力越高,密封性越好。

3、阀座为焊接件,由四部分组成,每部分均由不锈钢制戒,阀座密封面由铁基硬质合金堆焊而成。

4、每级节流部位都做成台理的线型,由于采用了多级降压的办法,可防止气蚀和噪音,能平稳地调节流量。

5、阀杆为不锈钢,整体结构经热处理后,可减少操用力,保证阀杆调整灵活自如。

6、阀门的开、关由装在支架上部的电动装置控制。

安装说明

1、阀门应垂直安装,阀杆向上。

2、介质从阀座上部引人。

3、阀体底部应留有足够更换填料的空间位置。

4、电动装置应安装在环境温度为-20QC~+400C相对温度≤80.无腐蚀性,爆炸性气体的环境中,安装时应考虑到手动操作调试及维修的方便。

5、电动装置采用锂基润滑脂进行润滑。

压差平衡阀

压差平衡阀 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调 介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。压差平衡阀为双瓣结构,阀杆不平衡力 河北平衡阀门制造有限公司压差平衡阀 小,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并 有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 [1]压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大 工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,

△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个或几个恒温阀调节时,会引起所有的恒温阀无谓的动作。 4.如果不安装压差平衡阀,室内温度达到需求时由于近端用户压差过大,会导致恒温阀产生噪音,影响舒适度。 5.如果不安装压差平衡阀,感温包长时间在高压差工资下还会简短恒温阀的使用寿命。

调节阀压差的确定

调节阀压差得确定 一、概述 在化工过程控制系统中9带调节阀得控制回路随处可见?在确定调节阀压差得过程中■必须考虑系统对调节阀操作性能得影响,否则,即使计算出得调节阀压差再精确,最终确定得调节阀也就是无法满足过程控制要求得。 从自动控制得角度来讲,调节阀应该具有较大得压差。这样选出来得调节阀,其实际工作性能比较接近试验工作性能(即理想工作性能),即调节阀得调节品质较好,过程容易控制。但就是,容易造成确定得调节阀压差偏大,最终选用得调节阀口径偏小。一旦管系压降比讣算值大或相当,调节阀就无法起到正常得调节作用。实际操作中,出现调节阀已处于全开位置,所通过得流量达不到所期望得数值;或者通过调节阀得流量为正常流量值时,调节阀已处于9 0 %开度附近?己处于通常调节阀开度上限,若负荷稍有提高■调节阀将很难起到调节作用。这就就是调节阀压差取值过大得结果。 从丄艺系统得角度来讲■调节阀应该具有较小得压差?这样选出来得调节阀,可以避免出现上述问题,或者调节阀处于泵或压缩机出口时能耗较低。但就是■这样做得结果往往就是选用得调节阀口径偏大,山于调节阀压差在管系总压降中所占比例过小,调节阀得工作特性发生了严重畸变,调节阀得调节品质不好?过程难于控制。实际操作中,出现通过调节阀得流量为正常流量值时,调节阀已处于1 0%开度附近■已处于通常调节阀得开度下限,若负荷稍有变化,调节阀将难以起到调节作用,这种悄况在低负荷开车时尤为明显。这就就是调节阀压差取值过小得结果?同时,调节阀口径偏大,既就是调节阀能力得浪费,使调节阀费用增高;而且调节阀长期处于小开度运行?流体对阀芯与阀座得冲蚀作用严重,缩短调节阀得使用寿命。 正确确定调节阀得压差就就是要解决好上述两方面得矛盾?使根据工艺条件所选出得调节阀能够满足过程控制要求,达到调节品质好、节能降耗乂经济合理。 关于调节阀压差得确定,常见两种观点。其一认为根据系统前后总压差估算就可以了;其二认为根据管系走向计算出调节阀前后压力即可计算出调节阀得压差。这两种方法对于估算国内初步设计阶段得调节阀就是可以得,但用于详细设计或施丄图设讣阶段得调节阀选型就是错误得■常常造成所选得调节阀口径偏大或偏小得问题?正确得做法就是对调节阀所在管系进行水力学计算后,结合系统前后总压差,在不使调节阀工作特性发生畸变得圧差范W 内合理地确定调节阀压差。 有人会问?一般控制条件在流程确定之后即要提出,而管道专业得配管图往往滞后?而且配管时还需要调节阀得有关尺寸,怎样在提调节阀控制条件时先进行管系得水力学计算呢?怎样进行管系得水力学计算,再结合系统前后总压差,最终在合理范ffl内确定调节阀压差,这就就是本文要解决得问题。 二.调节阀得有关概念 为了让大家对调节阀压差确定过程有一个清楚得认识,我们需要a温一下与调节阀有关得一些基本概念。 I、调节阀得工作原理

控制阀选择要点_选好工作压差和重视关闭压差

控制阀选择要点—选好工作压差和重视关闭压差 李宝华 摘要:工业过程控制阀是一种根据用户操作条件(过程数据)而量身定制的系列产品,有多种类型,不同的应用场合有各自适合的解决方案,合理地进行控制阀选择才能更好地发挥其在过程控制中的终端控制作用。控制阀的选择要点有流量计算、噪声预估、适用类型、阀体材料、关闭要求和阀座泄漏量、流量特性、端面连接、密封及填料、相关附件、安全应用,等等,这些要点一直备受关注。本文试对控制阀选择要点中的选型计算所依据的关键过程数据-工作压差和关闭压差进行探讨。 关键词:控制阀;选择要点;关键过程数据;工作压差;关闭压差。 引言 工业过程控制阀()是自动控制的终端控制元件,是工业现场使用最多 的执行器。控制阀组件或控制阀装置简称控制阀(又称调节阀),是一种根据用户操作条件(过程数据)而量身定制的系列产品。控制阀有多种类型,不同的应用场合有各自适合的解决方案,合理地进行控制阀选择才能更好地发挥其在过程控制中的终端控制作用。控制阀的选择主要表现在结构类型、作用方式、流量特性和流通口径等方面,其选择要点有流量计算、噪声预估、适用类型、阀体材料、关闭要求和阀座泄漏量、流量特性、端面连接、密封及填料、相关附件、安全应用,等等,这些要点一直备受关注。本文试对控制阀选择要点中的选型计算所依据的关键过程数据工作压差和关闭压差进行探讨。 控制阀的选择 控制阀的选择包括:根据工艺条件,选择合适的结构和类型;根据工艺对象的特点,选择合适的流量特性;根据工艺参数,选择阀门口径;根据工艺压力和选用阀门情况,选择合适的执行机构;根据工艺过程的要求,选择合适的辅助装置。选择的基点是控制阀的适用性和经济性,量身定制、最优组合。 控制阀的选择顺序为:确认选择条件、根据工艺条件初选阀的型式、选择和计算流量系数、选择流量特性、确定相关结构和执行机构、作用方式组合选择、确定所需的附件。 控制阀的选择的考虑因素有:被调介质的种类、温度、压力、密度、粘度、腐蚀性;控制阀入口压力范围与出口压力范围;介质的流量范围;进出口管道材质与尺寸、连接方式;执行机构的类型与要求;噪音水平;安全方面的考虑。 控制阀的选择中决定控制阀结构和类型的因素有:控制阀的压力等级、工作压差、流通能力、调节频率、控制性能、可调比、噪音、振动、气蚀、腐蚀、冲刷、可维修性、经济性。 在控制阀众多选择条件中,控制阀的工作压差和关闭压差是关键的过程数据,工作压差(或称为调节压差)主导着流量系数(流通能力)的计算选择和影响着流量特性的选择;关闭压差主导着执行机构的输出力矩(扭矩)的计算选择和影响着型式的选择,关系着控制阀的紧密关闭;此外,两者都用于确定控制阀的结构和类型。因此,在控制阀计算选择时一定要选好工作压差和重视关闭压差。 图1 控制阀的选择图2 控制阀数据表(局部)

气动电磁阀工作原理

气动电磁阀工作原理 “十五”期间全国新发现大型矿产地529处 国土资源部最新统计表明,“十五”期间,全国新发现和评价的大型规模及大型规模以上的矿产地共529处,其中,达到特大型规模的矿产地145处。 在529处大型及以上矿产地中,属于国家重点矿种的有358处,占总数的67.67%,涉及煤、铁、铜、铝、铅、锌、锰、镍、钨、锡、钾盐和金12个矿种。 此外,“十五”期间,我国找矿还呈现以下特点:529处大型矿产地涉及矿种51个,其中,煤炭占总数的46.31%;有色金属矿占总数的14.93%;黑色金属矿占总数的1.7%;贵金属矿占总数的8.13 铜阀门>>铜电磁阀>>黄铜丝口电磁阀 产品名 称: 黄铜丝口电磁阀 产品型 号: 2L 产品口 径: DN20-65 产品压 力: 1.6-6.4Mpa 产品材 质: 铸钢、不锈钢、合金钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、不锈钢、304、304L、316、316L、铬钼钢、低温钢、钛合金钢等。工作压力1.0Mpa-50.0Mpa。工作温度:-196℃-650℃。连接方式:内螺纹、外螺纹、法兰、焊接、对焊、承插焊、卡套、卡箍。驱动方式:手动、气动、液动、电动。 产品详细信息■型号规格说明

■电磁阀技术参数 型号2W16 0-10 2W16 0-15 2W20 0-20 2W25 0-25 2W35 0-35 2W40 0-40 2W50 0-50 符号 使用液体空气、水、油、瓦斯 动作方式直动式 形式常闭式 流量孔径mm 1.6 20 25 35 40 50 CV值 4.8 7.6 12 24 29 48 接管口径3/8" 1/2" 3/4" 1" 1 1/4" 1 1/2" 2" 使用流体黏滞度20CST以下 使用压力**kg/cm2 水0.5 空气0~7 油0~7 最大耐压力kg/cm2 10 工作温度-5~80 使用电压范围±10% 本体材质黄铜 油封材质NBR,EPDM或VITON ■电磁阀技术参数 型号2L170 -10 2L170 -15 2L170 -20 2L200 -25 2L300 -35 2L300 -40 符号 使用液体蒸汽、水、空气 动作方式引导式(先导式)形式常闭式流量孔径mm 17 25 30 50 CV值 4.8 12 20 接管口径3/8" 1/2" 3/4" 1" 1 1/4" 1 1/2" 2使用流体黏滞度20CST以下 使用压力**kg/cm2 蒸汽、热空气、油0.5~15 蒸汽、热空气、

高压给水主调节阀故障

高压给水主调节阀故障集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

高压给水主调节阀故障一、事件经过 2008年6月10日7时32分,#3机负荷120MW,发现高压给水主路调节阀在5%开度卡住,不能开关,此时高压给水流量39t/h,高压主蒸汽流量1109t/h并持续增大,立即派人去就地检查阀门气源、电源正常,就地开度与DCS上开度相符,紧急通知检修人员处理。7:45高压汽包水位下降至-600MM时,向中调申请紧急停机。 2008年11日18时58分,#3机组负荷270MW,发现#3机组高压汽包水位较低,为-296mm,此时高压给水主调门开度为72%,出现卡涩无法继续开大,此时高压给水流量仅为192t/h,明显低于该开度下的正常给水量(此开度下给水流量正常值应为300t/h以上),而高压汽包蒸发量此时为230t/h,高压汽包水位有继续下降趋势,立即至现场检查发现#3机组高压给水主调门开度在70%左右时声音和振动较大,但该阀门开度减小后声音和振动现象逐渐消失;17时00分退出#3机组AGC和一次调频,#3机组降负荷至170MW,高压给水主调门切至手动,维持开度为66%,声音和振动现象消失,稳定后高压给水流量和高压汽包蒸发量平衡(同为170t/h),高压汽包水位稳定在-300mm左右。21时50分停机后发现,#3机高压给水主调门在关闭到35%时,也出现卡涩现象,无法继续关闭。

2008年6月12日,#3机启动过程中,高压给水调节系统管道振动大,现场观察发现高压调阀开度较大(高压给水流量在约220吨以上)时整个管道系统振动很大,后按要求将机组负荷维持在240MW,悉心操作,认真监视管道振动情况,确保了机组安全运行。 2008年7月7日7时15,在启机过程中,机组负荷120MW,#1机高压给水主调门卡涩,卡在5.9%开度附近,给水流量只有37t/h左右。切至手动调节只能关小,不能开大。立即退出ALR控制,降低机组负荷至 84MW。就地检查该阀几乎没有开度,立即手动关闭B给水泵高压出口电动阀,并断开高压给水调阀的气源,高压给水调阀还是不动。之后开启该高压给水调阀气源,并开启B给水泵高压出口电动阀,高压给水调阀立即动作,此时该阀重新动作正常。重新升负荷至120MW,投入ALR,机组顺利进汽。 2008年7月30日7时30分,#3机组启动过程中发现,高压给水主调门开度指令60%时,高压给水流量仅有30t/h,现场检查确认其阀杆已断裂,机组维持3000rpm空负荷运转。通知检修人员处理,检修人员检查后告知需停机更换高压给水主调阀。 6.2008年9月22日,19时26分#2机负荷311.5MW,高压主汽流量269.9T/H,#2机高压给水调阀开度突然由6 7.5%异常升至92.4%,而高

调节阀压差的确定

调节阀压差的确定 一、概述 在化工过程控制系统中,带调节阀的控制回路随处可见。在确定调节阀压差的过程中,必须考虑系统对调节阀操作性能的影响,否则,即使计算出的调节阀压差再精确,最终确定的调节阀也是无法满足过程控制要求的。 从自动控制的角度来讲,调节阀应该具有较大的压差。这样选出来的调节阀,其实际工 有人会问,一般控制条件在流程确定之后即要提出,而管道专业的配管图往往滞后,而且配管时还需要调节阀的有关尺寸,怎样在提调节阀控制条件时先进行管系的水力学计算呢?怎样进行管系的水力学计算,再结合系统前后总压差,最终在合理范围内确定调节阀压差,这就是本文要解决的问题。 二、调节阀的有关概念 为了让大家对调节阀压差确定过程有一个清楚的认识,我们需要重温一下与调节阀有关的一些基本概念。 1、调节阀的工作原理 如图1所示,根据柏努力方程,流体流经调节阀前后1-1和2-2截面间的能量守恒关系如下式所示。 ) 1(222 2 222111------+++=++f h g U rg P H g U rg P H

由于H 1=H 2,U 1=U 2,则有: 在流体阻力计算时,还有: 则有: 2 1当调节阀单位相对开度变化引起的相对流量变化是一个常数时,称调节阀具有直线流量特性。其数学表达式为: 其积分式为: 代入边界条件l=0时, Q=Qmin; l=lmax 时, Q=Qmin 。得: )2(2 1-------= rg P P h f 2)10(max max ------=l l kd Q Q d )11(max max -------+=常数l l k Q Q max min 1Q Q k - =max min Q Q = 常数

动态压差平衡阀的工作原理及使用方法

动态压差平衡阀的工作原理及使用方法 发布时间:2010-5-27 编辑:wenjie 来源:直接进论坛 动态压差平衡阀,亦称自力式压差控制阀、差压控制器、压差平衡阀等,它是用压差作用来调节阀门的开度,利用阀芯的压降变化来弥补管路阻力的变化,从而使在工况变化时能保持压差基本不变,它的原理是在一定的流量范围内,可以有效地控制被控系统的压差恒定,即当系统的压差增大时,通过阀门的自动关小动作,它能保证被控系统压差增大反之,当压差减小时,阀门自动开大,压差仍保持恒定。 动态压差平衡阀的工作原理: 该阀由阀体,阀盖,阀芯弹簧,控制导管,调压器组成,阀门安装在供热管路的回水管上,阀门上的工作腔通过控制管与供水管连接。消除外网压力波动引起的流量偏差,当供水压力P1增大,则供水压差P1-P3增大,感压膜带动阀芯下移关小阀口,使P2增大,从而维持P1-P2的恒定。当供水压力P1减小则感压膜带动阀芯上移,P2减小,使P1-P2恒定不变。无论管路中压力怎样变化,动态压差平衡阀均可维持施加于被控对象压差和流量恒定。 动态压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、该阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门[1]检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。

中央空调压差旁通阀的介绍及作用

压差旁通阀 电动压差旁通阀 压差旁通阀分自力式压差旁通阀和电动压差旁通阀2种。 电动压差旁通阀是通过控制压差旁通阀的开度控制冷冻水的旁通流量,从而使供回水干管两端的压差恒定。广泛应用于中央空调集分水器之间,热力泵供回水之间,可有效保持设备不被损坏。 电动压差旁通阀常用于气体或液体系统,控制气体或液体管路与回路之间的压差。把电动压差旁通阀安装在系统水泵附件的旁通管路中,当系统压差增大而超过控制阀设定值时,阀门则进而开大,使更多的水流经旁通阀,从而使系统压差减小。相反,压差的减小导致阀门开度减小从而使系统压差增加。 自力式压差旁通阀 旁通阀又名自力式旁通压差阀,自力式自身压差控制阀 自力式自身压差控制阀(旁通式-C)在控制范围内自动阀塞为关闭状态,阀门两端压差超过预设值,阀塞即自动打开。并在感压膜的作用下自动调节开度,保持阀门两端压差相对恒定,依靠自身的压差工作,不需任何外来动力,性能可靠。 性能特点: 自力式自身压差控制阀为电动压差控制阀替代产品。 为安全可靠,解决了电动压差控制阀对电的信赖和电路出现问题造成机组损伤的机率,并且自力式自身压差控制阀便于安装,节省费用。 自力式自身压差控制阀的用途: 此经过,以保证机组流量不小于限制值。 自力式自身压差控制阀应用于集中供热系统中以保证某处散热设备不超压或不倒空。比如某系统高低差较大,且不分高低区系统,这时如按高处定压,低处散热设备可能压爆;如按低处定压,高处倒空。

这种情况如热源在低外可在进入高区分支水管加增压泵,回水管加压差阀使高区压力经过提升后,由阀门再降到低区回水压力;如热源在高处可进入低区供水管加装压差阀,回水加增压泵,使通过阀门压力降低的循环水能回到系统中。空调系统中旁通阀的作用和原理: 空调系统的的压差旁通阀是用在冷水机组的集水器与分水器之间的主管道上的,其原理是通过压差控制器感测集水器与分水器两端水压力,然后根据测试到的压力计算出差值,再由压差控制器根据计算出的差值与预先设定值进行比较决定输出方式,以控制阀门是增加开度或减少开度,从而来调节水量,以达到平衡主机系统的水压力的目的。 自力式自身压差控制阀的性能参数: 控制压差在 依靠压差自动工作,无须外接动力,运行安全稳定可靠。 介质温度:0--150℃。 公称压力:1.6Mpa 。 自力式自身压差控制阀的安装调试: 适用于分集水器之间 旁通管安装保护冷热源 适用于高层建筑分区供暖,安装于高区回水管避免高 区倒空和水垂 1、热源 2、循环水泵 3、系统补给水泵 4、自力式 自身压差控制阀 5、加压水泵 6、止回阀 7、后部补水压力调节阀 8、热用户

压差旁通阀的选择计算

压差旁通阀的选择计算

为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的

供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二选择调节阀应考虑的因素 调节阀的口径是选择计算时最重要的因素之一,调节阀选型如果太小,在最大负荷时可能不能提供足够的流量,如果太大又可能经常处于小开度状态,调节阀的开启度过小会导致阀塞的频繁振荡和过渡磨损,并且系统不稳定而且增加 了工程造价。 通过计算得到的调节阀应在10%-90%的开启度区间进行调节,同时还应避免使用低于

高温高压调节阀技术规范书

高温高压调节阀技术规范书 1 总则 1.1 本技术规范书适用于燃煤发电工程高温高压调节阀的设计、制造、试验、质量保证和验收。 1.2 本协议书中所提及的要求和供货范围都是最低限度的要求,并未对一切技术细节作出规定,也未充分地详述有关标准和规范的条文,但卖方保证提供符合本协议和工业标准的功能齐全的优质产品,满足国家有关安全、环保等强制性标准的要求。 1.3 卖方执行技术规范所列标准,有不一致时,按较高标准执行。卖方在设备设计和制造中所涉及的各项规程、规范和标准必须遵循现行最新标准版本。若卖方所提供的技术规范前后有不一致的地方,以更有利于设备安装运行、工程质量为原则,由买方确定。在合同签订后,买方有权因规范、标准发生变化而提出一些补充要求,在设备投料生产之前,卖方在设计上予以修改,但价格不作调整。 1.4在签订合同之后,买方保留对本技术规范提出补充要求和修改的权利,卖方应承诺予以配合,具体项目和条件由双方共同商定。 1.5本工程采用KKS标识系统,卖方提供的技术资料(包括图纸)和设备的标识必须有KKS编码。KKS的编制原则由买方提出,具体标识由卖方编制,编码范围包括卖方所供系统、设备、主要部件(包括分包和采购件)和构筑物等,由设计院统一协调。 1.6 卖方对供货范围内的成套设备负有全责,即包括分包(或对外采购)的产品。分包(或对外采购)的主要产品制造商须征得买方的认可。 1.7卖方所提供的设备、阀门的接口应和买方的规格和材料一致,卖方应保证在现场没有任何异种钢和异径管的焊接问题,如有不一致,卖方提供过渡段。卖方所提供的阀门口径最终应满足设计院要求,除调节阀外,不得采用缩小口径加大小头的方法。 1.8对于卖方配套的控制装置、仪表设备,卖方应考虑和提供与DCS控制系统的接口并负责与DCS控制系统的协调配合,直至接口完备。 1.9 合同签订后3个月,按本协议要求,卖方提出合同设备的设计、制造、检验/试验、装配、安装、调试、试运、验收、试验、运行和维护等标准清单给买方,买方确认。 1.10本技术规范书文件为订货合同的附件,是产品质量保证和验收的依据,与合同正文具有同等效力。

压差平衡阀的作用原理是什么

压差平衡阀的作用原理是什么? 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。 压差平衡阀为双瓣结构,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合GB4216.2中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时

的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=2.12,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个

调节阀的流量计算

调节阀的流量计算 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=- PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>时

当P2≤时 式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>时 当P2≤时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量 m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算

汽轮机高压调节阀的修复方案

汽轮机高压调节阀的修复方案 湛江发电厂2号汽轮机的1号高压调节阀开启失灵,严重影响机组安全稳定运行。对阀门进行解体检查,发现高压调速汽门阀座下沉10mm,导致阀碟导向凸肩脱离导向槽,无法对蒸汽进行正常调节。鉴于机组临修时间短,阀座下沉现场很难恢复,决定采用堆焊处理,增加导向凸肩的高度,达到恢复高压主汽调节阀原有的使用功能。 1高压主汽调节阀修复方案 1.1阀碟导向凸肩工作机理 2号机组为东方汽轮机厂制造的(N300-16.7/537/537-3型)汽轮机,它的高压主汽调节阀是由1个主汽阀和2个调节阀组成,高压调节阀是用于调节高压缸的进汽量。机组运行时,油动机作为机械提升装置,使阀碟导向凸肩沿导向槽上下移动,控制调节阀碟的开度。机组运行时,调节阀的高温蒸汽为16.7MPa,537℃,导向凸肩主要承受热应力和一定的周向剪切应力作用。 1号高压调节阀的阀碟与阀座配合直径为170mm,其阀碟的结构如图1所示,导向凸肩尺寸为55mm×30mm×10mm(高×宽×厚)。阀碟材料采用20Cr3MoWVA合金钢,为了提高阀碟耐汽蚀的性能,其表面进行过高温渗氮处理。 1.2堆焊材料和焊接设备的选择 根据调节阀的工作条件,阀碟导向凸肩既要保证有足够高温强度,又要满足一定的耐磨性。鉴于机组抢修,无法采购到最佳匹配材料,参照堆焊材料的选用原则以及对各堆焊材料力学性能的分析,选用与母材材质相近的TIG-R34(12Cr2MoWVTIB,Φ2.5mm)焊丝。焊接设备采用 LincolnV300-1及氩弧焊接配套工具;温度监控使用美国MX2红外线测温仪。 2焊接性能分析 根据碳当量公式计算,材料20Cr3MoWVA的主要特点是含碳及合金元素较多,焊接时焊缝及热处理区容易出现淬硬组织,当焊件刚性及接头应力较大时,容易产生冷裂纹。 经过渗氮处理的阀碟,其表面硬度高达HV900,焊接时极易产生裂纹。 3堆焊工艺 3.1工艺路线

压差阀

压差阀 目录 ZYC型自力式压差控制阀 低真空电磁压差充气阀DYC-Q 压差旁通平衡阀-800X压差旁通平衡阀 压差旁通平衡阀 压差旁通阀-800X压差旁通阀 无压差电磁阀-ZCT无压差电磁阀 电磁真空压差式充气阀DYC-JQ、GYC-JQ 自力式压差控制阀-ZYC自力式压差控制阀 自力式压差控制阀ZYC 自力式差压调节阀-ZZV自力式差压调节阀 自力式差压调节阀-ZZYW型自力式差压调节阀

ZYC型自力式压差控制阀 一、产品[自力式压差控制阀]的详细资料: 产品型号:ZYC型 产品名称:自力式压差控制阀 产品特点:ZYC型自力式压差控制阀,是一种利用介质自身的压力变化进行自我控制而保持流经该被控系统介质压差不变的阀门。适用于供暖方式采用双管系统的压差控制,保证系统基本不变,降低噪音,平衡阻力,消除热网和水力失调。 二、主要技术参数: 型号公称压力壳体实验压力 压差控制范围 定压差型可调压差型ZYC-16一H3T16MPa 2.4MPa10KPa、20KPa、30KPa10.30KPa 三、ZYC型自力式压差控制阀主要外型尺寸(法兰连接尺寸按GB4216规定): DN mm 连接方式 L mm H(mm)流量 m3/h 适用介质介质温度 主要零 件材料定压差型可调压差型 15 螺纹1109514502-1 水0~100℃ 阀体、上盖和 下盖 为铸铁、阀芯 201101101500.3-1.5 2511513016505-2

为铜、膜片为尼龙强化橡胶、弹簧为不锈钢 32 法兰1301401901-440 20019034015-650 2152053552-865 2302403903-1280 2753005005-20100 29035055010-3012531038058015-45订货须知: 一、①ZYC 型自力式压差控制阀产品名称与型号②ZYC 型自力式压差控制阀口径③ZYC 型自力式压差控制阀是否带附件二、若已经由设计单位选定公司的ZYC 型自力式压差控制阀型号,请按ZYC 型自力式压差控制阀型号 三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数, 相关产品: WM341系列隔膜可调式减压阀 波纹管式减压阀 T44H/Y 型波纹管减压阀 YZ11X 直接作用薄膜式水用减压阀 直接作用薄膜式减压阀 内螺纹活塞式蒸汽减压阀 Y45H/Y 型手动双座蒸汽减压阀 Y945H/Y 型电动双座蒸汽减压阀 YB43X 固定比例式减压阀 比例式减压阀 高灵敏度蒸汽减压阀

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09 来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。 调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。 控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。

空调冷冻水系统压差调节阀的选择计算

空调冷冻水系统压差调节阀的选择计算在中央空调管路中,对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户则要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,压差旁通阀工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,压差旁通阀将自动打开,由于压差旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容易烧毁也就是这个结果,因此,在一般的情况下,最好能使水泵在一个稳定的状态运行,这就要求我们用旁通,无论上面的负荷怎样变化,水泵都能在稳定的流量下运行,而不会导致电机的电流不段变化,使电机的寿命降低! 为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一、压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二、选择调节阀应考虑的因素

实验室房间压差控制系统的工作原理

实验室房间压差控制系统: 直接压差显示 压差控制器持续地监测房间的实际压差值,并以直观的数字进行显示,以便实验室操作人员随时掌握室内压差的状态,提高了实验室周围环境的安全系数。 时刻监控压差状态 室内排风和房间补风及窗户、门开关等因素引起的房间压差的变动,通过精密传感器的监控在2 秒内将房间压差恢复设定值范围内,维持压差保持在最佳状态,防止了因气流变化导致的有毒气体的溢出。 安全报警 如果房间压差超出安全范围,声音及警灯将报警。 紧急处理 当门外未关状态时,系统将自动将房间补风调至设定的风量值,保证房间处于负压中,防止室内有害气体的溢出。 控制元气组件: 房间压差控制器

房间压差传感器 VAV变风量阀 门磁感应开关 控制电源 以上就是木人给大家的简单介绍,如果您还想了解其他更多内容可以拨打我们的热线电话,或者点击官网咨询我们,或者点击在线咨询我们。 深圳市木人实验室环境技术有限公司(原深圳市木人科技实业有限公司)创立于2004年,是一家专业从事于实验室前期建筑咨询,系统规划设计、施工、实验室家具设计制作的股份制有限公司。 作为改革开放之都的实验室建设行业的先行者,我们致力于引进国际上先进的实验室技术,并予以吸收国产化,先后推出了欧式,美式实验台,VAV变风量控制系统,实验室智能化系统,由此获得广大客户的认可。 我们:

改革开放的前沿-设计之都-深圳 十五年的实验室设计施工经验 装饰、暖通、结构、家具等各个专业的设计师团队 20年项目管理经验的建造师 10000平方的实验室家具设计制造中心 上千个工程案例(华为技术、富士康科技集团,中兴通讯,深圳大学,南昌大学,深圳市人民医院,完美集团,深圳市检察院等) 实验室建设行业正经历一场前所未有的变革,由手工化进入智能化时代,木人不会做变革的观众,木人的使命将使我们如催化剂一般积极参与变革!

压差旁通阀的作用是什么

压差旁通阀的作用是什么,管径如何确定? 压差旁通阀的作用是什么,管径如何确定? 答:对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户侧要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,其工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,旁通阀将自动打开,由于旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。 水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容

相关文档
最新文档