γ能谱实验1

γ能谱实验1
γ能谱实验1

近代物理仿真实验

—γ能谱实验

γ能谱实验

和原子的能级间跃迁产生原子光谱类似,原子核的能级间产生γ射线谱。测量γ射线强度按能量的分布即γ射线谱,简称γ能谱,研究γ能谱可确定原子核激发态的能级,研究核蜕变纲图等,对放射性分析,同位素应用及鉴定核素等方面都有重要的意义。在科研、生产、医疗和环境保护各方面,用γ射线的能谱测量技术,可以分析活化以后的物质各种微量元素的含量。测量γ射线的能谱最常用的仪器是闪烁谱仪,该谱仪在核物理、高能离子物理和空间辐射物理的控测中都占有重要地位,而且用量很大。

本实验的目的是学习用闪烁谱仪测量γ射线能谱的方法,要求掌握闪烁谱仪的工作原理和实验方法,学会谱仪的能量标定方法,并测量γ射线的能谱。

一实验目的

(1)学习用闪烁谱仪测量γ射线能谱的方法

(2)要求掌握闪烁谱仪的工作原理和实验方法,

(3)学会谱仪的能量标定方法,并测量γ射线的能谱

二实验原理

根据原子核结构理论,原子核的能量状态时不连续的,存在分立能级。处在

能量较高的激发态能级E

2上的核,当它跃迁到低能级E

1

上时,就发射γ射线(即

波长约在1nm-0.1nm间的电磁波)。放出的γ射线的光量子能量hγ= E

2 - E

1

此处h为普朗克常熟,γ为γ光子的频率。由此看出原子核放出的γ射线的能量反映了核激发态间的能级差。因此测量γ射线的能量就可以了解原子核的能级结构。测量γ射线能谱就是测量核素发射的γ射线按能量的分布。

闪烁谱仪是利用某些荧光物质,在带电粒子作用下被激发或电离后,能发射荧光(称为闪烁)的现象来测量能谱。这种荧光物质常称为闪烁体

1. 闪烁体的发光机制

闪烁体的种类很多,按其化学性质不同可分为无机晶体闪烁体和有机闪烁体。有机闪烁体包括有机晶体闪烁体,有机液体闪烁体和有机塑料闪烁体等。对于无机晶体NaI(Tl)而言,其发射光谱最强的波长是415nm的蓝紫光,其强度反映了进入闪烁体内的带电粒子能量的大小。应选择适当大小的闪烁体,可使这些光子一射出闪烁体就被探测到。

2. γ射线光子与物质原子相互作用的机制主要有以下三种方式:

1)光电效应

当能量为Eγ的入射γ光子与物质中原子的束缚电子相互作用时,光子可以

把全部能连转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应。发射出光电子的动能

E e=E r?B i

B i为束缚电子所在可层的结合能。原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X射线。例如L层电子跃迁到

K层,放出该原子的K系特征X射线。

2)康普顿效应

γ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向,计算给出反冲电子的动能为

c2为电子静止质量,角度θ是γ光子的散射角,见下图所示,由图看出式中m

反冲电子以角度φ出射,φ与θ间有以下关系

由式(2)给出,当θ=1800时,反冲电子的动能E e有最大值,此时

这说明康普顿效应的反冲电子的能量有一上限最大值,称为康普顿边界E

C 3)电子对效应

c2时,γ光子从原子核旁经过并受到核的库仑场作用,当γ光子能量大于2m

可能转化为一个正电子和一个负电子,称为电子对效应。此时光子能量可表示为两个电子的动能与静止能量之和,如

c2 = 1.02 MeV

其中2 m

综上所述,γ光子与物质相遇时,通过与物质原子发生光电效应,,康普顿效应或电子对效应而损失能量,其结果是产生次级带电粒子,如光电子,反冲电子或正负电子对,次级带电粒子的能量与入射γ光子的能量直接相关。因此,克通过测量次级带电粒子的能量求得γ光子的能量。

闪烁γ能谱仪正是利用γ光子与闪烁体香菇作用时产生次级带电粒子,进而由次级带电粒子引起闪烁体发射荧光光子,通过这些荧光光子的数目来推出次级带电粒子的能量,再推出γ光子的能量,以达到测量γ射线能谱的目的。

闪烁谱仪的结构框图及各部分的功能如下图所示

其工作过程是当γ射线射入探头内的NaI(Tl)闪烁晶体时在晶体内部产生电离,把能量交给次级电子,在闪烁体内引起的荧光,照射支光电倍增管的光阴是,打出光电子,再经光电倍增管次阴级多次倍增所被阳极收集,在光电倍增管阴极负载上输出电压脉冲,此脉冲幅度大小与被测的γ射线能量成正比。脉冲信号通过放大器放大后进入单道或多道分析器,从而获得γ射线的能谱。本仿真实验用的是单道分析器。

铯137的γ射线能谱如下所示

E b为背散射峰,一般很小,E c为康普顿散射边界E e为光电峰,又称全能峰,对于137Cs此能量为0.661Mev。

能量分辨率是γ能谱仪的重要参数。其意义如下图

定义能量分辨率η为

△V为半高宽度,V为光电峰脉冲幅度。

三实验仪器

单道脉冲幅度分析器,闪烁探头,多道脉冲分析器和计算机数据处理系统,光电倍增管,闪烁谱仪。

四实验内容及步骤

实验内容

1.熟悉各仪器的使用方法,用多道分析器观察137Cs的γ能谱的形状,识别其光

电峰及康普顿边界等。改变线形放大器的放大倍数,观察光电峰位置变化的规律。

2.测量137Cs的γ能谱光电峰与线形放大器放大倍数间的关系。要求至少取10个

不同数据并作最小二乘法拟合给出相关结果。

3.测量137Cs的60Co放射源的γ射线能谱,用已知的光电峰能量值来标定谱仪的

能量刻度,然后计算未知光电峰的能量值。提示60Co的γ射线能量约为137Cs 的γ射线能量的两倍,要求在多道分析器的横轴道址范围内使二者均能显示出来,需选择合适的放大倍数,如果放大倍数太大会使60Co的光电峰逸出道址范围:如果放大倍数太小又不能充分利用多道分析器给定的道址而降低了能量分辨率,因此需要考虑怎样才是合适的放大倍数?

4.汇出137Cs和60Co源的γ能谱图,给出谱仪的能量标定并计算60Co源的γ

射线能量。

实验步骤

I仪器调节

(1) 打开高压电源开关。

(2) 按实验要求调节高压值。

(3) 打开线性率表开关,调节放大倍数。每改变一次放大倍数值,不断改变

阈值,同时从线性率表中观察Cs137的峰位,直至满足实验要求。

(4) 按实验要求调节定标器的工作选择、时间选择旋钮。

(5) 按实验要求调节道宽。

(6) 调节完成,双击仪器上方的黄色标题栏,关闭仪器,返回实验室台面。

II进行实验

在主菜单上选择“开始实验”,如果仪器调节正确,将弹出数据表格,请继续以下实验步骤,否则,系统将给出相应提示并弹出仪器,请继续调节。

实验步骤:

(1) 单击定标器上的计数按钮,开始计数。

(2) 计数完毕,定标器自动停止,在实验数据表格中单击“记录数据”按钮,

将此数据记录,单击“能谱图”,可观察描点。若对本次数据不满意,单击“清除数据”按钮,返回第1步。

(3) 适当调节阈值,返回第1步,直至所有数据测定完成。

(4) 单击“能谱图”,观察以描点作图法绘制出的能谱图,将鼠标指针移动

到记录点上,可读出此点所对应的阈值。

五实验数据及处理

阈值电压0 0.2 0.4 0.6 0.8 1 1.2 1.4 能谱图

六思考题

1.用闪烁谱仪测量γ射线能谱时,要求在多道分析器的道址范围内能同时测量出137Cs和60Co光电峰,应如何选择合适的工作条件,在测量过程中该条件可否改变?

答:条件是放大倍数为8.8倍,放大电压足够大,道宽0.2V。

为便于比较,测量过程中条件不可改变

2. 为满足光电峰处计数率相对误差小于2%的要求,怎样从实验中确定计数所用的时间?

答:计数率相对误差小于2%,如果n为光电峰面积,由于统计误差为√n,只要计数时间使峰面积满足:√n/n<2%

也就是峰净面积至少2500个计数。

自己编写算法的功率谱密度的三种matlab实现方法

功率谱密度的三种matlab 实现方法 一:实验目的: (1)掌握三种算法的概念、应用及特点; (2)了解谱估计在信号分析中的作用; (3)能够利用burg 法对信号作谱估计,对信号的特点加以分析。 二; 实验内容: (1)简单说明三种方法的原理。 ( 2)用三种方法编写程序,在matlab 中实现。 (3)将计算结果表示成图形的形式,给出三种情况的功率谱图。 (4)比较三种方法的特性。 (5)写出自己的心得体会。 三:实验原理: 1. 周期图法: 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱S x (e jw)的估计S x (e jw)的抽样. 认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n) 中的一段x N(n) 来估计该随机序列的功率谱。这当然必然带来误差。由于对x N(n)采用DFT,就默认x N (n)在时域是周期的,以及x N(k) 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段x N (n)的周期延拓,这也就是周期 图法这个名字的来历。 2.相关法(间接法): 这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。这种方

法的具体步骤是: 第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列x N (n) 第二步:由N 长序列x N(n)求(2M-1)点的自相关函数R x(m) 序列。 1 N 1 R x(m) x N (n)x N(n m) N n0 (2-1) 这里,m=-(M-1) ?,-1,0,1?,M-1 ,M N,R x(m) 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。。。,M-1 的傅里叶变换,另一半也就知道了。 第三步:由相关函数的傅式变换求功率谱。即 M1 S x (e jw) R X(m)e jwm m ( M 1) 以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1 )长,称为加延迟窗。因此所得的功率谱仅是近似值,也叫谱估计,式中的S x(e jw)代表估值。一般取M<

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

α射线能谱测量

**************************************************************************** 西南科技大学 《α射线能谱测量》报告 设计名称α射线能谱测量 学院 班级 学生姓名 学号 设计日期 2014年12月 2014年10月制 目录 1实验目的 (1) 2实验内容 (1)

3实验原理 (1) α能谱 (1) α放射源 (2) α放谱仪 (3) 探测器测量α射线能谱相关原理 (4) α谱仪的能量刻度和能量分辨率 (4) 4实验仪器、器材 (5) 5实验步骤 (5) 6实验数据记录、处理 (6) 7实验结论 (8) 1实验目的 α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行: 1、了解α谱仪工作原理与特性 2、掌握α能谱测量原理及测量方法

3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度 2实验内容 测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。 3实验原理 α能谱 α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E N= W 公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。 由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为,能量最小232Th为),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。 α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的

功率谱估计真实验

功率谱估计仿真实验 选题条件:对于给定的一个信号()()()t t f t f t x ?ππ++=212sin 2)2sin(,其中1f =50Hz , 2f =100Hz ,()t ?为白噪声,采样频率Fs 为1000Hz ,对其进行功率谱估 计。 仿真目标:采用多种方法对该指定信号进行功率谱估计,计算其功率谱密度,比较 各种估计方法的优劣。 设计思路:本仿真实验采用经典谱估计中的周期图法对给定信号进行谱估计。但是 由于其自身的缺陷,使得频率分辨率较低。为了不断满足需要,找到恰 当的估计法,实验使依次使用了周期图法的改进型方法如分段周期图法、 窗函数法以及修正的周期图法进行功率谱估计,对四种方法得出的谱估 计波形进行比较分析,得出估计效果最好的基于周期图法的谱估计方法。 仿真指标:频率分辨率、估计量的方差、频谱光滑度 平台说明:本实验采用MATLAB7.0仿真软件,基于WINDOWS-XP 系统。Matlab 是 一个集数值分析、矩阵运算、信号处理和图形显示于一体的工程分析处理软件。它提供的部分算法函数为功率谱估计提供了一条可行的方便途径,如PSD 和CSD 可以自动实现Welch 法估计,而不需要自己编程。但是较为有限,大部分需要自己编写相应的M 文件来实现。 实现方法: 一、周期图法 周期图法是直接将信号的采样数据()n x 进行傅立叶变换求功率谱密度估计。假设有限长随机信号序列()n x ,将它的功率谱按定义写出如下: ()()??? ?????+=∑-=-∞→2121lim N N n n j N j xx e n x N E e P ωω 如果忽略上式中求统计平均的运算,观测数据为:()n x 10-≤≤N n ,便得到了周期图法的定义: ()()2 10 ^ 1n j N n j xx e n x N e P ωω--=∑=, 式中的绝对值符号内的部分可以用FFT 计算,这样就可得到周期图法的计算框图如下所示: () ω j xx e ^ 图1 周期图法计算功率谱框图 采用周期图法时,可以分取不同的信号长度256、512和1024,分别进行功率谱

AMI与HDB3码波形与功率谱密度实验

数字基带信号的波形与功率谱密度实验 一、实验目的 1、掌握数字基带码型有关概念及设计原则; 2、了解单极性码、双极性码、归零码和不归零码的波形特点; 3、掌握AMI和HDB3码的编码规则; 4、掌握各种基带码功率谱特性。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节和7.2节——数字基带信号的码型与功率谱、AMI与HDB3码波形与功率谱密度; 2、学习MATLAB软件的使用; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理 通信的根本任务是远距离传递信息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。在数字传输系统中,其传输对象通常是二进制数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。设计数字传输系统的基本考虑是选择一组有限的离散的波形来表示数字信息。这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。由于未经调制的电脉冲信号所占据的频率带宽通常从直流和低频开始,因此称为数字基带信号。而某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,我们称之为数字信号的基带传输。 数字基带信号是数字信息的电脉冲表示,不同形式的数字基带信号(又称码型)具有不同的频谱结构,合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构,是基带传输首先要考虑的问题。通常又把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。 事实上,在数字设备内部用导线连接起来的各器件之间就是用一些最简单的数字基带信号来传送定时和信息的。这些最简单的数字基带信号的频谱中含有丰富的低频分量乃到直流分量。由于传输距离很近,高频分量衰减也不大。但是数字设备之间长距离有线传输时,高频分量衰减随着距离的增加而增大,同时信道中往往还存在隔直流电容或耦合变压器,因而

营养缺陷型菌株的筛选

营养缺陷型菌株的筛选 采用辐射,化学试剂等因素处理细菌,以提高其变异几率,关键步骤是进行营养缺陷型微生物的筛选工作,营养缺陷型是指通过诱变产生的,由于发生了丧失某酶合成能力的突变,因而只能在加有该酶合成产物的培养基中才能生长的突变株。营养缺陷型的筛选与鉴定涉及下列几种培养基:基本培养基(MM,符号为[-])是指仅能满足某微生物的野生型菌株生长所需的最低成分的合成培养基。完全培养基(CM,符号为[+])是指可满足某种微生物的一切营养缺陷型菌株的营养需要的天然或半合成培养基。补充培养基(SM,符号为[A]或[B]等)是指在基本培养基中添加某种营养物质以满足该营养物质缺陷型菌株生长需求的合成或半合成培养基。 营养缺陷型菌株不仅在生产中可直接作发酵生产核苷酸、氨基酸等中间产物的生产菌,而且在科学实验中也是研究代谢途径的好材料和研究杂交、转化、转导、原生质融合等遗传规律必不可少的遗传标记菌种。 营养缺陷型的筛选一般要经过诱变、淘汰野生型、检出和鉴定营养缺陷型四个环节。现分述如下: 第一步,诱变剂处理:与上述一般诱变处理相同。

第二步,淘汰野生型:在诱变后的存活个体中,营养缺陷型的比例一般较低。通过以下的抗生素法或菌丝过滤法就可淘汰为数众多的野生型菌株即浓缩了营养缺陷型。 抗生素法有青霉素法和制霉菌素法等数种。青霉素法适用于细菌,青霉素能抑制细菌细胞壁的生物合成,杀死正在繁殖的野生型细菌,但无法杀死正处于休止状态的营养缺陷型细菌。制霉菌素法则适合于真菌,制霉菌素可与真菌细胞膜上的甾醇作用,从而引起膜的损伤,也是只能杀死生长繁殖着的酵母菌或霉菌。在基本培养基中加入抗生素,野生型生长被杀死,营养缺陷型不能在基本培养基中生长而被保留下来。 菌丝过滤法适用于进行丝状生长的真菌和放线菌。其原理是:在基本培养基中,野生型菌株的孢子能发芽成菌丝,而营养缺陷型的孢子则不能。通过过滤就可除去大部分野生型,保留下营养缺陷型。 第三步,检出缺陷型:具体方法很多。用一个培养皿即可检出的,有夹层培养法和限量补充培养法;在不同培养皿上分别进行对照和检出的,有逐个检出法和影印接种法。可根据实验要求和实验室具体条件加以选用。现分别介绍如下:

功率谱密度

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel('幅值(V)'); xlabel('时间(s)'); title('原始信号'); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)'*10000/length(y);%计算变换后不同点对应的幅值plot(f1,m(1:length(y)/2)); ylabel('幅值的模'); xlabel('时间(s)'); title('原始信号傅里叶变换'); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel('幅值'); xlabel('频率(Hz)'); title('功率谱密度(周期图法)'); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计

matlab实现功率谱密度分析psd

matlab实现功率谱密度分析psd及详细解说 功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);

随机信号及其自相关函数和功率谱密度的MATLAB实现

随机信号及其自相关函数和功率谱密度的MATLAB 实现 摘要: 学习用rand 和randn 函数产生白噪声序列;学习用MATLAB 语言产生随机信号;学习用MATLAB 语言估计随机信号的自相关函数和功率谱密度。利用xcorr,xcov 以及pwelchMATLAB 函数估计随机信号的自相关函数、自协方差以及功率谱密度。 关键词: 随机信号 自相关系数 功率谱密度 实验原理: 随机信号X(t)是一个随时间变化的随机变量,将X (t )离散化,即以Ts 对X (t )进行等间隔抽样,得到随机序列X(nTs),简化为X(n)。在实际工作中,对随机信号的描述主要是使用一、二阶的数字特征。如果X (n )的均值与时间n 无关,其自相关函数Rx(n1,n2)与n1,n2的选取无关,而是依赖于n1,n2之差,即: ()[]x m n X E = ()() 1221,n n R n n R x -= 即称X (n )为宽平稳随机序列。宽平稳随机信号是一类重要的随机信号,实际中的大部分随机信号都可以认为是宽平稳的。 对一平稳序列X(n),如果它的所有样本函数在某一固定时刻的一、二阶特性和单一样本函数在长时间内的统计特性一致,则

称X(n)为各态历经序列。对于各态历经序列,可像确定性的功率信号那样定义一、二数字特征。 设X(n)是各台历经序列X(n)的一个函数,对X(n)数字特征可重新定义如下: 均值: []∑-=∞ →=+==N N n x N x m n x N n X E m )(121 lim )( 自相关函数: ()[]∞ →-=∑= ++=+=N N N n x x m R m n x n x N m n X n X E m R ) ()()(121 lim )()( 自协方差函数: ()(){}(){}[]()2 x x x x x m m R m m n X m n X E m C -=-+-= 具有各态历经的随机信号,由于能够使用单一的样本函数做时间平均,以求得均值和自相关函数,所以在分析和处理信号时比较方便。在实际工作中,往往先假定信号是平稳的,假定它是各态历经的。在此,我们不加说明地认为所讨论的信号都是平稳的和各态历经的,并将随机序列X (n )改为x(n)。 随机序列的功率谱密度定义为: ()()∑∞ -∞ =-== m x jwm x x m R DTFT e m R w S )] ([ 功率谱密度反映了信号的功率随频率的分布,在信号处理中占有重要的地位。然而,实际中由该定义式几乎不可能得到信号的真是功率谱密度,因此只能用所得到的有限长数据予以估计。

微生物的生理学实验复习

实验一化学因素对微生物的影响 二、基本原理 常用化学消毒剂主要有重金属及其盐类、有机溶剂(酚、醇、醛等)、卤族元素及其化合物、染料和表面活性剂等。重金属离子可与菌体蛋白质结合而使之变性或与某些酶蛋白的巯基相结合而使酶失活,重金属盐则是蛋白质沉淀剂,或与代谢产物发生鳌合作用而使之变为无效化合物;有机溶剂可使蛋白质及核酸变性,也可破坏细胞膜透性使内含物外溢;碘可与蛋白质酪氨酸残基不可逆结合而使蛋白质失活,氯气与水发生反应产生的强氧化剂也具有杀菌作用;染料在低浓度条件下可抑制细菌生长,染料对细菌的作用具有选择性,革兰氏阳性菌普遍比革兰氏阴性菌对染料更加敏感;表面活性剂能降低溶液表面张力,这类物质作用于微生物细胞膜,改变其透性,同时也能使蛋白质发生变性。 四、操作步骤 l、将已灭菌并冷至50℃左右的牛肉膏蛋白胨琼脂培养基倒入无菌平血中,水平放置待凝固。 2、用无菌吸管吸取0.2ml培养18h的金黄色葡萄球菌菌液加入到上述平板中,用无菌三角涂棒涂布均匀。 3、将已涂布好的平板底皿划分成4~6等份,每一等份内标明一种消毒剂的名称。 4、用无菌镊子将已灭菌的小圆滤纸片(D5mm)分别浸入装有各种消毒剂溶液的试管中浸湿。 注意取出滤纸片时保证过滤纸片所含消毒剂溶液量基本一致,并在试管内壁沥去多余药液。 无菌操作将滤纸片贴在平板相应区域,平板中间贴上浸有无菌生理盐水的滤纸片作为对照。 5、将上述贴好滤纸片的含菌平板倒置放于37℃温室中,24h后取出观察抑(杀)菌圈的大小。 实验二生物因素对微生物的影响 二、基本原理

生物之间的关系从总体上可分为互生、共生、寄生、拮抗等,微生物之间的拮抗现象是普遍存在于自然界的,许多微生物在其生命活动过程中能产生某种特殊代谢产物如抗生素,具有选择性地抑制或杀死其他微生物的作用,不同抗生素的抗菌谱是不同的,某些抗生素只对少数细菌有抗菌作用,例如青霉素一般只对革兰氏阳性菌具有抗菌作用,多粘菌素只对革兰氏阴性菌有作用,这类抗生素称为窄谱抗生素;另一些抗生素对多种细菌有作用,例如四环素、土霉素对许多革兰氏阳性菌和革兰氏阴性菌都有作用,称为广谱抗生素。 本实验利用滤纸条法测定青霉素的抗菌谱,将浸润有青霉素溶液的滤纸条贴在豆芽汁葡萄糖琼脂培养基平板上,再与此滤纸条垂直划线接种试验菌,经培养后,根据抑菌带的长短,即可判断青霉素对不同类型微生物的影响,初步判断其抗菌谱。实验中所用试验菌通常以各种具有代表性的非致病菌来代替人体或动物致病菌,常用的试验菌株参见表2-1,而植物致病菌由于对人畜一般无直接危害,可直接用作试验菌。 四、操作步骤 1、将豆芽汁葡萄糖琼脂培养基溶化后,冷至45℃左右倒平板。 2、无菌操作,用镊子将无菌滤纸条分别浸入过滤除菌的青霉素溶液和氨苄青霉素溶液中润湿,并在容器内壁沥去多余溶液,再将滤纸条按图2-1所示分别贴在两个已凝固的上述平板上。 注意滤纸条形状要规则,滤纸条上含有的溶液量不要太多,而且在贴滤纸条时不要在培养基上拖动滤纸条避免抗生素溶

γ射线能谱的测量

(一) γ射线能谱的测量 摘要: 本实验将了解闪烁探测器谱仪的工作原理及其使用;学习分析实验测量的137Cs 和60Co γ谱之谱形和γ射线能谱的刻度测定谱仪的能量分辨率,本实验的目的是了解NaI(Tl)闪烁谱仪的原理、特性与结构,掌握NaI(Tl)闪烁谱仪的使用方法和γ射线能谱的刻度。 关键词:γ 射线 Na(Tl)闪烁探测器 能谱图 单道脉冲幅度分析器 引言: 闪烁探测器是利用某些物质在射线作用下会发光的特性来探测射线的仪器。它的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。它在核物理研究和放射性同位素测量中得到广泛的应用。核物理的发展,不断地为核能装置的设计提供日益精确的数据,新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之 正 文: 实验原理 1.闪烁谱仪结构与工作原理 NaI(Tl)闪烁谱仪结构如图。整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。 由原子物理学中可知γ射线与物质的相互作用主要是光电效应、康普顿效应和正、负电子对产生这三种过程分别如下: (1)光电效应。入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ (2)康普顿效应。核外电子与入射γ射线发生康普顿散射,设入射γ光子能量为h,散射

功率谱密度 的估计

功率谱密度的估计 原始波=余弦波+白噪声 这个实验采用了两个输入,一个是白噪声,一个是有用信号和噪声信号作为输入时,他们的功率谱密度的仿真图像,并将他们进行对比。 平稳随机信号的功率谱密度(PSD )是相关序列的离散傅里叶变换: ()()jw m XX x P w r m e ∞ --∞=∑ 采用间接法计算噪声信号的功率谱。 间接法,又称自相关法或者BT 法,在1985年由布莱克曼与图基首先开拓。间接法的理论基础是维纳-辛钦定理。他是由N 个观察值x(0),x(1),……,x(N-1),估计出自相关函数R (m ),然后再求R (m )的傅里叶变换作为功率谱密度的估计。 ()(),||1M jw jw m N m M S e R m e M N -=-=<=-∑ clear all; randn('state',0) NFFT=1024; %采样点数 Fs=1000; %取样频率(单位为Hz ) t=0:1/Fs:.2;

y1=cos(t*20*pi); %余弦序列 figure(1) plot(t,y1); ylabel('余弦序列'); grid on; %余弦序列的图像: %白噪声 m=(0:NFFT-1)/Fs; y=0.1*randn(size(m)); %产生高斯白噪声。 figure(2); plot(m,y); title('白噪声波形'); grid on;

%白噪声的自相关函数 [cory,lags]=xcorr(y,200,'unbiased'); %计算白噪声的自相关函数 figure(3) plot(lags,cory); %自相关函数(无偏差的),其中,cory为要求的自相关函数,lag为自相关函数的长度。 title('白噪声相关函数'); grid on;

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

功率谱图应用

1.基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

生态学实验八——植物生活型谱调查统计 山东大学

生态学实验八——植物生活型谱调查统计 13生物基地 201300140059 刘洋 2015-05-04 同组者:吕赞苏志国马华峥孙佳孟徐艺菲齐珂心王若仪蔡正琦 一、实验目的 掌握划分植物生活型的方法,并通过不同地区和不同植被类型植物生活型的分析,进一步认识植物与环境的关系及划分植物生活型的生态意义。 二、实验原理 1.生活型 (life form) : ?生物对外界环境综合适应的外在表现形式。 ?植物生活型是植物对环境特别是对气候的适应而在外貌上的反映。 ?特定环境下不同科属的植物由于趋同进化而具有相同生活型。 ?生活型是植物对生境长期适应的结果,具有一定的稳定性。 ?在同一类生活型中包括在分类系统上地位不同的许多种,只要物种对某一类环境具有相同或相似的适应方式,而且在外貌特征上相似,它们就属于同一生活型。 丹麦植物学家Raunkiaer按植物的越冬休眠芽的位置与适应特征,将高等植物分为五大生活型类群 ①高位芽植物(Ph)。其芽离地面高,完全受气候的影响。在温暖和潮湿地区很多,不需要保护。5个亚型是:大高位芽植物(MG)(植物体超过30米以上的大乔木)、中高位芽植物(MS)(高8~30米的中乔木)、小高位芽植物(M)(高2~8米的小乔木和灌木)、矮高位芽植物(N)(高2米以下的灌木及小灌木)、攀援植物(S)(没有高度限制,在温暖潮湿地区占优势); ②地上芽植物(Ch)。草本或木本植物,芽紧贴地面,冬季被雪覆盖保护,包括北极地区和高山寒冷气候下的植物,温带也有分布; ③地面芽植物(HK)。芽的一半埋在土层顶部或腐殖质层中,地上部分冬季全部死亡。温带多年生草本大多属此类; ④隐芽植物(K)。芽完全埋在土中或水中,以适应寒冷或干旱的气候,冬季地上部分和一部分地下部分死亡。如球茎、块茎、根茎植物; ⑤一年生植物(T)。

数字基带信号及其功率谱密度函数仿真实验

6.1数字基带信号及其功率谱密度函数题目要求: 用matlab画出如下数字基带信号波形及其功率谱密度。 (1)单极性不归零(NRZ)波形,设0、1等概,g t=1,0≤t≤T 0,else; (2)单极性归零(RZ)波形,设0、1等概,g t=1,0≤t≤T 0,else; (3)若g t=sin?(πt/T s) πt/T s ,输入+1/-1序列,且等概出现。 一.实验原理 数字信号可以直接采用基带传输,所谓基带就是指基本频带。基带传输就是在线路中直接传送数字信号的电脉冲。 基带传输时,对于传输数字信号来说,使用的方法是用不同的 电压电平来表示两个二进制数字,也即数字信号由矩形脉冲 组成。我们将其划分为单极性码和双极性码,单极性码使用 正的电压表示数据;而根据信号是否归零,还可以划分为归 零码和非归零码,归零码码元中间的信号回归到0电平,而 非归零码遇1电平翻转,零时不变。

二. 单极性不归零(NRZ )波形时域及功率谱密度如图所示: 时域上看,单极性不归零码,无电压用来表示"0",而恒定的正电压用来表示"1"。 从功率谱密度函数来看,单极性不归零函数根据表达式21()()()44 s S s T P f Sa fT f πδ=+可知,其功率谱函数值在0点含有冲击。 0102030405060708090100-1.5-1-0.500.51 1.5 单极性N R Z 时域波形-8-6-4-202468 -40-200 20单极性N R Z 功率谱密度(d B /H z )

三. 单极性归零(NZ )波形时域及功率谱密度如图所示: 时域上分析,单极性归零码,当发"1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流; 从功率谱密度函数来看,单极性归零函数根据表达式 21()()()()162162 s s s s m T fT m P f Sa Sa f mf ππδ∞=-∞=+-∑可知,其功率谱函数值在f =m ?f s 点含有冲击。 四. 理想低通系统的时域图形及功率谱密度如图所示: 0102030405060708090100-1.5-1 -0.500.51 1.5 单极性R Z 时域波形-8-6-4-202468 -40-200 20单极性R Z 功率谱密度(d B /H z )

滤波与功率谱估计

清华大学 《数字信号处理》期末作业 2013 年 1 月

第一题掌握去噪的方法 1.1 题目描述 MATLAB 中的数据文件noisdopp 含有噪声,该数据的抽样频率未知。调出该数据,用你学过的滤波方法和奇异值分解的方法对其去噪。要求:1.尽可能多地去除噪声,而又不损害原信号; 2.给出你去噪的原理与方法;给出说明去噪效果的方法或指标; 3.形成报告时应包含上述内容及必要的图形,并附上原程序。 1.2 信号特性分析 MATLAB所给noisdopp信号极其频域特征如图1.1、图1.2。 图1.1含有噪声的noisdopp信号

图1.2 noisdopp 信号频域特性 其中横坐标f 采用归一化频率,即未知抽样频率Fs 对应2(与滤波器设计时参数一致)。信号基本特性是一个幅值和频率逐渐增加的正弦信号叠加噪声,噪声为均匀的近似白噪声,没有周期等特点。 因为噪声信号能量在全频带均匀分布,滤波器截止频率过低则信号损失大,过高则噪声抑制小,认为频谱中含有毛刺较多的部分即为信噪比较小的部分,滤除这部分可以达到较好的滤波效果。 先给定去噪效果的评定指标。信号开始阶段频率较高(如图1.3,红圈为信号值),一周期内采样点4~5个,即信号归一化频率达到0.4~0.5(Fs=2),难以从频域将这部分信号同噪声分离,滤波后信号损失较大,故对前128点用信噪比考察其滤波效果,定义: 2 2 () 10lg (()())k k x k SNR y k x k =-∑∑ 其中,()x k 为原nosidopp 信号,()y k 为滤波后信号。SNR 越大表示滤除部分能力越小,可以反映滤波后信号对原信号的跟踪能力,对前128点主要考察SNR ,越大滤波器性能越好。

随机信号的功率谱密度

随机信号的功率谱密度估计和相关函数

随机信号的功率谱密度估计和相关函数 1.实验目的 了解估计功率谱密度的几种方法,掌握功率谱密度估计在随机信号处理中的作用。 ⒉实验原理 随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。功率谱密度简称为功率谱,是自相关函数的傅里叶变换。对功率谱密度的估计又称功率谱估计。 1.线性估计法(有偏估计):线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。包括自相关估计、自协方差法、周期图法。 2.非线性估计(无偏估计):非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。包括最大似然法、最大熵法 ⒊实验任务与要求 1. 所有功能均用matlab仿真。 2. 输入信号为:方波信号+n(t),方波信号信号基频1KHz,幅值为1v,n(t)为白噪声。 3. 编写自相关估计法、自协方差法、周期图法、最大似然法、最大熵法的matlab 程序。正确的运行程序。 4. 必须用图示法来表示仿真的结果。对几种功率谱估计的方法进行比较分析,发现它们各自有什么特点?。 5. 按要求写实验报告。 4.Matlab程序如下: 生成输入信号: clear; fs=1024;%设采样频率为1024 n=0:1/fs:1; N=length(n); W=2000*pi;%因方波频率F=1000HZ所以角频率W=2000pi X1n=square(W*n);%方波信号 X2n=randn(1,N);%白噪声信号 xn=X1n+X2n; %产生含有噪声的信号序列XN subplot(3,1,1) plot(n,xn); xlabel('n') ylabel(…输入信号?) %绘输入信号图

光谱实验报告

实习报告

(一)实验名称:《地物光谱特性测量》 (二)所属课程名称:《资源环境遥感》 (三)学生姓名: (四)实验日期及地点: (五)实验目的:对校园中的一些地物进行遥感光谱特性测量 (六)实验意义: (1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 (七)实验原理: (八)人员要求: 设备: (1)ASD公司生产的Field Spec3高光谱辐射仪 (2)软件:RS3和View SpecPro Graph

工作要求: (1)天气情况: 地面能见度:晴朗,地面能见度不小于10km, 云量要求:太阳周围90°立体角范围内淡积云量小于2%,无卷云或浓积云等, 风力要求:无风或微风(测量时间风力小于4级,对植物测量时风力最好小于3级)测量时间:为保持太阳高度角大于45度,且由于北京地区处于中纬度地区,所以测量时间应在北京时间10:00~14:00之间,冬季对于测量时间应该更加严格一些。另外,测量速度应该满足<=1min/组。 (2)测量情况: 为减少反射光对观测目标的影响,观测人员应着深色服装,观测时面对太阳站立与目标区后方,观测时保持探头垂直向下,使得机载成像光谱仪观测方向保持一致,注意观测目标的二项反射影响。记录人员应站在观测人员身后,并避免在目标区周围走动。 对于记录人员,在输出光谱数据设置项中,每条光谱的平均采样次数应不少于10,测定暗电流的平均采样次数不少于20次。每隔20分钟要重新对标准白板进行测量校正,以保持测量数据的准确性。此次实验能够测得波谱范围为:350~1050nm之间(可见光和近红外波段) (九)实验步骤: (1)准备工作:安装好电池,将Field Spec3高光谱辐射仪打开,并与笔记本电脑链接。打开RS3软件,填写好需要存储数据的路径、名称和其他内容。Opt-->WR-->control-->spectrum save。其中RS3软件使用时要求电脑设置为英文环境。【在控制面板的区域和语言选项中选择“英文(美国)”,在高级选项中也选择“英文(美国)”,然后单击确定】。准备好白板。 (2)选择待测地物:可以是植被、土壤、建筑物、水体等。不同地物的光谱特性不一样,同种地物间光谱特性也有可能不同。比如,植被有针叶林、阔叶林,也有健康的和有病虫害的,植被叶片颜色呈绿色的和呈枯黄色的。由于植物含水量以及叶绿素含量的不同,会导致对电磁波反射吸收的能力也不同,因此会导致光谱特征曲线不同。 (3)测量过程: A.镜头对准白板,在RS3软件中选择OPT进行优化。 B.镜头对准白板,点击WR采集参比(白板应充满镜头,并保持没有阴影)。镜头对准目标地物,目标与镜头之间的距离大致等于桶采集参比时白板与镜头的距离。点击空格键存储目光光谱。为提高光谱数据的质量,每隔一定时间(20分钟左右)进行一次采集参比。(4)整理工作:测量完成后,将相关数据拷贝到U盘中。依次关闭电脑以及光谱仪电源,将仪器、白板等实验工具整理好,收回到仪器包中。 (5)数据导出步骤: 打开,导出已测量出的数据。

相关文档
最新文档