发动机燃烧质量分析(1)

发动机燃烧质量分析(1)
发动机燃烧质量分析(1)

发动机燃烧质量分析

发动机的工作原理:下图为一单缸发动机示意图

与发动机的燃烧质量有关的一些参数,以及它们对燃烧质量的影响及改进措施

一、燃烧速度

燃烧速度指单位时间燃挠的混合气量,是衡量发动机性能的指标之一,可以表达为:

式中:

U

—火焰传播速度;

T

A

—火焰前锋面积;

T

ρT—未燃混合气密度。

要想使燃挠迅速、及时完成,需要有较高的燃烧速度且合理变化。燃烧速度的大小主要取决于火焰传播速度、火焰前锋面积及未燃混合气密度。

(一)火焰传播速度U T

火焰传播速度取决于燃烧室中气体紊流运动,混合气成分和混合气初始温度。气体紊流强度与火焰速度比之间为一直线关系。紊流强度u指各点速度的均方根值;火馅速度比是紊流火馅传播与层流火焰传播速度之比。因此,加强燃烧室的紊流,是提高火焰传播速度的主要手段。采用过量空气系数A t =0.85-0.95时的混合气,可以提高混合气初始温度,有助于加速火焰传播。

“有条不紊的线状运动,彼此不相混掺,为层流流动。随机运动,每个质点的轨迹都是混乱的,在其前进过程中向横向发生混掺,流动,示出很多涡旋,时而消灭时而发生,是为紊流流动。”

(二)火焰前锋面积A T

燃烧室形状与火花塞位置配合情况,对火焰前锋面分布规律有很大影响。图5-8所示为不同燃烧室火焰前锋面积变化情况。

因此,合理设计燃烧室形状及合理布置火花塞的位置,可以改变不同时期火焰前锋扫过的面积,使明显燃烧期相对曲轴转角的位置及压力升高率在合适的范围内。

(三)可燃混合气密度ρT

增大未燃混合气的密度,可以提高进气压力和压缩比,从而提高混合气的燃烧速度。

二、混合气成分

改变化油器主量孔的大小或改变通过断面可以改变混合气成分。若使用不当也很容易造成混合气成分改变。例如,空气滤清器堵塞,化油器空气量孔堵塞,会使混合气过浓。化油器浮子室油面调整过低,会使混合气体过稀等。混合气浓度的改变对发动机的动力性、燃油经济性及爆燃倾向有很大影响,因此,分析混合气成分对燃烧过程的影响是非常重要的。

燃料能否及时燃烧,取决于火焰传播速度。影响火焰传播速度的主要因素是混合气成分,火焰传播速度随过量空气系数的变化如图5-9所示。

由图可以看出,当过量空气系数Φat =0.85~0.95,火焰传播速度最大,此时燃烧速度最快,可在短时间内使气缸压力温度达到最大值,散热损失小,作功最多,由于此时供给的燃料量比完全燃烧时所需的燃料稍多,在空气量一定的情况下,提高了对氧的利用程度,使燃烧产物的分子数增多,燃气压力提高。因此,发动机发出最大功率,称这种混合气为最大功率混合气。汽车在满负荷工况下工作时,要求汽油机输出最大功率,此时,化油器应供给最大功率混合气。

当过量空气系数Φat<0.85~0.95时,称为过浓混合气。此时由于火焰传播速度降低,功率减少;且由于缺氧,燃烧不完全,使热效率降低,耗油率增加。发动机怠速或低负荷运转时,节气门开度小,进入气缸的新鲜混合气量少,残余废气相对较多,可能引起断火现象。为维持发动机稳定运转,通常供给比大功率混合气更浓的混合气。一般Φat =0.6左右。如果发动机中等负荷下也供给过浓混合气,由于火焰传播速度低,燃烧速度减慢,混合气在大容积下燃烧,发动机易过热,排气温度增高。高温废气中未完全燃烧的成分在排气管口与空气相遇,剧烈氧化,形成排气管放炮现象。当Φat =0.4~0.5时,由于严重缺氧,火焰不能传播,混合气不能燃烧。因此,Φat=0.4~0.5的混合气成分称为火馅传播上限。

当过量空气系数Φat =1.05~1.15时,火焰传播速度仍较高,且此时空气相对充足,燃油能完全燃烧,所以热效率最高,有效耗油率最低。此浓度混合气体称为最经济混合气。汽车行驶的大多数情况是处于中等负荷工况工作,为减少燃油消耗,化油器应供给最经济混合气成分。

当过量空气系数Φat >1.05~1.15时,称为过稀混合气。此时火焰传播速度降低很多,燃烧缓慢,使燃烧过程进行到排气行程终了。补燃增多,使发动机功率下降,油耗增多。由于燃烧过程的时间延长,在排气行程终了时进气门已开启,含氧过剩的高温废气可以点燃进气管内新气,造成化油器放炮。当Φat

=1.3~1.4时,由于燃烧热值过低,混合气不能传播,造成缺火或停车现象,此时混合气浓度为火焰传播的下限。

由此可见,为保证发动机燃烧质量,有利的混合气成分一般在Φat=0.85~1.2范围内。

当使用功率混合气时,火焰传播速度最快,从火焰中心形成到火焰传播到末端混合气的火焰传播时间缩短,使爆燃倾向减小,同时缸内压力、温度较高,压力升高率较大,使从火焰中心形成到末端混合气自燃发火的准备时间也缩短,又使爆燃倾向增大,实践证明,后者是影响的主要方面。因此,在各种混合气成分中,以供给最大功率混合气时最易爆燃。如汽车满载爬坡时容易爆燃

三、点火提前角

点火提前角大小对汽油机燃烧性能也有很大影响。图5-10为气门全开、额定转速下混合气成分不变时,改变点火提前角燃烧示功图的变化

由(a)图可见,曲线l的示功图点火提前角为θig

1。相比之下,θig

1

过大(点

火过早),使经过着火落后期后,最高燃烧压力出现在压缩行程的上止点以前。最高压力及压力升高率过大,活塞上行时消耗的压缩功增加、发动机容易过热,有效功率下降,工作粗暴程度增加。同时由于混合气体的压力、温度过高,爆燃倾向增加。在这种情况下,只要适当减小点火提前角,就可以消除爆燃。

曲线2的示功图对应的点火提前角过小于θig

2

(点火过迟)。经过着火落后期后,燃烧开始时,活塞已向下止点移动相当距离,使混合气燃烧在较大容积下进行,炽热的燃气与缸壁接触面积大,散热损失增多。最高压力降低,且膨胀不充分,使排气温度过高,发动机过热,功率下降,耗油量增多。

曲线3的示功图对应的点火提前角θig

3

比较适当。因而,压力升高率不是过高,最高压力出现在上止点后合适的角度内。从(b)图的比较可以看出,示功图1比示功图3多做了一部分压缩功又减少了一部分膨胀功。示功图2的膨胀

线虽然比示功图3的高些,但最高压力点低,只有示功图3的面积最大,完成的循环最多,发动机的动力性、经济性最好。

综上所述,过大过小的点火提前角都不好。只有选择合适的点火提前角才能得到合适的最高压力及压力升高率,使最高压力出现在上止点后12°~15°曲轴转角内,保证发动机运转平稳、功率大、油耗低。这种点火提前角称为最佳点火提前角。使用中,随发动机工况的变化最佳点火提前角相应改变。因此,必须随使用情况及时调整点火提前角。现在所使用的真空和离心提前调节装置是有效的调节装置。

四、发动机转速

在汽油机一定的油门开度下,随负荷的变化,转速相应变化。转速增加时,气缸中紊流增强,火焰传播速度加快。因而,随转速增加,压缩过程所用时间缩短,散热及漏气损失减少,压缩终了工质的温度和压力较高,使以曲轴转角计的着火落后期增长。为此,汽油机装有离心提前调节装置,使得在转速增加时,自动增大点火提前角,以保证燃烧过程在上止点附近完成。

随转速增加,爆燃倾向减小。主要是转速的增加加快了火焰传播,使燃烧过程占用的时间缩短,未燃混合气受巳燃部分压缩和热辐射作用减弱,不容易形成自燃点;转速增加,循环充量系数(循环充量是指发动机在每一个循环的进气过程中,实际进入气缸的新鲜气体(空气或可燃混合气)的质量。)下降,残余废气相对增多,终燃混合气温度较低,对未燃部分的自燃起阻碍作用,因此,使用中若低速时发生爆燃,待转速提高后爆燃倾向可自行消失。

五、发动机负荷

转速一定时,随负荷减小,进入气缸的新鲜混合气量减少,而残余废气量基本不变,使残余废气所占比例相对增加,残余废气对燃烧反应起阻碍作用,使燃烧速度减慢。为保证燃烧过程在上止点附近完成,需增大点火提前角,它靠真空提前点火装置来调节。图5-12为发动机不同节气门开度时的示功图。

低负荷时,爆燃倾向减小,主要是负荷低时,进气量少,残余废气相对较多,燃烧最高温度和压力下降,阻止自燃产生。

综上所述,发动机在高转速、低负荷时,应增大点火提前角,据统计,如果点火提前角偏离最佳值5°,热效率将下降l%,偏离最佳值10°,热效率将下降5%,偏离最佳值20°,热效率下降16%。传统的真空和离心提前调节装置只能随负荷和转速两个影响因素的变化对点火提前角作近似控制,不能实现点火提前角随多参数的变化(如压力、温度、湿度、空燃比、燃料辛烷值,残余废气量等)的精确控制。近年来发展了微处理机控制的点火系统,如无分电器点火系统。该系统中,点火提前角的设置和随工况变化的自动调整,初级线圈的通断,都是由微处理机控制的。它可根据点火提前角随工况变化的规律(已事先存人机内)确定每一工况下的最佳点火时刻,实现精确控制。

发动机低转速大负荷时易爆燃。在进行发动机点火提前角调整时可采用下述步骤,发动机怠速运转状态下,突然将油门开至最大,发动机自由加速,若能听到轻微的爆燃声,则点火提前角调整合适。随着电子技术的发展,出现了微处理机控制的防爆控制系统。它可以根据爆燃信号自动调整点火提前角,使爆燃限制

在很轻微的限度之内。使用不同牌号汽油时省去调整点火系、供油系的麻烦,汽油机的压缩比可适当提高,同时使热效率提高。经验表明,采用爆燃控制系统,除提高汽油机压缩比外,可使节油率达6%以上。

六、冷却水温度

发动机冷却水温度应控制在80°~90°范围内。水温过高、过低均影响混合气的燃烧和发动机的正常使用,冷却水温不同时的示功图如图5-13所示。

冷却水温度过高时,会使燃烧室壁过热,爆燃及表面点火倾向增加。同时,进入气缸的混合气因温度升高,密度下降,充量减少,使发动机机动性、经济性下降。所以,在使用维护中,应注意及时清除水道内的水垢,使水流通畅;注意利用百叶窗调整发动机冷却水温度;经常检查水温表、节温器等装置,使其工作正常。

冷却水温度过低时,传给冷却水热量增多,发动机热效率降低,功率下降,耗油率增加;润滑油粘度增大,流动性差,润滑效果变差,摩擦损失及机件磨损加剧;容易使燃烧中的酸根和水蒸气结合成酸类物质,使气缸腐蚀磨损增加;燃烧不良易形成积炭;不完全燃烧现象严重,使排放污染增大。因此,使用中应注意控制好冷却水温,水温不能太低。

可以利用温度传感器实现对温度的数据采集,然后把温度信号转变为电压模拟信号,信号通过运算放大器、保持器和A/D转换器将模拟量变为数字量送入单片机进行处理,处理完成后根据情况采用反馈电路对温度进行调节!其硬件电路如图:

图1 硬件框图

七、燃烧室积炭

发动机工作过程中,由于燃烧不完全的燃油和窜入燃烧室的机油及外部其它杂质在氧气和高温作用下,凝聚在燃烧室壁面及活塞顶部,形成积炭,其厚度可达几毫米。积炭不宜传热,温度较高,在进气、压缩过程中不断加热混合气,使温度升高很快;积炭本身有体积,减小了燃烧室的容积,因而提高了压缩比,相对增加了激冷面积,增加了碳氢化合物的排放量。这种现象在发动机冷启动、怠速和暖机时对于碳氢化合物的排放量影响较大。同时压缩比的升高,使得最高燃烧温度增加,氮氧化物的排放量增加。这些都促使爆燃倾向增加。积炭表面温度很高,形成炽热表面或炽热点,易引起表面点火!积炭的物质类型如图:

积炭中各种元素的质量百分比

从图中的数据可以发现:金属元素中钙铁的含量较高,其中铁元素主要来自于机械磨损的铁屑和润滑油氧化产生的酸性产物以及硫酸等无机酸对于缸体的腐蚀;而钙元素主要来自于润滑油添加剂。另外,通过对积炭进行红外光谱分析发现:积炭中存在双官能团以及大量的极性集团,因此积炭为极性化合物。正因为如此,当汽车发动机中形成积炭之后,积炭的形成速度与未形成积炭时相比会增加许多。

目前比较常见的积炭的清除方式分为三种:药水清除积炭、燃油添加剂及解体清除。其中最为普遍且对发动机损伤较小的即为药水清除方法。

八、压缩比

提高压缩比,可提高压缩行程终了时工质的温度、压力,加快火焰传播速度。选择合适的点火提前角,可使燃烧在更小的容积下进行,使燃烧终了的温度、压力提高。且燃气膨胀充分,热转变为功最多,热效率提高,发动机功率、扭矩大,有效耗油率降低。

但是,提高压缩比,会增加未燃混合气自燃的倾向,容易产生爆燃。为此,要求改善燃烧室的设计,并提高汽油的辛烷值。随着燃烧室设计的改善和汽油辛烷值的提高,国内载货汽车压缩比约为6.5~7.5;轿车为7.5~8.5。国外载货汽车压

缩比约为7~9;轿车为5~10左右。如果压缩比超过10以上,热效率提高程度减慢,机件的机械负荷过大,排放污染严重。因此,应注意选用合适的压缩比。

九、气缸直轻

气缸直径增大,火焰传播距离长,从火焰中心形成到火焰传播至末端混合气的时间增长;直径加大,面容比减小,传给冷却水的热量减小,从火焰中心形成到未端混合气自行发火的准备时间缩短。因而随气缸直径加大,爆燃倾向增加,所以无大缸径的汽油机,通常汽油机直径在100毫米以下。此外,适当布置火花塞位置或采用多火花塞,可以缩短火焰传播距离,减少爆燃倾向。

十、气缸盖和活塞材料

铝合金比铸铁导热性好,气缸盖、活塞采用铝合金材料,可使燃烧窒表面温度降低,热负荷明显减少,减小爆燃倾向;因此,宜于采用高压缩比来提高发动机动力性、经济性。

十一、汽油机燃烧方式的发展

近年来,为降低油耗,减小排放污染,汽油机采用了快燃、稀燃及分层燃烧技术。

(一)汽油机快燃技术

快燃的目是加快气缸内均匀混合气的燃烧速率,缩短燃烧时间,减少爆燃倾向,使发动机可以选用高的压缩比,提高发动机热效率。

(二)汽油机稀燃技术

稀燃指燃烧很稀的混合气,其空燃比一般在20比1以上,采用稀燃技术,由于氧气充足,燃油易于完全燃烧。可以降低油耗、减少排放污染。同时燃烧压力、温度较低,可采用较高的压缩比。但燃用稀混合气会降低火焰传播速度,必须配合快燃技术。

(三)汽油机的分层燃烧

分层燃烧的实质是采用稀薄的不均匀混合气,由外源点燃的燃烧方式。特点是在点火时,燃烧室内各部位混合气的空燃比明显不同。火花塞周围局部具有良好着火条件的较浓的可燃混合气,其空燃比在12~13.4左右,而在燃烧室的大部分地区具有较稀的混合气,在二者之间,为有利于火焰传播,混合气浓度从火

花塞开始由浓到稀逐渐过渡,但气缸内混合气的总空燃比,却相当于过稀混合气,所以分层充气汽油机也可以称为稀燃汽油机。

(四)汽油喷射系统的优点

汽油喷射分汽油直接喷入燃烧室的直接喷射和由进气管喷入气道的低压进气喷射。与化油器式混合气形成方式比,汽油喷射系统可实现准确供应燃油,容易解决各缸燃料均匀分配问题,减少各缸燃烧差异,有利于压缩比的提高,节省燃油,改善燃料雾化质量,有利于低温起动。

在汽油机运行时,各工况对混合比的要求是不同的。例如:汽油机在各种转速下全负荷运行时,节气门全开,化油器应提供适当加浓的功率混合气。空燃比α=12~14;当汽油机按中等负荷运行即节气门部分开度时,应有最好的经济性,空燃比α=17左右;当汽油机怠速运转时,节气门接近全关,为保证稳定运转,需供给更浓的混合气,空燃比α =10~12.4。理想化油器应是能全面满足上述各工况混合比特性要求的化油器。

理想化油器特性

理想化油器特性在满足最佳性能要求的前提下,混合气成分随负荷(或充气流量)的变化关系如图5-14所示。

由图可知,随负荷增加,混合气逐渐变稀,小负荷范围内变化较陡,中等负荷范围内曲线变化较平缓,当接近满负荷时,混合气变浓。

汽油机的燃油电子喷射相比于过去采用的化油器,燃油电子喷射系统可以使得燃油计量精确度有较大幅度的提高。因此,采用电子控制燃油喷射的汽油机,其经济性和动力性有很大的提高,使对混合气浓度要求的三效催化转化器降低排放成为可能。

电子控制燃油喷射从单点式发展到多点式。这使汽油机不仅在动力性上仍旧能保持其密度的特点,而且其燃油性几乎可以和柴油机相媲美。有人甚至称汽油直接喷射是汽油机的一次革命。汽油直接喷射技术已经在日本三菱、丰田和日产的一些发动机上应用。欧洲的一些汽车公司如德国大众、法国雷诺等也在发展之中。

点火方式:现在的发动机一般都是电火花点火,而俄罗斯专家最近开发出一种激光点火技术,试验证明这种技术能够使燃料在低温条件下实现爆震燃烧,从而使普通发动机的增强推力成为可能。

国内外高性能燃烧分析仪器

1.奥地利AVL公司系列产品,如AVL640、650、660、670系列以及AVL617、

AVL620等。

2.日本小野公司系列产品,如CB366、466、467、566以及DS-9100等。

3.瑞士Kistler公司生产的DEWE系列。

4.德国FEV公司生产的FEVIS系列。

5.美国PEI公司生产的DAB系列。

国内的一些机构如:浙江大学利用单板微计算机开发的

内燃机示功图测量处理系统、大连海运学院的DMC12柴油机测量分析系统、

上海内燃机研究所的EAS800内燃机燃烧分析系统、华中理工大学的HG1208 发动机分析仪、山东理工大学的DCA-1内燃机燃烧分析仪以及长沙科学仪器研究所的DFY系列多通道发动机分析仪等,还有其它一些单位,如上海铁道学院也先后研制开发了内燃机燃烧分析仪。

燃烧分析仪手册

燃烧分析仪手册 1模拟输入,CA-Plugin设置 1.1模拟输入配置 模拟输入部分的设置屏幕指示所有DAQP放大器。 缸压高压力传感器用于燃烧室内压力测试通常是基于电荷类型传感器,请讲其连接到燃烧分析仪DAQP-Charge-B放大器BNC接头上。 还需使用点火线圈传感器时,测量点火时间,这个传感器是基于电流信号,需要外部使用分流电阻接头(该接头,将BNC接头正接入2针,BNC接头负接入7针,且需在2针和7针之间接入一个电阻,如下图),且电压较大。DAQP-V模块是适当的为这种类型的传感器。 典型的被安装DAQP通道设置界面,如下图: 连接通道在使用栏被使用激活,并且在命名栏中进行重命名输入。活跃的实时信号可以在PHYSICAL VALUES栏中观察到实时值显示,此刻可以立即进入通道设置界面,可以对输入范围选择进行合理选择。

在通道设置中对各放大器设置,用户可以定义和扩展。通道设置分为4步,如下图由第一步到第四步说明进行通道设置。 第一步,放大器量程设置;第二步,通道名称和单位设置;第三步,传感器灵敏度设置(两点法、公式法);第四步,显示输入值(物理量)和对应实际值(工程量)。 ●输入范围可以从预定义列表选择,或手工输入。 ●抗混叠过滤器应该设置为100 khz和贝塞尔模型。 高压力传感器暴露在热冲击环境下,这可能会导致信号漂移,但AC耦合方式将减少这种漂移,避免信号超过他们的输入范围。 高通滤波器的频率与输入范围相关联。在从100pC到2000pC时为0.07Hz,超过2000pC 约0.005 Hz高通滤波器参数。

●连接传感器后后可以将耦合设置到DC模式,并点击Reset。Reset将消除连接及长时间运 行放大器内把引起和产生的内部静电,将信号只调回到0。 ●点火线圈传感器设置,仍遵循上述的四步方法,量程只需满足要求即可,可以无需设置 灵敏度参数,因为,此传感器主要关注的是,点火时间,而非电流大小。 1.2CA-Plugin设置 模拟输入设置后,我们必须选择燃烧分析插件设置,并添加计算模板。 计算模板分为5部分。发动机参数设置部分,所有发动机参数和测量应用通道;角度传感器部分,定义转角传感器类型,以及上止点(TDC)定义;热力学计算参数设置部分;爆震检测设置部分和输出计算结果设置部分。

柴油发动机的燃烧解读

柴油发动机的燃烧解读

项目四柴油机混合气形成与燃烧 学习目标: 掌握柴油机两种混合气的形成方式及特点,掌握直接喷射式和分隔式两大类柴油机燃烧室的结构及性能特点;了解柴油机供油系统的组成和喷射过程,掌握柴油机的燃烧过程及影响因素,掌握电控柴油喷身系统的组成、分类、电子控制功能,并在学习过程中随时注意对柴油机和汽油机进行比较。 任务一柴油机混合气形成 与汽油机工作原理相比,只有一个行程即作功行程中,柴油机由于用的柴油粘度比汽油大、不易蒸发,且自然温度又较汽油低,所以采用的是压缩自燃式点火。 任务二柴油机的燃烧过程

柴油机燃烧过程非常复杂,为了便于分析和揭示燃烧过程的规律,通常将这一连续的燃烧过程分为四个阶段,即着火延迟期(又称为滞燃期)、速燃期、缓燃期和补燃期,如图所示。 (一)着火延迟期 从柴油开始喷入气缸起到着火开始为止的这一段时期称为着火延迟期。 着火延迟期内,燃烧室内的混合气进行着物理和化学准备过程。 物理准备过程:燃油的粉碎分散、蒸发汽化和混合。 化学准备过程:混合气的先期化学反应直至开始自燃。 特点:压力没有偏离压缩线。

影响着火延迟期长短的主要因素是: 喷油时缸内的温度和压力越高,则着火延迟期越短。 柴油的自燃性较好(十六值较高),着火延迟期较短。 燃烧室的形状和壁温等。 喷油提前角:开始喷油到活塞到达上止点所对应的曲轴转角为喷油提前角。 (二)速燃期 速燃期:从开始着火(即压力偏离压缩线)到出现最高压力. 特点:压力急剧上升,压力达到最高(有可能达到13MPa以上)

一般用压力升高率λp〔kPa/(o)曲轴〕表示压力急剧上升的程度。 式中:△p——速燃期始点和终点的气体压力差(kPa); △θ——速燃期始点和终点相对于上止点的曲轴转角差(CAo)。 特点: (1)压力升高率很高,接近等容燃烧,工作粗暴。 (2)达到最高压力(6~9MPa)。 (3)继续喷油。 压力升高率过大,则柴油机工作粗暴,燃烧噪音大;同时运动零件承受较大的冲击负荷,影响其工作可靠性和使用寿 命; 压力升高率大,燃烧迅速,柴油机的经济性和动力性会较好。 压力升高率应限制在一定的范围之内,柴油机的压力升高率一般应不大于0.4~0.5 MPa/(o)曲轴。与汽油机相比,柴油机的压力升高率较大。 控制压力升高率的措施: 减小在着火延迟期内准备好的可燃混合气的量

奇石乐KiBox燃烧分析仪功能简介

奇石乐燃烧分析仪——KiBox简介 一、仪器设备名称: KiBox Combustion Analysis KiBox燃烧分析系统 二、厂商:瑞士奇石乐仪器股份公司 Kistler Instrumente AG 国别:瑞士Switzerland 三、型号: 2893AK1 四、技术特点及优势 ?KiBox燃烧分析仪可以用于发动机台架标准稳态燃烧分析———燃烧热力学计算、示功图、爆震分析、燃烧噪声分析、压力升高率分析、瞬时放热率和累计放热率分析,并得到峰值压力、压力升高率、燃烧重心、燃烧持续期、平均有效压力、爆震强度、爆震峰值、爆震频率、燃烧循环波动、燃烧温度、发动机循环功及功率、点火正时、喷油始点终点、喷射持续期等发动机燃烧特征参数。 ?KiBox燃烧分析仪可用于发动机高瞬态工况燃烧分析,更可以用于车载燃烧分析,获得真实驾驶条件的燃烧分析和优化结果, 如海拔、沙 漠、低温等条件。 ?无需光电编码器,可以将各种车载转角传感器和触发码盘信号转换为精确可靠的曲轴转角信号,并且在高瞬态的发动机工况下利用车载转角信号(e.g. 60-2、60-2-2、60-2-2-2、60-1、36-2、24-1等)获得所需要的 0.1 CA 转角分辨率 ?对于磁电传感器系统基于转速进行角度误差的修正,允许对触发信号进行修正(触发信号标定的需要),实现零相位延迟。 ?智能信号调理模块,自动识别传感器标定数据并导入。 ?提供车辆行驶条件下发动机上止点的确定。 ?同时获得角域和时域数据,并灵活切换。

?强大的参数配置界面,独立的数据显示。具有校验输入信号的诊断功能,自动校验参数设置的有效性。 ?基于每循环燃烧分析的操控性试验,比如扭矩响应。 ?实时的每循环燃烧效率和功率信息,例如,MFB50表示了循环间变化对燃油效率的影响;IMEP 涉及到各缸工作的稳定性及缸间平衡程度。 ?缸内压力的上升率表征了NVH质量的变化。 ?发动机起动质量试验:排放、失火、怠速平稳性。可测试记录发动机启动前30s和发动机停机后30s的数据。特别适合发动机冷启动实验测试。 ?所有缸爆震控制函数的可靠参考——基于每个循环的爆震评价系数、爆震峰值、爆震频率。 ?COV(平均指示有效压力的协方差)表征了发动机燃烧循环变动的程度。 ?燃烧过程优化的目标扭矩和燃烧噪声参考,如滤波重构,传统燃烧方式与HCCI之间的转换。 ?正时分析:多次喷射脉冲的燃油喷射正时分析;点火正时分析。 ?与发动机标定系统高度集成,比如ETAS INCA,只需一台操控电脑并可以集成其它数采子系统,燃烧分析结果与ECU控制变量以及其它测试数据同步显示并储存为同一数据文件。 ?充分降低故障诊断所需时间和成本的额外信息。 ?分析软件模块导航式操作,简单易学。 ?结构紧凑便携、安装快速、操作简便。 五、技术规格 重量:8kg

发动机爆震燃烧的现象分析

发动机特别是在高温状态下和总行程较高时,经 常会突发一种清脆的爆炸声,这就是发动机的爆震燃烧现象。现就使用因素对该现象的成因和防止措施作一分析。 一、发动机的正常燃烧 汽油发动机一般是在气缸外部使燃油与空气混合,进入气缸到压缩终了时已形成大体均匀的混合气,之后依靠电火花强制点火形成火焰中心并向未燃混合气体传播,最后完成燃烧。如果燃烧由定时的电火花点火,首先使火花塞电极间隙内的混合气体形成微小火焰核,同时火焰具有向相邻的混合气以30m~50m/s 的速度连续传播的能力,进而把火焰传遍整个燃烧室,这称为发动机的正常燃烧。 汽油发动机的燃烧过程分为着火延迟期、急燃期、后燃期3个过程。 第一阶段为着火延迟期,指从电火花跳火到点燃混合气形成火焰中心为止的一段时间。 第二阶段为急燃期,指火焰由火焰中心传遍整个燃烧室的阶段。亦称火焰传播阶段。它是汽油机燃烧 的主要时期。 第三阶段为后燃期,指急燃期终点到燃油基本完全燃烧为止期间的燃烧。在后燃期中,主要是火 焰前锋后未及时燃烧的燃油再燃烧,及粘附在气缸壁上的未燃混合气层的继续燃烧。 二、发动机不正常燃烧 汽油发动机在某种条件下,如温度过高、压缩比过高等,发动机的燃烧会出现不正常现象,压力曲线出现了高频大振幅波动,上止点附近的dp/dt 值急剧变动,此时火焰传播速度和火焰形状均发生急剧变化,该现象称为爆燃燃烧。 爆燃产生的机理为电火花点火后,火焰以30m~80m/s 的正常速度向前传播,终燃混合气(指最后燃烧位置上的那部分混合气)因受燃烧气体的压缩和热辐射影响,其压力、温度升高,从而加速了燃烧先期的化学反应并放出热量,使其本身的温度不断升高。如果在正常火焰前锋面尚未到达之前,部分终燃混合气的先期化学反应已经完成,产生了一个或多个新火焰中心,并从这些中心以100m~300m/s(轻微爆燃)直到800m~1000m/s 或更高(强烈爆燃)的速度传播,终燃混合气将被迅速燃烧完毕。因此,发动机爆燃现象就是终燃混合气的自燃现象。 三、爆震燃烧的外部特征及危害 发动机爆震燃烧有较明显的外部特征,具体表现为: 1、发出清脆的金属敲缸声,也即前面所述的爆炸声。

内燃机燃烧放热分析计算及其与燃烧分析仪的嵌入集成知识讲解

1绪论 1.1课题背景及意义 1.2国内外研究现状 1.3本文研究内容 2燃烧分析的数据采集、信号分析的原理与方法2.1燃烧分析数据采集方法 2.1.1示功图的概念及用途 2.1.2气缸压力测量方法 2.1.3压力测量精度的主要影响因素及修正方法2.2气缸压力数据预处理 2.3燃烧放热计算原理 2.3.1燃烧放热计算的假设条件 2.3.2基本微分方程 2.3.3燃烧放热率计算步骤 3燃烧放热计算程序 3.1内燃机燃烧放热计算的需求分析 3.2程序设计平台的选择 3.3程序结构和流程 3.4程序的数据结构及变量说明 3.5输出量 3.6图形化界面 4燃烧放热计算结果分析 4.1实验条件 4.2计算结果 4.3误差分析 4.4敏感参数分析 4.5 MA TLAB与FORTRAN计算结果的对比 5与燃烧分析仪的嵌入集成的研究 5.1硬件系统 5.2 LabView简介 5.3算法与燃烧分析仪的嵌入集成 6结论与展望 6.1全文总结 6.2展望

1.1课题背景及意义 近年来,汽车工业已成为全球最大的制造业,年生产能力已达到6500万辆,全球汽车保有量已达9亿辆。由于内燃机是目前燃烧效率最高的热力发动机,故广泛的应用于国民经济的各个领域和国防部门,它所发出的总功率占全世界所有动力装置总功率的90%,它所排出的有害物质又是环境污染的最大源泉,全世界的汽车交通占温室气体排放的20%,全球机动车数量的高速增长给气候带来了严重的问题。因此为了节约能源和降低污染,各工业发达国家十分重视内燃机气缸内燃烧的研究工作。 为了降低内燃机的排放,必须从缸内工作过程着手,分析污染物产生的原因,内燃机数据采集和分析已成为内燃机生产和性能研究工作中必不可少的一个环节。随着内燃机应用的范围在不断扩大,品种和数量在不断增长,对内燃机中各系统零件的性能、使用寿命等技术指标的要求也愈来愈高。因此,对内燃机的工作过程、燃料及扩大燃料的品种、新型结构的研究以及设计和研制合乎要求的产品并对原有产品的分析改造,以满足各种用途的需要,自然就成为内燃机动力工程技术人员的重要任务。在内燃机试验中,除了要定性地观察一些物理和化学现象以外,更重要地是对运行过程中许多有关地物理量和化学量进行精确地定量的测定,如果没有先进的测量方法和测试设备,包括先进的数据处理方法和相应的设备,也就没有先进的内燃机检测技术。所以,若要设计性能更加优良的内燃机,优化燃烧,提高排放的要求,就需要对内燃机各方面的性能进行深入的研究。影响内燃机各方面性能的因素虽然是多种多样的,但燃烧过程具有举足轻重的地位。内燃机的动力性、经济性及排放特性与燃烧过程有着密切的关系。内燃机燃烧过程与其主要工作特性、功率、效率和排放以及部分的机械和热负荷、噪音、振动等都直接紧密地相耦合,所以要改进和完善内燃机的总体性能和某些局部特性,都必须首先在燃烧过程的改善和优化方面下功夫,对燃烧放热过程的深入分析是对发动机性能研究和改善的有效手段。由于内燃机的燃烧过程所占的时间极短,所处的空间很小,更重要的是内燃机的燃烧反应物是很不均匀的,并且经常是流动和扰动的反应物和燃烧产物处于同一容积。这一切就构成内燃机的燃烧过程是一个十分复杂多变的物理-化学过程。但是现在借助微机系统高性能数据采集卡各种传感器(压力传感器、针阀升程传感器、滤波器和电荷放大器等)就能够将大量的燃烧过程物理信息测量记录处理与显示。从这些信息和图形可以比较可靠地分析研究内燃机燃烧过程的完善程度,为进一步改善燃烧过程提供了科学的依据。 气缸压力分析是分析发动机燃烧状况的重要方法。气缸压力携带了内燃机工作过程的大量有用信息,并且与内燃机工作过程的评价参数和性能指标有着密切的关系。各缸的工作参数、排放指标、性能指标等的差异都全部或部分地反映在气缸压力上。在内燃机的状态监测和故障诊断中,气缸压力是表征内燃机运行状态的最好指标之一,内燃机的工作状态及故障大都可以通过气缸压力随时间(或曲轴转角)的变化曲线反映出来。因此采集气缸内压力并对其进行统计或热力学分析是内燃机产品设计、改进或研究的重要方法。内燃机气缸气体压力曲线(示功图)是深入研究内燃机工作过程及动力性能指标的重要内容。通过对示功图分析可得出工作过程的最高燃烧压力和其所在的曲轴转角位置等重要参数。示功图既是内燃机性能参数计算和放热规律分析的依据,又是内燃机燃烧过程数学模拟精确程度的评价标准。利用实测示功图,可以计算内燃机的燃烧放热规律,对实际内燃机的燃烧过程进行分析,可以研究内燃机的循环变动。并且,可以借助示功图进行内燃机最佳状态调整及故障诊断,故国内外对其研究较多。因此,内燃机数据采集与燃烧分析技术得到了迅速的发展。 1.2国内外研究现状 现在,国内外己研究出许多发动机数据采集和分析用的仪器设备,并随着微电子技术和

发动机自动熄火的诊断分析毕业论文

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 摘要 汽车是当代必不可少的一种交能工具,汽车的发动机是汽车的核心元件。随着社会的发展趋势汽车在全球的数量将越来越多,但现实的世界储存燃料已经越来越少,有科学家推算世界燃料只能用20年。那么20年后我们用什么来维持呢?没有了汽车这个交通工具世界经济将会是怎么样的一个现像,可想而知。那么我们就要研究出更能节省能源,也能适用新能源的汽车。只有这样才能让我们的经济保持并发展。 另一方面随着社会的发展经济的强大,汽车将要普及每家每户,中国的汽车产量已排名世界第三位就是最好的一个证明。那么我们需要人们懂得这些道理,假若发动机出现了问题也能自行解决。为我们提供为便,也能节省那么的时间和能源。在汽车技术日新月异的今天,电脑控制技术已经应用到车的各个系统,各种新结构、新技术的不断涌现,使汽车维修人员面临着更大的挑战。汽车维修已从以前的那种修理工最好当,怎么拆装怎么装的状况转变成一个技术含量高、难度大的工种。现代的修理技术的特征表现为“七分诊断,三分维修”。发动机的故障的具体方法是多种多样的,关键是如何找出规律,积累经验,把感性认识上升到理性认识,再用理性认识指导维修实践。 【关键词】发动机的原理和构造发动机故障现象诊断与分析自动熄火

目录 第一章绪论.............................................................................. 错误!未定义书签。 1.1 研究课题的目的与意义.............................................. 错误!未定义书签。第二章发动机的原理和构造............................................................... 错误!未定义书签。 2.1 发动机的原理和构造...................... 错误!未定义书签。 2.1.1 曲柄连杆机构....................... 错误!未定义书签。 2.1.2 配气机构........................... 错误!未定义书签。 2.1.3 燃料供给系统....................... 错误!未定义书签。 2.1.4 润滑系统........................... 错误!未定义书签。 2.1.5 冷却系统 (4) 2.1.6 点火系统........................... 错误!未定义书签。 2.1.7 起动系统........................... 错误!未定义书签。第三章常见的故障原因.................................................................... 错误!未定义书签。 3.1 真空进气管.............................. 错误!未定义书签。 3.2 废气再循环装置的检查.................... 错误!未定义书签。 3.3 空气流量计的检测........................ 错误!未定义书签。 3.4 氧传感器的检测.......................... 错误!未定义书签。 3.5 冷却水温度传感器的检测 (10) 3.6 故障诊断的一般步骤...................... 错误!未定义书签。 3.7 故障诊断相关要点........................ 错误!未定义书签。 3.8 检验方法................................ 错误!未定义书签。第四章故障实例............................................................................ 错误!未定义书签。

发动机燃烧质量分析(1)

发动机燃烧质量分析 发动机的工作原理:下图为一单缸发动机示意图 与发动机的燃烧质量有关的一些参数,以及它们对燃烧质量的影响及改进措施 一、燃烧速度

燃烧速度指单位时间燃挠的混合气量,是衡量发动机性能的指标之一,可以表达为: 式中: U —火焰传播速度; T A —火焰前锋面积; T ρT—未燃混合气密度。 要想使燃挠迅速、及时完成,需要有较高的燃烧速度且合理变化。燃烧速度的大小主要取决于火焰传播速度、火焰前锋面积及未燃混合气密度。 (一)火焰传播速度U T 火焰传播速度取决于燃烧室中气体紊流运动,混合气成分和混合气初始温度。气体紊流强度与火焰速度比之间为一直线关系。紊流强度u指各点速度的均方根值;火馅速度比是紊流火馅传播与层流火焰传播速度之比。因此,加强燃烧室的紊流,是提高火焰传播速度的主要手段。采用过量空气系数A t =0.85-0.95时的混合气,可以提高混合气初始温度,有助于加速火焰传播。 “有条不紊的线状运动,彼此不相混掺,为层流流动。随机运动,每个质点的轨迹都是混乱的,在其前进过程中向横向发生混掺,流动,示出很多涡旋,时而消灭时而发生,是为紊流流动。”

(二)火焰前锋面积A T 燃烧室形状与火花塞位置配合情况,对火焰前锋面分布规律有很大影响。图5-8所示为不同燃烧室火焰前锋面积变化情况。

因此,合理设计燃烧室形状及合理布置火花塞的位置,可以改变不同时期火焰前锋扫过的面积,使明显燃烧期相对曲轴转角的位置及压力升高率在合适的范围内。

(三)可燃混合气密度ρT 增大未燃混合气的密度,可以提高进气压力和压缩比,从而提高混合气的燃烧速度。 二、混合气成分 改变化油器主量孔的大小或改变通过断面可以改变混合气成分。若使用不当也很容易造成混合气成分改变。例如,空气滤清器堵塞,化油器空气量孔堵塞,会使混合气过浓。化油器浮子室油面调整过低,会使混合气体过稀等。混合气浓度的改变对发动机的动力性、燃油经济性及爆燃倾向有很大影响,因此,分析混合气成分对燃烧过程的影响是非常重要的。 燃料能否及时燃烧,取决于火焰传播速度。影响火焰传播速度的主要因素是混合气成分,火焰传播速度随过量空气系数的变化如图5-9所示。

发动机原理期末复习题

发动机原理期末复习题

一、填空 1、评价柴油和各种燃料的自燃性的指标是()。 2、常规汽油机燃烧是预制混合气()点火,点燃后火焰传播。 3、发动机燃料抗爆性能一般用()来评价。 4、国内常用()值作为汽油的标号。 5、评价燃料蒸发性的主要指标有()和蒸气 压。 6、T90和EP反映汽油中()组分的多少。 7、常用动力黏度和()黏度来表示燃料的黏度。 8、燃料和混合气的()直接影响发动机输出功率的大小,是燃料非常重要的性能指标。 9、()过程和内可逆过程的两种理想化假设,使得发动机的缸内工作过程可以用热力学中分析 理想气体可逆平衡状态的公式和曲线进行处理。 10、我国从2000年起停止()汽油的生产。 11、φa>1为()混合气。 12、比质量是指单位()功率所占的质量。 13、增压发动机的净指示功一般()动力过程功。(大于、小于、等于)

25、二冲程发动机是利用()方式完成换气过程的,以减少不作功的冲程数。 26、发动机排气过程细分为()排气和强制排气两个阶段。 27、发动机的运行工况用()和输出功率两个参数表示。 28、一个完整的燃烧过程应该包括()和燃烧两部分。 29、燃烧可以分为气相燃烧和()燃烧。 30、气相燃烧可以分为预混合燃烧和()燃烧两类。 31、着火临界温度主要受系统的初始压力、()系数、燃料理化特性的影响。 32、根据混合气运动状态不同,火焰传播方式可分为层流火焰传播和()火焰传播。 33、考查燃油喷射主要有两类特性指标,即()特性和喷油特性。 34、喷雾特性是燃油喷入燃烧室后的雾化和空间分布形态,主要包括()、喷雾锥角和喷雾粒径。 35、内燃机燃烧特性的优化主要体现在对()规律的优化。

发动机燃烧新技术

发动机燃烧新技术——Hcci 发动机均质充量压缩着火HCCI(homogeneous charge compression ignition)燃烧是一种全新的燃烧方式。是将燃料、空气及再循环燃烧产物所形成的预混合气被活塞压缩,自燃、着火、做功的过程。 一、HCCI燃烧方式概述 HCCI是均匀的可燃混合气在气缸内被压缩直至自行着火燃烧的方式。随着压缩过程的进行,气缸内的温度和压力不断升高,已混合均匀或基本混合均匀的可燃混合气多点同时达到自燃条件,使燃烧在多点同时发生,而且没有明显的火焰前锋,燃烧反应迅速,燃烧温度低且分布较均匀,因而,只生成极少的NOx和微粒(PM),在低负荷时具有很高的热效率。HCCI发动机主要具有以下几个特点: 1.超低的NOx和PM排放。 2.燃烧热效率高。HCCI发动机的热效率甚至超过了直喷式柴油机。 3.HCCI燃烧过程主要受燃烧化学动力学控制。 4.HCCI发动机运行范围较窄,HCCI发动机燃烧受到失火(混合气过稀)和爆燃(混合气过浓)的限制,使发动机运行范围变窄。对于高十六烷值燃料,由于HCCI发动机燃烧非常迅速,在高负荷工况下(混合气浓度大)易发生爆

震;对于高辛烷值的燃料,由于HCCI燃烧为稀薄燃烧,发动机在小负荷工况下容易失火。 5.HCCI发动机HC、CO排放偏高。这主要是由于HCCI 燃烧通常采用较稀的混合气和较强的EGR,因缸内温度较低造成的。 二、柴油机HCCI燃烧的特点 实现柴油机HCCI燃烧要面临两方面的困难:一是柴油粘度大,挥发性差,难以形成均质混合气;二是柴油作为高十六烷值燃料,容易发生低温自燃反应,均质混合气的燃烧速度控制困难,易造成粗暴燃烧。 柴油HCCI的燃烧放热表现出特别的两个阶段。第一阶段(放热曲线上较小的峰值)与低温化学动力学有关(冷焰或蓝焰);第二阶段(放热曲线上较大的峰值)是主燃烧期;第一阶段是第二阶段的焰前反应,焰前反应放出的热量加热了余下的充量,同时余下的充量继续被压缩,经历短时间的延迟后,余下的充量达到着火条件,几乎同时着火,使放热率迅速升高,表现在放热曲线上出现大的峰值。 因此,HCCI燃烧速度较快,燃烧始点和放热率对压缩过程中充量的温度、压力等很敏感,控制起来很困难。如果HCCI燃烧控制得较好,则可在拓宽的大空燃比范围内进行高效稳定的燃烧,循环波动压力小,工作柔和。

发动机燃烧质量分析(1)上课讲义

发动机燃烧质量分析 (1)

发动机燃烧质量分析 发动机的工作原理:下图为一单缸发动机示意图 与发动机的燃烧质量有关的一些参数,以及它们对燃烧质量的影响及改进措施 一、燃烧速度

燃烧速度指单位时间燃挠的混合气量,是衡量发动机性能的指标之一,可以表达为: 式中: U —火焰传播速度; T A —火焰前锋面积; T ρ —未燃混合气密度。 T 要想使燃挠迅速、及时完成,需要有较高的燃烧速度且合理变化。燃烧速度的大小主要取决于火焰传播速度、火焰前锋面积及未燃混合气密度。 (一)火焰传播速度U T 火焰传播速度取决于燃烧室中气体紊流运动,混合气成分和混合气初始温度。气体紊流强度与火焰速度比之间为一直线关系。紊流强度u指各点速度的均方根值;火馅速度比是紊流火馅传播与层流火焰传播速度之比。因此,加强燃烧室的紊流,是提高火焰传播速度的主要手段。采用过量空气系数A t =0.85-0.95时的混合气,可以提高混合气初始温度,有助于加速火焰传播。 “有条不紊的线状运动,彼此不相混掺,为层流流动。随机运动,每个质点的轨迹都是混乱的,在其前进过程中向横向发生混掺,流动,示出很多涡旋,时而消灭时而发生,是为紊流流动。”

(二)火焰前锋面积A T 燃烧室形状与火花塞位置配合情况,对火焰前锋面分布规律有很大影响。图5-8所示为不同燃烧室火焰前锋面积变化情况。

因此,合理设计燃烧室形状及合理布置火花塞的位置,可以改变不同时期火焰前锋扫过的面积,使明显燃烧期相对曲轴转角的位置及压力升高率在合适的范围内。 (三)可燃混合气密度ρT 增大未燃混合气的密度,可以提高进气压力和压缩比,从而提高混合气的燃烧速度。 二、混合气成分 改变化油器主量孔的大小或改变通过断面可以改变混合气成分。若使用不当也很容易造成混合气成分改变。例如,空气滤清器堵塞,化油器空气量孔堵塞,会使混合气过浓。化油器浮子室油面调整过低,会使混合气体过稀等。混

多通道燃烧分析仪的主要技术参数:

多通道燃烧分析仪的主要技术参数: 一、主要功能要求(在线分析计算): 1、燃烧过程的热力学计算 比热指数(比热率)、放热率、累计放热率、缸内温度、压力等 2、放热计算 计算考虑传热损失的放热率、累计放热率和缸内温度等 3、工作过程的特征参数计算 压力升高率、滞燃时间、燃烧持续时间等 4、喷油过程分析 喷油嘴端压力、针阀升程、针阀启闭相角、喷油持续时间等 5、进排气分析 进排气门升程、进排气背压等 6、点火提前分析 上止点、点火提前角的测量及修正分析 7、发动机的标定和匹配 8、扭矩和扭振分析 9、其它 EGR率、实时爆振监控、燃烧噪音计算等 二、主要技术要求: 燃烧分析仪:包含曲柄转角传感器和缸压传感器,4路电压,1路电荷,8路温度模块,提供专业数据采集软件和后处理软件,每通道1M采样率,16位分辨率。 1、0.1°的曲轴转角分辨率,转速15000RPM,8个通道(可扩展),每通道采样率1MS/s. 0.1° 2、同步采样,传感器精度0.1° 3、在线统计计算功能 4、快速在线显示压力图,P/V图 5、包括燃烧分析软件和数据采集软件 在线燃烧分析图表、统计、离线显示、数据存储、数据传输 6、包括后处理软件 7、分析仪主机: 17寸TFT显示器,1280*1024像素 2.8GHZ英特尔奔腾4处理器,1GB RAM 250GB,DVD+RW光驱 2个USB,1个RS-232,1个LPT,1个LAN 电源供应115/230VAC WINDOWS XP操作系统

键盘、鼠标 8、曲轴转角传感器。工业编码器,每转360脉冲和一个零脉冲,0.1°的分辨率,最大 12000 rpm 。 火花塞式缸压传感器, 测量范围:0—250bar 最大工作压力:49Mpa 灵敏度:160Pc/Mpa 分辨率:1.96*104- Mpa 线性度:%4.0± 结缘电阻:1410≥ 欧 温度范围:-50—350 C 自振频率:130KHz 温度系数:0.01%/ C 带固装电缆和转接插头。测量火花塞,带干扰抑制电阻,带汽缸压力传感器,15 pC/bar ,带绝缘延长塞,和保护套 9、电压模块 10、电荷测量模块 11、温度测量模块 12、油管压力传感器 13、针阀升程传感器 14、主要附件: 安装套筒 扭矩扳手 电缆拆装扳手 传感器预紧扭矩扳手, 高绝缘低噪声延长电缆, 进、排气压力传感器: 压阻式压力传感器, 20 - 120 °C 水冷套 压阻式放大器, 压力输出: 0-10V 和 4-20 mA

汽车发动机燃烧中热能分析

龙源期刊网 https://www.360docs.net/doc/4219003817.html, 汽车发动机燃烧中热能分析 作者:刘庆超 来源:《环球市场信息导报》2011年第03期 摘要:对汽车发动机热能燃烧进行分析,建立预测汽车发动机能够充分燃烧的热能分析模型。相对于燃烧率,燃烧过程,燃烧产物进行分析,该文通过对数学模型的掌握和认识,分析了汽车发动机的热能的燃烧状况。 关键词:汽车;发动机;热能分析 1.汽车发动机燃烧过程 发动机的工作过程,一般包括进气、压缩、做功、排气。其中做功(包括燃烧和膨胀过程)是使内燃机发出强大动力的主要过程。而燃烧过程的完善与否也对内燃机的动力性能及排放状况有着重要的影响。发动机发动过程中热能消耗的程度直接影响着汽车行驶距离的长短,利用对汽车发动机内部能量燃烧效率效益的分析,可以得出汽车行驶与发动机发动功率之间的函数关系和模型基础判断,利用这些数据笔者可以分析出汽车发动机的工作效用。 对于发动机的燃烧过程是一般将柴油机燃烧过程分为预燃期、速燃期、缓燃期和后燃期这个阶段,其中预燃期燃料要完成吸收热量、提高温度、与空气混合等物理过程以及进行着火前的一系列准备过程。 从燃料开始着火到气缸内压力达到最高这段时期称为速燃期,在这一阶段,燃料迅速燃烧,气缸内的压力和温度急剧上升。从气缸出现最高压力到温度达到最高点这一时期称为缓燃期,在这一阶段,温度上升,工质压力开始下降。从温度最高点到燃油基本燃烧完全这段时间称为后燃期。这一阶段,由于燃烧室中的废气和燃料的中间产物的增多而氧分子减少,燃料分子与氧分子进行反应的机会减少,必然会使燃烧速度减慢。在这个时间阶段燃料分子可能在氧分子不足的情况下进行燃烧,发生热裂变,产生黑烟,造成燃烧不完全,影响燃烧的经济性和排气净化。所以,增加内燃机进气时的氧气含量,在燃烧阶段特别是缓燃阶段和后燃阶段加速提供氧气,提高可燃混合气形成的质量,是加速燃烧,缩短缓燃期,使燃烧完全,进而提高内燃机的动力性,改善废气排放的关键。 我国目前为了保证燃烧完全和彻底,提高动力性的驱动,一般采用增压的方法,就是提高气缸内的过多空气系数。这种方法基本上保证了燃烧的充分和完全,经济型指数较高,也因为空气量的增加,使内燃机在同一循环燃烧内有更多的燃料参与燃烧,动力性能也有大幅度的提高。由于空气数量增加,进入发动机气缸内的氧气数量也增加,氮气的数量也相应增加,使得内燃机的排气中的废物增加,导致汽车经济性能受限,排污严重,对环境造成一定的影响。

发动机失火与检测

发动机失火与检测 在最近维修车辆的过程中,遇到很多顾客车主投诉的问题是:车辆加速无力、发动机着车有突突声、怠速抖动、行车发耸、变速器换挡冲击等。查其故障原因归纳如下: (1)燃油供给压力低。如汽滤堵塞、电动燃油泵损坏造成燃油压力低于规定标准,通过连接油压表测量油压或计量燃油泵供油量来判断。 (2)排气管路堵塞,主要是三元催化器堵。通过将三元催化器前氧传感器拆下后连接压力表打排气背压来判断。 (3)进气系统漏气。包括节气门体前方与空气流量计之间漏气和节气门后方的进气歧管漏气。 (4)主负荷信号传感器的损坏(如:空气流量计或进气压力传感器),以及氧传感器、水温传感器等修正信号传感器的故障。这些故障有时会直接报出故障码(Fault code)(简称“报码”),但更多的时候只是信号发生偏移,没有超出报码的界定、即还不符合报码的条件,那就只能靠读取数据流来发现它们。用解码器可以完成这些故障判断: ①工节气门控制单元故障。 ②配气正时错误。现在的发动机大多采用两级正时或可变气门正时,如果没有专用工具情况下,再加上拆装不当,那么发生配气正时装配错误的几率就非常大。还有就是正时皮带的脱齿跳牙引起的。 ③点火正时不对或点火顺序错误。 ④发动机燃烧“失火”。 1发动机失火的概念与失火的判断 在维修过程中发现发动机燃烧“失火”是造成发动机加速无力、抖动、排放超标的罪魁祸首。那什么是“失火”呢?我们先引入一下“失火”的概念。 所谓“失火”,通俗讲就是缺缸、断缸、断火、不点火、燃烧不良。从广义上理解为由于可燃混合汽配比超差(过浓或过稀)、发动机机械原因、点火系统故障等引起的点火能量小、燃烧质量差、燃烧下完全或完全不燃烧的一种不正常的燃烧状况。给人的感官认识主要表现在发动机着车怠速抖动、加油有突突声、急加速无力、排出的尾气刺鼻恶臭,并伴随着发动机故障灯(如“EPC”)或制动“ESP”警告灯的点亮。 因为发动机燃烧失火会产生大量的HC(碳氢化合物)和CO(一氧化碳),不仅对环境造成了污染,人体吸收以后也会造成巨大的伤害。故在1990年代中期美国将车载诊断系统(OBD-Ⅱ)作为降低废气排放和进行废气监控的必要部件之后,欧洲联盟也于2000年1月1日起以欧洲车载诊断系统(EOBD)的名称推广该系统。该系统除了统一规定诊断接口DLC的安放位置(诊断接口必须位于驾驶员座椅周围容易操作的地方),诊断接口插针布局(如图1、16pin诊断接口)统一,故障代码标准化外,更重要的是增加了加强对尾气排放的监控。尤其对“失火”故障的定义和对不点火汽缸的识别。这样就又给出了另外一种对“失火”的解释——判断不点火汽缸的探测系统。 OBD-ⅡL&EOBD对失火的监控策略分为异常运行方法和力矩分析方法。前

发动机燃烧技术

一、概述 内燃机的发展已经有一百多年的历史,自从1876年奥托发明的第一台火花点火式发动机和1892年迪塞尔发明第一台压燃式发动机以来,由于具有较高的热效率、比功率和可靠性,内燃机成为了最主要、最理想的船用、工程机械以及车用动力。美国机械协会认为汽车是20世纪唯一的也是最重要的工程界的成就。在可以预见的未来,发动机仍然是汽车、机车、轮船、农用机械和工程机械等移动装置的动力源。 然而随着世界经济的高速发展,促使内燃机的保有量迅速增加,这样能源消耗以及环境污染问题就日益严重,相应地对内燃机提出了新的技术要求。其中提高内燃机燃油经济性一直是该领域研究工作者所追求的。 同时保护环境的呼声日益提高,如何降低内燃机的有害排放物,是大家共同关心重视的课题。一方面,通过机内净化技术,如柴油机采用电控高压共轨喷射技术,并结合燃烧系统、进排气系统的优化改进,使得整机的排放性能得到极大的改善;另一方面,机外净化技术,将各种污染物的排放量控制在非常低的水平。而内燃机的燃烧技术是改善内燃机动力特性、经济性和排放性的本质和关键技术,当很多研究者对内燃机的燃烧技术进行了研究,为提供内燃机动力特性,降低排放量提供了技术支持。 二、内燃机燃烧技术介绍 首先是压燃式柴油机燃烧技术,柴油机是典型的压燃式发动机,通过缸内压缩混合气体到一定压力与温度,使得混合气体自燃,其中预混燃烧量越多,初始放热率峰值越高,相应地燃烧最高温度就越高,氮氧化物的排放量就增加,其后接着进行扩散燃烧,燃油与空气边混合边燃烧。因此,传统柴油机需要较高的喷射压力,以及适当的空气涡流强度,保证扩散燃烧充分完成,以便降低排气烟度。这种燃烧方式的有点是很明显的,首先是热效率高、燃油经济性好,由于可以采用较高的压缩比,因此热效率比较高,经济性好。但是其缺点也是很明确的,首先是其振动噪声大,由于在上止点前的第一阶段非均质预混合燃烧会引起较高的压力升高率,因此该种燃烧方式的振动噪音比汽油机的要大,其次,其氮氧化物的排放量变高,预混合燃烧会引起较高的燃烧温度,且燃烧室的空气比较富裕,因此,氮氧化物的排放会较高,而且由于扩散燃烧的存在可能使得混合气燃烧不完全,从而使得引起的颗粒物排放比汽油机要高。 其次,是点燃式发动机,这种形式的发动机主要应用于汽油机上,这种燃烧方式与柴油机相比,汽油机属于典型的预混燃烧,这种燃烧方式有很多的优点,比如说,工作运转平稳,其在进气行程中燃油就喷入进气管,遮掩燃油与空气有足够的时间在着火前进行充分地混合,形成基本均匀的可燃混合气,因此汽油机工作比柴油机要来的平稳,并且其振动噪声也要比柴油机小很多。更值得一提的是,在如今环境保护的大趋势与政策下,汽油机的燃烧方式中氮氧化物与颗粒物的排放比柴油机低很多,因为基本均匀的预混燃烧,颗粒物的排放比较低。由于较低的燃烧温度,使得氮氧化物的排放也是比柴油机要低很多的。 三、内燃机燃烧技术的发展

发动机原理期末复习题

一、填空 1、评价柴油和各种燃料的自燃性的指标是()。 2、常规汽油机燃烧是预制混合气()点火,点燃后火焰传播。 3、发动机燃料抗爆性能一般用()来评价。 4、国内常用()值作为汽油的标号。 5、评价燃料蒸发性的主要指标有()和蒸气压。 6、T90和EP反映汽油中()组分的多少。 7、常用动力黏度和()黏度来表示燃料的黏度。 8、燃料和混合气的()直接影响发动机输出功率的大小,是燃料非常重要的性能指标。 9、()过程和内可逆过程的两种理想化假设,使得发动机的缸内工作过程可以用热力学中分析理想气体可逆平衡状态的公式和曲线进行处理。 10、我国从2000年起停止()汽油的生产。 11、φa>1为()混合气。 12、比质量是指单位()功率所占的质量。 13、增压发动机的净指示功一般()动力过程功。(大于、小于、等于) 14、压缩与燃烧膨胀冲程所作功称为()功,又叫动力循环功。 15、s/D小于1的发动机称为()。(其中s-活塞冲程,D-缸径)。 16、燃料燃烧时,燃烧产物H2O以气态排出,其汽化潜热未能释放时的热值叫()。 17、化学安定性一般用燃料含有的实际胶质、燃料的碘值和()表示。 18、H/C比大的气体燃料通常被称为()燃料,纯H2是最清洁的燃料。 19、常规汽油机缸外形成()混合气。 20、汽油缸内直喷分层稀燃模式,既通过( )和负荷质调节方式来灵活控制空燃比分布以实现整机的稀薄燃烧,降低燃料消耗率。 21、多原子气体的κ值()比单原子气体的。(大于,小于,等于) 22、灭缸法测量发动机的机械损失只适用于()发动机。 23、油耗线法不适用于()。 24、增压发动机是利用压气机提高进气压力,增大进气充量来提高()。 25、二冲程发动机是利用()方式完成换气过程的,以减少不作功的冲程数。 26、发动机排气过程细分为()排气和强制排气两个阶段。

双燃料发动机燃烧放热规律分析及燃烧特性研究_尧命发(精)

文章编号:1000-0909(200204-0312-********双燃料发动机燃烧放热规律分析及燃烧特性研究 尧命发1,段家修1,覃军2,许斯都1,付晓光1 (1.天津大学内燃机燃烧学国家重点实验室,天津300072;2.广西玉柴机器股份有限公司,广西玉林537000 摘要:从热力学和内燃机燃烧的基本理论入手,推导了计算分析双燃料发动机缸内工质成分和热力学参数的计算关系式以及求解双燃料发动机燃烧放热规律的微分方程式,基于面向对象技术开发了双燃料 发动机燃烧放热规律计算软件。研究结果表明:用传统柴油机分析方法计算双燃料发动机的放热率峰值 偏小,所计算的缸内工质平均温度偏高,新模型计算的结果与实际情况更为吻合。该分析软件可以适用 于多种燃料发动机,是内燃机燃烧放热规律的通用计算软件。双燃料发动机燃烧特性研究表明:双燃料 发动机初始放热率比纯柴油大,若着火始点在上止点后,双燃料缸内最大爆发压力比纯柴油低,否则比 纯柴油高;控制双燃料发动机着火始点是控制缸内最大爆发压力和NO x排放的关键,双燃料发动机着 火始点应在上止点后,可以使发动机爆发压力和NO x排放比纯柴油低。 关键词:双燃料;燃烧;放热规律;燃烧特性 中图分类号:T K432文献标识码:A 引言

随着内燃机排放法规的日益严格和石油资源危机日益加剧,柴油-气体燃料双燃料发动机应用越来越广泛,柴油机双燃料发动机具有高效率、低排放的优势,但其燃烧特性与纯柴油不同,其燃烧过程是引燃柴油的喷雾扩散燃烧和缸内均质混合气的快速火焰传播过程共同作用。示功图测试分析是研究内燃机工作过程的重要工具,它可以揭示发动机燃烧的内在规律和特点,为开发高效清洁发动机提供有效的分析手段,被广泛应用于研究和产品开发过程中。迄今为止,还没有针对双燃料发动机示功图的分析手段,大都采用柴油机的分析方法。实践证明,这种分析方法和实际双燃料发动机有较大差别。传统的计算分析方法,如描述缸内工质内能的Just经验公式用于描述双燃料发动机燃烧过程将会导致较大的误差。本文从热力学和内燃机燃烧原理的基本理论入手,推导了用于分析计算双燃料发动机缸内工质成分、热力学参数及求解燃烧放热规律的微分方程式,在此基础上基于面向对象技术开发了相应的计算分析软件,并研究分析了双燃料发动机的燃烧放热规律以及双燃料发动机的燃烧特性。 1双燃料发动机放热率分析计算模型 目前,计算双燃料发动机的放热规律通常采用计算柴油机的放热规律程序来进行计算。计算程序中一般将气体燃料折算成等热值的柴油,这样忽略了气体燃料与柴油热物性之间的差异,从而引起较大的计算误差。实际上,一方面气体燃料是在进气行程进入缸内的,在压缩行程中缸内的工质与纯柴油有较大差别,另一方面气体燃料的摩尔质量远比柴油小,同样热值的气体燃料的摩尔数远比柴油大,同时气体燃料的热物性参数也和柴油相差较大。为了减小计算误差,有必要从发动机燃烧过程的基本理论入手来推导双燃料发动机放热规律的计算模型。 1.1模型的基本假设 (1发动机缸内的热力学过程满足零维假定,即缸内温度、压力和工质是均匀的; (2柴油和气体燃料按等比例燃烧;

FEV CAS燃烧分析仪的使用入门

FEV-CAS燃烧分析仪的使用 1、FEV-CAS燃烧分析仪的组成 FEV-CAS燃烧分析仪是于2001年购买的,能同时测量4路电荷信号(如缸压、高压油管压力等)、16路电压信号(如喷油器针阀升程、气门升程、进气管压力等)。FEV-CAS燃烧分析仪包括主机(实时处理器和控制器4344、模数转换板2816、电荷放大器1108)、电荷放大器接口板1104CA、角标仪KISTLER 2613B(包括光电编码器2613B1、信号调理器2613B2、接线盒2613B4)、以及相应的缸压传感器、针阀升程传感器等,系统基本结构见图1。 1104CA Kistler 2613B 图1 FEV-CAS燃烧分析仪基本结构 2、硬件连接 电荷放大器接口板1104CA固定在发动机附近,用一根淡蓝色电缆连到主机。缸压传感器接到1104CA的BNC接口上,传感器线应尽量短,提高信噪比。角标仪的光电编码器通过转接盘安装在曲轴前端,并固定好支架,然后连接信号调理器和接线盒,用两根BNC线将CAM和TRG信号输送给角标仪解码器。其它模拟电压信号直接接到主机的BNC接口上。分析仪用同轴网线与计算机的网卡相连。主机上共有3个电源开关。

3、计算机设置 3.1 网卡设置 ①、将3Com的PCMICA网卡插入笔记本电脑后,Windows XP会自动为其安装驱动。需要做一些设置才能使用。 ②、从开始/控制面板/网络连接,找到3Com网卡的连接(图1),点右键选属性,打开网卡的属性界面(图2),点击配置(C)...打开网卡的配置界面。 图3 网卡属性界面 ③、网卡的配置界面中选高级,将TransceiverType由TP(RJ-45)改为Coax(BNC) (图3),将FullDuplex改为Enabled (图4)。点确定后回到网卡的属性界面。

相关文档
最新文档