湍流的数值模拟方法进展

湍流的数值模拟方法进展
湍流的数值模拟方法进展

《高等计算流体力学》课程作业

湍流的数值模拟方法进展

1概述

自然环境和工程装置中的流动常常是湍流,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,给理论分析带来了极大困难。

湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,表现出非常复杂的流动状态,主要表现在湍流流动的随机性、有旋性、统计性。传统计算流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。

直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场脉动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到比雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。

2 雷诺平均方法(RANS)

雷诺平均模拟(RANS)即应用湍流统计理论,将非定常的N - S方程对时间作平均,求解工程中需要的时均量。利用湍流模式理论,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。

2.1控制方程

对非定常的N - S 方程作时间演算,并采用Boussinesp 假设,得到Reynolds 方程

''

21i j i i i j i j j j j j

u u u u u p u f v t x x x x x ρ?????+=-+-?????? =0i i u x ?? 式中,附加应力可记为''ij

i j pu u τ=-,称为雷诺应力。 这种方法只计算大尺度平均流动,而所有湍流脉动对平均流动的影响,体现到雷诺应力ij τ中。由于雷诺应力在控制方程中的出现,造成了方程不封闭,为使方程组封闭,必须建立湍流模型。

2.2 湍流模型

目前工程计算中常用的湍流模型从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类引入二阶脉动项的控制方程而形成二阶矩封闭模型,或称为雷诺应力模型,另一类是基于Boussinesq 的涡粘性假设的涡粘性封闭模式,如零方程模型,一方程模型和二方程模型。

2.2.1雷诺应力模型

雷诺应力模型(RSM)从Reynolds 应力满足的方程出发,直接建立以''

i j u u 为因变量的偏微分方程, 将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来,并通过模化封闭。封闭目标是雷诺应力输运方程: ''

''''''''i j

i j j

i k i k j k ij ij ij k k k u u u u u u u u u u u D t x x x φε????+=--++-???? (7) 式中ij φ 是雷诺应力再分配项, ij D 是雷诺应力扩散项, ij ε是雷诺应力耗

散项。

典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds 应力所满足的方程,如果模拟的好,可以较好地反映

Reynolds 应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds 应力的方程,加上平均运动的方程整个方程组总计15个方程,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,极大地限制了二阶矩模式的应用。

2.2.2涡粘性模型

涡粘性模型在工程湍流问题中得到广泛应用。这是由Boussinesq 仿照分子粘性的思路提出的,即设Reynolds 应力为,

,,,22()33i j T i j j i k k ij ij u u U U U k νδδ=-+++ 这里12i j k u u =

是湍动能,T ν称为涡粘性系数,这是最早提出的基准涡粘性模式,即假设雷诺应力与平均速度应变率成线性关系,当平均速度应变率确定后,六个雷诺应力只需要通过确定一个涡粘性系数T ν就可完全确定,且涡粘性系数各向同性,可以通过附加的湍流量来模化,比如湍动能k ,耗散率ε,比耗散率w 以及其它湍流量ετ/k =,ε/2/3k l =,k q =,根据引入的湍流量的不同,可以得到不同的涡粘性模式,比如常见的ε-k ,k-w 模式,以及后来不断得到发展的τ-k ,q-w ,k-l 等模式,涡粘性系数可以分别表示为

ενμ/2k C T =

ωνμk C T =

τνμk C T =

ω

νμ2q C T = l

k C T μν=

雷诺平均方法的优点为 (1) 对计算机的要求较低,同时可以得到符合工程要求的计算结果。

(2)一旦给定合理的Reynolds 应力模型,可以很容易地从RANS 方程解出湍流的统计量,所需要的计算资源小。

(3)几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。 其不足之处在于:

(1) 对不同类型的湍流,需要采用不同的Reynolds 应力模型,甚至对于同一类型的问题,对应于不同的边界条件需要修改模型的常数。

(2) 由于不区分旋涡的大小和方向性,对旋涡的运动学和动力学问题考虑不足,不能用来对流体流动的机理进行描述。

(3) 对于非定常流动、大分离流动、逆压力梯度数值模拟等问题,受湍流模型条件的限制,很难得到满意的计算结果。

(4)严重依赖流场形状和边界条件,普适性差,计算很大程度上依赖于经验。

2.3 常用的湍流模型

常用的湍流模型有:

零方程模型:C-S 模型,由Cebeci-Smith 给出;B-L 模型,由Baldwin-Lomax 给出。

一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

二方程模型:应用比较广泛的两方程模型有Jones 与Launder 提出的标准k-e 模型,以及k-omega 模型。

1、零方程模型

上世纪30年代发展的一系列湍流的半经验理论,如Prandtl 的混合长度理论、Taylor 的涡量输运理论、von Karman 的相似性理论等,本质上即是零方程湍流模型。零方程模型直接建立雷诺应力与平均速度之间的代数关系,由于不涉及代数关系故称为零方程模型:

''m u u v y

ρρε?-=? 其中m ε称为涡粘系数,与分子的运动粘性系数ν有相同的量级。对于一般的三维的情况,上式可写为:

''

223

i j m ij ij u v S K ρεδ-=- K 为单位质量的湍流脉动动能。为了发展上述方法,需要建立m ε与平均速度之间的关系。1925年,普朗特提出混合长度理论,认为存在这样的长度l ,在此长度内流体质点运动是自由的,l 称为混合长度。由于湍流漩涡的作用,到达新位置后他会低于当地周围的平均速度,此即流向脉动速度'10()()u U y U y ≈-,显然,此速度差取决于当地的平均速度梯度U y ??与微团沿y 向跳动的距离l ,即:

'U u l y

?≈?

此l 表示在此距离内微团沿y 向脉动时基本不丧失其原有速度。实际测量表明,虽然一般情况下流向的脉动速度的均方根值大于法向值,但他们有相同的量级,因此有:

'U v l y

?≈? 所以有:

''2

u u u v l y y

ρρ??-=?? 由此可算出涡粘性系数为: 2m u l y

ε?=? 由此可见,若假设l 不随速度变化,则可得出湍流切应力与平均速度平方成比例,这与实验结果是一致的。

混合长度理论已成功用于研究多种湍流剪切流,如流管、边界层和各种湍流剪切流。

目前应用最广泛的零方程模型是Baldwim-Lomax 模型,该模型对湍流边界层的内层和外层采用不同的混合长度假设,在流体分离不严重的流场计算中结果较好。但是实际上,零方程湍流模型仅适用于局部平衡状态的湍流流动。

2,、一方程模型

一方程模型一般求解湍流动能或涡粘性系数的输运方程,精度较好,鲁棒性也比较好,B-B 模型和S-A 模型是典型的单方程模型。特别是S-A 模型,从经验和量纲分析出发得出了涡粘性系数的输运方程,采用大量的实验结果标定模型系数,具有良好的鲁棒性和计算准确性,目前已经被集成在各种商业软件和科学计算的代码中,在航空航天领域的空气动力学计算中得到了十分广泛的应用。

S-A 模型常被认为介于B-L 代数模型和两方程模型之间。由于其容错功能好,处理复杂流动的能力强,已得到广泛应用。与B-L 模型相比,其湍流涡粘场是连续的。且容错性好,计算量少。该湍流的原理是建立在一个附加的涡粘输运方程的解决上。方程中包含对流项,扩散项和源项,以非守恒形式建立。S-A 模型不同于其他一些单方程模型,是直接根据经验和量纲分析,从简单流动开始,直接得到最终的控制方程。该模型具有一些很好的特点,相对于两方程模型计算量

小和稳定性好,同时又有较高的精度。由于模型方程的因变量函数在对数律区内与到壁面的距离成线性关系,所以可以使用相对与低雷诺数模型较粗的网格。另外,模型是非当地型的,方程中没有诸如y+这类当地型的项在内,所以在有多个物理面的复杂流场中不需要特殊处理,使用方便。

3、两方程模型

上世纪70年代,Launder 发展的k-ε模型被称为标准k-ε模型,它求解湍流动能k 及湍流动能耗散率ε的输运方程,能够反映一定的湍流物理量的输运特性,是两方程湍流模型的先驱性工作。之后研究人员又发展了重整化群k-ε (RNG k-ε)模型、可实现性k-ε模型等,进一步强化了k-ε系列模型的计算性能。另外一个系列的两方程模型为-k ω模型系列,其中比较有代表性的有标准-k ω模型和SST -k ω模型。一般来说,k-ε模型对高Re 数充分发展的湍流模拟结果较好,而-k ω模型改进了k-ε模型对受壁面影响湍流模拟的缺陷,对壁面附近的湍流模拟精度较高。

(1)k-ε模型

k-ε模型是分别引入关于湍动能k 和耗散率ε的方程:

()()()e k k b k k k k

k k u k G G t x x x μρρρεσ????+=++-???? 12()()()()e k k k k k k u c G c t x x x k

εμρεερερεσ????+=+-???? 其中:

222[2()2()()]k t u v u v G x y y x

μ????=+++???? ()t t b x y t t T T G g g x y

μμβρσσ??=-+?? e t μμμ=+ 2

t k C μμρ

ε=

模型中各通用常数据计算经验可取为: 120.09, 1.44, 1.92,1, 1.3k C c c εμσσ=====

标准K-ε模型的特点:

可用于边界层型流动和分离流;近壁需修正或在计算边界上用壁函数(半经

验公式)作边界条件;属于涡粘模型;ε方程模化不确定因素多,可靠性差;模型常数通用性差;不能模拟强各向异性流(如矩形槽道中的二次流);不能计入涡量的影响。

除此之外还有各种改进的k ε-模型,比较著名的是RNG k ε-模型和带旋流修正的k ε-模型。

(2)k-ω模型

标准-k ω模型是基于Wilcox -k ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox -k ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k ε-模型的一个变形是SST -k ω模型。

SST -k ω模型由Menter 发展,以便使得在广泛的领域中可以独立于-k ω模型,使得在近壁自由流中-k ω模型有广泛的应用范围和精度。为了达到此目的,-k ε模型变成了-k ω公式。SST -k ω模型和标准-k ω模型相似,但有以下改进:

(1)SST -k ω模型是由标准的-k ω模型和变形的-k ε模型分别乘上一个混合函数相加得到的,在近壁面混合函数将为1,此时启用标准-k ω模型,在远壁面,混合函数将为0,此时启用变形的-k ε模型。(2)SST -k ω模型合并了来源于方程中的交叉扩散。(3)湍流粘度考虑到了湍流剪应力的传播。(4)模型常量不同。这些改进使得SST -k ω模型比标准-k ω模型在在广泛的流动中有更高的精度和可信性。

SST -k ω模型的方程为:

k ()()()i k k i j j

k k ku G Y t x x x ρρ????+=Γ+-???? ()()()i i j j

u G Y D t x x x ωωωωωρωρω????+=Γ+-+???? 式中:k G ——由层流速度梯度而产生的湍流动能;

k ωΓΓ和——K 和ω的扩散率;

k ωΓΓ和——K 和ω的扩散率;

k Y Y ω和—— K 和ω的发散项;

D ω——正交发散项。

4、其他模型

其他形式的湍流模型涡粘系数输运(SA )模型(3方程),雷诺应力模型(2

阶矩模型)、雷诺应力模型方程(7方程模型)。

一阶矩模型在工程湍流计算中获得了很大的成功,但它们存在一些本质上的缺陷,即这些模型均是基于Boussinesq线性各向同性的假设,导致雷诺正应力在三个方向上的分量相等,这与很多实际的湍流流动矛盾。因此,一阶矩模型对强逆压梯度下的流动、强分离流动、二次流、存在旋转和曲率效应的复杂湍流等预测精度较差,需要进行相应的修正。

二阶矩模型,即雷诺应力输运模型,通过求解雷诺应力各个分量的输运方程来封闭雷诺应力项,可以考虑湍流的各向异性及历史效应,理论上具有一阶矩所不能及的模拟复杂流动的能力。我国周培源教授首次建立了雷诺应力的输运方程组,1951年Rotta在这个基础上发展了完整的雷诺应力模型。他们的工作是最早的奠基性工作。Launder、Reece和Rodi对二阶矩模型进行了标定,建立了著名的LRR二阶矩封闭模型。后来很多研究者又提出了多种形式的二阶矩模型。不同二阶矩模型之间的区别在于扩散性、压力.应变率关联项和耗散项的具体模化形式,其中最关键的是压力。应变率关联项的模化,但到目前为止对这一项的模化还是不成熟。尽管二阶矩模型模拟复杂湍流流动理论上具有较大的优势,但它需要求解6个雷诺应力的强非线性方程及附加的湍流动能耗散率的方程,鲁棒性较差,计算量较大,而且实际流场中的计算精度并不不尽如意,因此在很大程度上限制了二阶矩模型在工程中的应用。后来Rodi提出把雷诺应力输运方程简化为代数应力模型(Algebraic Stress Model,ASM)的思想。假设雷诺应力的输运正比于湍流动能k的输运,带入压力.应变率关联项和湍流动能耗散率的模型,从而得到代数应力模型。ASM模型不考虑雷诺应力的时间和空间导数,比较合理地对二阶矩模型进行了简化。介于一般意义上的一阶矩和二阶矩模型之间,另外重要的一类湍流模型即为非线性涡粘性湍流模型。尽管它的推导过程与代数应力模型不同,但在表达形式上完全相同。Pope指出虽然非线性涡粘性模型和代数应力模型在推导时所基于的出发点不同,但他们在数学上是等价的。非线性涡粘湍流模型的基本思想是改进Bousincsq假设的线性应力.应变本构关系,采用非线性的多阶表达式。早在20世纪70年代,Lumley和Pope就已经给出雷诺应力的通用非线性表达形式。非线性模型的二阶项可以反映雷诺应力的各向异性,三阶项可以反映流线弯曲及旋转效应等。

2.4各种湍流模型的特点

各类模型基于粗略的假设、类比、量纲分析,无可靠物理基础,因此需引进

经验系数。

1、零方程模型不能反映输运效应,计算量最小,一般适用于边界层型流动,引进各种修正可扩大适用范围;

2、K方程模型特征长度不易确定,应用较少;

3、ε方程模化不确定因素多,可靠性差;

4、标准K-ε模型近壁需修正,且不能模拟二次流;

5、非线性K-ε模型能反映各向异性,璧面ε的仍有奇异;

6、涡粘模型不能反应各向异性和松弛效应;

7、二阶矩模型适用范围较广,计算量较大,模型常数的通用性仍差;

8、SA(3)模型近壁无奇异性,可模拟流场变化较剧烈和曲率较大湍流,但仍具有涡粘模型特点。

多数模型不能完全满足真实性条件,需要改进。脉动结构信息多的模型,应用面较广,但模拟的对象越多,不确定的因素就越多,计算量越大。现在还没有一个模型能满意预测所有湍流,所以,选模型时应综合考虑流动类型、计算量与精度等因素。

3 大涡模拟(LES)

湍流大涡数值模拟(LES)是有别于直接数值模拟和雷诺平均模式的一种数值模拟手段。利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。

3.1基本思想

湍流运动是由许多尺度不同的旋涡组成的。那些大旋涡对于平均流动有比较明显的影响,而那些小旋涡通过非线性作用对大尺度运动产生影响。大量的质量、热量、动量、能量交换是通过大涡实现的,而小涡的作用表现为耗散。流场的形状,阻碍物的存在,对大旋涡有比较大的影响,使它具有更明显的各向异性。小旋涡则不然,它们有更多的共性,更接近各向同性,因而较易于建立有普遍意义的模型。基于上述物理基础,LES把包括脉动运动在内的湍流瞬时运动量通过滤波分解成大尺度运动和小尺度运动两部分。大尺度通过数值求解运动微分方程直

接计算出来,小尺度运动对大尺度运动的影响在运动方程中表现为类似于雷诺应力一样的应力项,该应力称为亚格子雷诺应力,通过建立模型来模拟。即实现大涡数值模拟,首先要把小尺度脉动过滤掉,然后再导出大尺度运动的控制方程和小尺度运动的封闭方程。

3.2 滤波函数

大涡模拟首先要流动变量划分成大尺度量和小尺度量,这一过程称之为滤波。滤波运算相当于在一定区间内按一定条件对函数进行加权平均,其目的是滤掉高波数而只保留低波数,截断波数的最大波长由滤波函数的特征尺度决定。目前较为常用的滤波函数主要有以下三种:Deardorff 的盒式(BOX)滤波函数、富氏截断滤波函数和高斯(Gauss)滤波函数。

不可压常粘性系数的湍流运动控制方程为N-S 方程:

j ij i j j i i x S x P x u u t u ???+??-=??+??)2(1γρ

式中:S 拉伸率张量,表达式为:2/)//(i j j i ij x u x u S ??+??=;γ分子粘性系数;ρ流体密度。设将变量i u 分解为方程(11)中i u 和次网格变量(模化变量)'i u ,即'+=i i i u u u ,i u 可以采用Leonard 提出的算式表示为:

(11)

式中)(x x G '-称为过滤函数,显然G(x)满足 3.3 控制方程

将过滤函数作用与N-S 方程的各项,得到过滤后的湍流控制方程组:

由于无法同时求解出变量i u 和j i u u ,所以将j i u u 分解成i j i j ij u u u u τ=?+,ij τ即称为次网格剪切应力张量(亦称为亚格子应力)。

由此动量方程又可写成:

x d x u x x G x u i i '''-=?+∞∞-)()()(?+∞

∞-=1)(dx x G ()(2)1i j ij i j i j u u S u P t x x x γρ?????+=-+????()(2)1i j ij ij i u u S u P τ??????

式中ij τ代表了小涡对大涡的影响。

3.4 常用的亚格子模型

目前,在大涡模拟中经常广泛采用的亚格子模型有标准的Smagorinsky 模型、动态涡粘性模型、动态混合模型、尺度相似模型、梯度模型、选择函数模型等。其中Smagorinsky 模型被广泛应用。

3.4.1亚格子涡粘和涡扩散模型

不可压缩湍流的亚格子涡粘和涡扩散模型采用分子粘性和分子热扩散形式,即

kk ij ij t ij S τδντ3

12+= i

t i x T ??=θκ 以上公式中t ν和t κ分别称为亚格子涡粘系数和亚格子涡扩散系数;(1/2)[(/)(/)]ij i j j i S u x u x =???+??是可接尺度的变形率张量。式(14)第2项是为了满足不可压缩的连续方程,当ij S 收缩时(ij S =0)等式两边可以相等。

将亚格子应力的涡粘模型公式(14)代入到(13)式中,变形得

)])([()3(i

j i i t i kk i i i j i x u x u x p x x u u t u ??+??+??++??-=??+??νντρ 0=??i

x u i 3.4.2 Smagorinsky 模型

Smagorinsky 模型是由Smagorinsky 于1963年提出来的,该模型是第一个亚格子模型。广泛用于大涡模拟中的涡粘模型认为亚格子应力的表达式如下:

ij T kk ij ij S ντδτ23

1-=-

式中

(1/2)[(/)(/)]ij i j j i S u x u x =???+??是可接尺度的变形率张量,T ν是涡粘

系数。 1963年Smagorinsky 定义了涡粘系数:

) 式中2/1)2(ij ij S S S =是变形率张量的大小,?是过滤尺度,C S 无量纲参数,称为Smagorinsky 系数。

3.4.3 动态亚格子模式

1991 年, Germano 提出了动态亚格子模式,该模式以Smagorinsky 模式为基本模型,但克服了Smagorinsky 模式的部分缺陷。动力模型实际上是动态确定亚格子涡粘模型的系数。动力模型需要对湍流场做两次过滤,一次是细过滤,细过滤后再做一次粗过滤。通过在网格尺度和检验滤波器尺度条件下计算得到的应力差来确定应力模型系数,使模型系数成为空间和时间的函数,从而避免了在模拟过程中对系数进行调节。因此比Smagorinsky 模式所采用的固定系数值更加合理。

3.4.4 相似性模式

1980 年Bardina 提出了尺度相似模式。该模式假定从大尺度脉动到小尺度脉动的动量输运主要由大尺度脉动中的最小尺度脉动来产生,并且过滤后的最小尺度脉度速度和过滤掉的小尺度脉动速度相似。通过二次过滤和相似性假定可以导出亚格子应力表达式。采用这种模式能正确预测墙壁面附近的渐近特性,但预测各向不均匀的室内空气复杂流动准确性较差。

3.4.5 混合模式

混合模式是将尺度相似模式和Smagorinsky 模式叠加来确定亚格子应力。这种模式既有和实际亚格子应力良好的相关性,又有足够的湍动能耗散。

S C S T

2)(?=ν

3.5 大涡模拟的特点

(1)能够描述小尺度湍流流动,但是计算量远小于DNS ,在科学研究和工程应用上都显示出良好的发展前景。

(2)用非均匀网格能够使网格数达到最少,节省计算资源,同时又能够保证足够的计算精度。

(3)网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节。

(4)相较于RANS 方法,LES 可以模拟更多的湍流大尺度运动,LES 所用的湍流亚网格应力模型受边界的几何形状和流动类别的影响小,比 RANS 方法所用的Reynolds 应力更具普适性。

其不足之处在于:

(1)小涡模型网格节点的划分极密集,需要庞大的计算机存储能力;

(2) 大量数据处理和非线性偏微分方程的求解需要高速数值处理能力;

(3)仅用于比较简单的剪切流运动及管流。

(4) 由于实际湍流极其复杂, 数值模拟仍需要非常可观的计算时间和实验经费。

4 直接数值模拟 (DNS)

湍流直接数值模拟(DNS)就是不用任何湍流模型,直接求解完整的三维非定常的N - S 方程组,计算包括脉动在内的湍流所有瞬时运动量在三维流场中的时间演变。

4.1 控制方程

用非定常的N - S 方程对湍流进行直接计算, 控制方程以张量形式给出:

21i i i j i j i j i u u u p u f v t x x x x ρ????+=-+?????

=0i j

u x ?? 4.2 常用数值方法

由于最小尺度的涡在时间与空间上都变化很快,为能模拟湍流中的小尺度结

构,具有非常高精度的数值方法是必不可少的。

4.2.1谱方法或伪谱方法

谱方法或伪谱方法是目前直接数值模拟用得最多的方法,其主要思路为,将所有未知函数在空间上用特征函数展开,成为以下形式:

()()()()123(,)mnp m n p m n p V x t a t x x x ψ?χ=∑∑∑ (3)

其中m ψ,n ?与p χ,都是已知的正交完备的特征函数族。在具有周期性或统

计均匀性的空间方向一般都采用Fourier 级数展开,这是精度与效率最高的特征函数族。在其它情形,较多选用Chebyshev 多项式展开,它实质上是在非均匀网格上的Fourier 展开。此外,也有用Legendre , Jacobi , Hermite 或Laguerre 等函数展开,但它们无快速变换算法可用。如将上述展开式代入N-S 方程组,就得到一组()mnp a t 所满足的常微分方程组,对时间的微分可用通常的有限差分法求解。 在用谱方法计算非线性项例如V ??u r u r

的Fourier 系数时,常用伪谱法代替直接求卷积。伪谱法实质上是谱方法与配置法的结合,具体做法是先将两量用Fourier 反变换回到物理空间,再在物理空间离散的配置点上计算两量的乘积,最后又通过离散Fourier 变换回到谱空间。在有了快速Fourier 变换(FFT)算法以后,伪谱法的计算速度高于直接求两Fourier 级数的卷积。但出现的新间题是存在“混淆误差”,即在做两个量的卷积计算时会将本应落在截断范围以外的高波数分量混进来,引起数值误差。严重时可使整个计算不正确甚至不稳定,但在多数情形下并不严重,且有一些标准的办法可用来减少混淆误差,但这将使计算工作量增加。

4.2.2高阶有限差分法 高阶有限差分法的基本思想是利用离散点上函数值i f 的线性组合来逼近离散点上的导数值。设i F 为函数()j f x ??的差分逼近式,则

j j j

F f α=∑ 式中系数j α 由差分逼近式的精度确定,将导数的逼近式代入控制流动的N - S 方程,就得到流动数值模拟的差分方程。差分离散方程必须满足相容性和稳定性。

4.3 直接数值模拟的特点

(1)直接数值求解N-S 方程组,不需要任何湍流模型,因此不包含任何人为假设或经验常数。

(2)由于直接对N - S 方程模拟,故不存在封闭性问题,原则上可以求解所有湍流问题。

(3)能提供每一瞬时三维流场内任何物理量(如速度和压力)的时间和空间演变过程,其中包括许多迄今还无法用实验测量的量。

(4)采用数量巨大的计算网格和高精度流体力学计算方法,完全模拟湍流流场中从最大尺度到最小尺度的流动结构,描写湍流中各种尺度的涡结构的时间演变,辅以计算机图形显示,可获得湍流结构的清晰与生动的流动显示。

DNS 的主要不足之处在于:要求用非常大的计算机内存容量与机时耗费。据Kim ,Moin &Moser 研究,即使模拟Re 仅为3300 的槽流,所用的网点数N 就约达到了6

210? ,在向量计算机上进行了250 h 。 5 不同方法的计算效率比较

LES , DNS ,RANS 三种方法中DNS 的计算量最大,LES 的计算量介于另外两者之间,而RANS 的计算量最小。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。

直接数值模拟为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与34Re 成比例,考虑一个三维问题,网格节点的数量与94

Re 成比例。一般的估计如下:湍流中包含许多尺度不同的涡,为能模拟最小涡的运动,计算网格

的分辨率应足以分辨最小尺度的涡,后者以Kolmogorov 定义的内尺度

3=v ηε()为代表。而计算区域的尺寸应足以容纳最大尺度的涡,最大涡的尺度为L 。因此在一个空间方向上的网点数目至少应与L η同量阶,而根据统计理论知道这个比值 3432~L L

R R λη

于是整个三维空间所需的网点总数至少为

3

9942

~~L L N R R λη?? ???或 此数字也正是按非线性动力系统理论所估计的湍流的吸引子维数的上确界。计算所需的内存容量应与此数成正比。另一方面计算的时间步长应小于最小涡的时间尺度'η,而总的计算时间应大于最大涡的特征时间'L u ,因此需要计算的步数应不少于L η.如假设每一时间步长的计算工作量,即使按最低限估计,与

N 成正比,则总的计算工作量至少也要正比于3L R 或6R λ。假如对每一时间步的每

一网点需执行100条机器指令,则对一个510L R =的湍流问题,就需执行总共约1710条指令。这意味着在一个计算速度为每秒一亿次的超级计算机上也要运行约30年。如此巨大的计算工作量即使对当今世界上最大的计算机也是不可接受的。据Kim ,Moin &Moser 研[]3

究,即使模拟Re 仅为3300 的槽流,所用的网点数N 就约达到了6210? ,在向量计算机上进行了250 h 。在现有的计算机能力的限制下,即使在少数拥有世界最大的超级计算机的科学大国,目前也只能计算中等以下雷诺数且有简单几何边界的湍流流动。

大涡模拟与直接数值模拟相比节省很大的计算量。湍流大涡数值模拟将湍流的大尺度脉动和小尺度脉动分开,对大尺度结构进行直接数值模拟,通过建立亚格子尺度(亚格子尺度) 模型来模拟小尺度脉动的作用。理想的湍流直接数值模拟需要包含所有尺度的湍流脉动,一般最小的脉动尺度等于Kolmogorov 耗散尺度η,流动的最大尺度L 由流动的几何条件确定。直接数值模拟的一维网格数应为: DNS ~N L η,而大涡数值模拟的一维网格数为: ~LES N L ? 可以节省网格数()()()()3333

1DNS LES DNS N N N η??-=-???

,如果过滤尺度等于2 倍柯氏耗散尺度的话,就可以比DNS 节省87. 5 %的网格。这里我们可以看到完全的湍流直接数值模拟中,绝大部分的计算量花费在耗散尺度中,对于高雷诺数流动,这是很不经济的计[]4算。 雷诺时均方程法先将湍流中的物理量如速度、浓度等分成扰动量及平均量,再利用对控制方程作时间平均,同时采用湍流模型仿真湍流的效应,因此大大降低了计算量,但其结果受湍流模型的影响很大。

结束语

湍流是一个世纪性难题,近一个世纪以来对其的研究不断深入。在此过程中

对湍流的模拟方法也得到了很大发展。对湍流数值模拟的研究已经成为计算流体力学中一个热点和前沿问题。在未来,对这方面的研究还将不断发展。对湍流复杂流动现象会有更深刻的认识。

管内湍流的数值模拟

管内湍流的数值模拟 摘要:当Reynolds数大于临界值时,平滑流动会出现一系列复杂的变化,最终会导致流动特征的本质变化,流动呈无序的混乱状态,这种状态称为湍流。计算流体力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。本文以湍流管流模型为例,借助Fluent软件进行空气动力学分析,对该管内湍流流动进行模拟。 关键词:计算流体力学;Fluent;管内湍流;数值模拟 1 引言 流体试验表明,当Reynolds数大于临界值时,平滑流动会出现一系列复杂的变化,最终会导致流动特征的本质变化,流动呈无序的混乱状态。这时,即使是边界条件保持不变,流动也是不稳定的,速度等流动特性都随机变化,这种状态称为湍流。 随着高速电子计算机的出现,数值模拟越来越多地应用于流场的模拟。计算流体力学(Computational Fluid Dynamics ,简称为CFD)就是其中一种有效的研究流体动力学的数值模拟方法,它是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析;是基于计算机技术的一种数值计算工具, 用于求解流体的流动和传热问题。它能够描述几何体边界的复杂的流动现象,能够在设计的初期快速地评价设计并做出修改;在设计的中期,用来研究设计变化对流动的影响,减少未预料到的负面影响;设计完成后,CFD提供各种数据和图像,证实设计目的。CFD大大减少了费用、时间以及新设计带来的风险。近年来,CFD越来越多地应用于翼型设计和流场的分析中,成为一种重要的设计和计算方法。 Fluent软件是用于模拟和分析在复杂几何区域内的流体流动与热交换问题的专用CFD软件。它用于计算计算流体流动和传热问题的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、化学反应等。Fluent提供了灵活的网格特性,用户可以方便的使用结构网格和非结构网格对各种复杂区域进行网格划分。本文以湍流管流模型为例,借助Fluent软件进行空气动力学分析,对该管内湍流流动进行模拟,并分析了模型内的中心速度分布、表面摩擦系数和流速剖面。 2 数学及物理模型的建立 2.1 数学模型

湍流的数值模拟方法进展

3 大涡模拟(LES ) 湍流大涡数值模拟(LES )是有别于直接数值模拟和雷诺平均模式的一种数值模拟手段。利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动, 将N-S 方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。 3.1 基本思想 很多尺度不同的旋涡一起组成了湍流运动平均流动主要取决于大漩涡的流动,大尺度运动则受到小旋涡的影响。流动中的大涡实现了动量、能量质量、热量的交换,耗散主要是由于小涡作用的。大旋涡中受到流场形状、阻碍物的影响,,使大漩涡的各向异性更加明显。然而小漩涡之间各项同性,相互没有太大的区别,所以建立统一的模型比较容易一些。综上所述,大涡模拟将湍流瞬时运动量通过滤波将运动分成小尺度和大尺度。大尺度的运动受到小尺度的运动的影响可以通过应力项(类似于雷诺应力项)来表示,即为亚格子雷诺应力,以建立这种模型的方法来模拟。而大尺度则是求解运动微分方程而计算出来的,也就是说大涡模拟,要先过滤掉小尺度的脉动,然后再推出小尺度的运动封闭方程以及大尺度的运动控制方程。 3.2 滤波函数 正如上面提到,大涡模拟要先将流动变量分解成小尺度量和大尺度量,我们把这个作用叫做滤波。滤波运算就是在一区域内按照一定的条件对函数进行加权平均,作用是将高波数滤掉,使低波数保留,滤波函数的特征尺度决定了截断波数的最大波长,下面三种滤波函数是最为常用的主要有以下三种:盒式、富氏截断以及高斯滤波函数。 不可压常粘性系数的湍流运动控制方程为N-S 方程: j ij i j j i i x S x P x u u t u ???+??-=??+??)2(1γρ 式中:S 拉伸率张量,表达式为:2/)//(i j j i ij x u x u S ??+??=;γ分子粘性系数;ρ流体密度。设将变量i u 分解为方程(11)中i u 和次网格变量(模化变量)'i u ,

数值模拟中的湍流模型

流体力学是力学的一个重要分支,它是研究流体(包括液体和气体)这样一个连续介质的宏观运动规律以及它与其他运动形态之间的相互作用的学科,在现代科学工程中具有重要的地位。宏观上讲,黏性流体的流动形态有三种:层流、湍流以及从层流到湍流的转捩。从工程应用的角度看,大多数情况下转捩过程对流体流动的影响不大可以忽略,层流在很少情况下才出现,而在自然界和工程中最普遍存在的是湍流,因此湍流是科学家和工程师研究的重点。湍流理论的研究主要集中在两个方面:一是湍流的触发;二是湍流的描述和湍流问题的求解。 对于工程中出现的湍流问题,其求解方法可归纳为四种:理论分析、风洞实验、现场测试和数值模拟。四种方法相互补充,以风洞实验和现场测试为主,理论分析和数值模拟为辅。数值模拟又称数值风洞,它的出现才十几年却取得迅猛发展,是目前数值计算领域的热点之一,它是数值计算方法、计算机软硬件发展的结果。我们知道,描述流体运动(层流)的流体力学基本方程组是封闭的,而描述湍流运动的方程组由于采用了某种平均(时间平均或网格平均等)而不封闭,须对方程组中出现的新未知量采用模型而使其封闭,这就是CFD中的湍流模型。湍流模型的主要作用是将新未知量和平均速度梯度联系起来。目前,工程应用中湍流的数值模拟主要分三大类:直接数值模拟(DNS);基于雷诺平均N-S方程组(RANS)的模型和大涡模拟(LES)。 DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较简单,边界条件比较单一;第二:计算量大。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与Re3/4成比例,考虑一个三维问题,网格节点的数量与Re9/4成比例。目前,DNS能够求解Re(10e4)的范围。 基于RANS的湍流模型采用雷诺平均的概念,将物理量区分为平均量和脉动量,将脉动量对平均量的影响用模型表示出来。目前,基于RANS方程已经发展了许多模型,几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。其缺点在于:第一:不同的模型解决不同类型的问题,甚至对于同一类型的问题,对应于不同的边界条件需要修改模型的常数;第二:由于不区分旋涡的大小和方向性,对旋涡的运动学和动力学问题考虑不足,不能用来对流体流动的机理进行描述。

湍流的数值模拟

2012年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目高等流体力学 学生所在院(系)机电工程学院 学生所在学科机械制造及自动化学生姓名高强 学号12S008123 学生类别工学硕士 考核结果阅卷人

湍流的数值模拟 一、流体力学概述 流体力学是研究流体的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。除水和空气之外,这里的流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。 二、数值计算在流体力学研究中的应用 数值计算是研究流体力学的重要方法。它是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。 求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。 从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。

湍流的数值模拟方法进展

《高等计算流体力学》课程作业 湍流的数值模拟方法进展

1概述 自然环境和工程装置中的流动常常是湍流,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,给理论分析带来了极大困难。 湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,表现出非常复杂的流动状态,主要表现在湍流流动的随机性、有旋性、统计性。传统计算流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。 直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场脉动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到比雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。 2 雷诺平均方法(RANS) 雷诺平均模拟(RANS)即应用湍流统计理论,将非定常的N - S方程对时间作平均,求解工程中需要的时均量。利用湍流模式理论,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。 2.1控制方程 对非定常的N - S 方程作时间演算,并采用Boussinesp 假设,得到Reynolds 方程

Fluent 湍流模型小结

Fluent 湍流模型小结 湍流模型 目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: ?直接模拟(direct numerical simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 ?大涡模拟(large eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 ?应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E 模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表现

湍流燃烧数值模拟研究

湍流燃烧及其数值模拟研究 1. 湍流燃烧 1.1 湍流燃烧基本概念 当流动雷诺数数较小时,由于流体粘性的作用,流体呈层流流态。当流动的特征雷诺数超过相应的临界值,流动从层流转捩到湍流。湍流燃烧是指湍流流动 中可燃气的燃烧,在能源、动力、航空和航天等工程领域,经常遇到的实际燃烧过程几乎全部都是湍流燃烧过程。湍流燃烧实质是湍流,化学反应和传热传质等过程相耦合的结果。湍流对燃烧的影响与湍流强度和湍流涡旋尺度有关。小尺度湍流通过湍流扩散使火焰区内的输运效应增加,从而使化学反应速率增加。但气流脉动不会火焰面产生皱褶,只能把火焰变成波纹状。大尺度湍流对火焰内部结构没有影响,但使火焰阵面出现皱褶,增加其燃烧面积,造成火焰表现传播速度增加。当湍流强度及湍流尺度均较大时,火焰前沿不再连续而分裂成四分五裂。 燃烧对湍流的影响主要表现在燃烧释放的热流流团膨胀,影响气体的密度和运动速度,从而影响当地的涡旋,湍流强度和湍流结构。 1.2 湍流燃烧分类湍流燃烧按其燃料和氧化剂的初始混合状态可以分类为:湍流非预混燃烧、预混燃烧和部分预混燃烧。在湍流非预混燃烧燃料和氧化剂事先是分离的,燃料和氧化剂一边混合一边燃烧,燃烧速率主要受湍流混合过程控制,而在湍流预混燃烧中,燃料和氧化剂在进入核心燃烧区以前已经充分混合,化学反应的速率由火焰前缘从炽热的燃烧区向冷态无反应区的传播所控制。上面两种燃烧方式是湍流燃烧的两个极限情形,很多情况下两种燃烧模式是并存的,称为部分预混燃烧。部分预混燃烧可出现在下列情形中叫:(1) 在一个完全以非预混燃烧为配置的燃烧装置发牛了局部熄火;(2) 当预混火焰前缘穿过非均匀的混气时;(3) 射流非预混火焰发生抬举,其根部是一。个典型的部分预混火焰。这三种部分预混燃烧情形涉及了经常受到关注的燃烧研究话题如局部熄火、火焰稳定等,它们对研究湍流燃烧过程的机理有很大意义。 在湍流燃烧中,湍流流动过程和化学反应过程有强烈的相互关联和相互影响. 湍流通过强化混合而影响着时平均化学反应速率,同时化学反应放热过程又影响着湍流,如何定量地来描述和确定这种相互作用是湍流燃烧研究的一个重要内容. 湍流是非常复杂的,它包括湍流问题,湍流与燃烧的相互作用,流动参数与

湍流的数值模拟综述

湍流的数值模拟 一、引语 流体的流动形态分为湍流与层流。而层流是流体的最简单的一种流动状态。流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。此种流动称为层流或滞流,亦有称为直线流动的。流体的流速在管中心处最大,其近壁处最小。管内流体的平均流速与最大流速之比等于0.5,根据雷诺实验,当雷诺准数引Re<2320时,流体的流动状态为层流。当雷诺数Re>2320时,流体流动状态开始向湍流态转变,湍流是一种很复杂的流动状态,是流体力学中公认的难题。 自从19世纪末O.Reynolds提出湍流的统计理论以来,已经有一个多世纪了,经过几代科学家的努力,湍流研究取得很大进展,但是仍然不能满足工程应用的需要,以至于经常有悲观的论调侵袭湍流研究。为什么湍流问题没有圆满地解决会受到如此关注呢?因为湍流是自然界和工程中十分普遍的流动现豫,对于湍流问题的正确认识和模化直接影响到对自然环境的预测和工程的质量。例如,当前影响航天器气动力和气动热预测准确度的主要障碍是缺乏可靠的湍流模型。和其他一些自然科学的准题不同,解决湍流问题具有迫切性。 湍流运动的最主要特征是不规则性,这是大家公认的。对于湍流不规则性的深入认识,是一百多年来湍流研究的上要成就之一。早期的科学家认为,像分子运动一样,湍流是完全不规则运动。类似于分子运动产生黏性,湍流的耗散可以用涡黏系数来表述。20世纪初,一些杰出的流体力学家,相继对涡黏系数提出各种流体力学的模型,如Taylor(1921年)的涡模型,Praudtl(1925年)的混合长模型和von Karman(1930年)相似模型等。当科学家用流体力学观念(不是分子观念)来建立湍流耗散的涡黏模型时,就开始考虑连续介质不规则运动的特点,其中有别于气体分子不规则运动的最主要特点是运动的多尺度性。第一个提出流体湍流运动中多尺度输运特性的科学家mchardson(1922年)曾描述湍动能的多尺度传输过程如下:“大涡包含小涡,并喂予速度;小涡包含更小的涡,如此继续直到黏性耗散”。多尺度的思想导致产生描述多尺度的谱概念和谱分析方法,并最终产生了Kolmogorov(1941年)的局部各向同性的通用谱(即5/3谱)。 湍流不仅是多尺度的而且是有结构的运动。20世纪中叶,大量的湍流实验(包括测量和显示)发现多尺度的湍流运动存在某种特殊的运动状态。Townsend(1951年),Corrsin(1955年)和Lumley(1965年)等从脉动序列的间歇性和空间相关相继推测湍流结构的可能形态。理论上也提出过各种湍涡的模型:球涡模型,柱涡模型等。早期的湍流结构主要是从运动学上考虑,把旋涡结构作为湍流统计的样本。我国的周培源教授是近代湍流模式的奠基人之一,他首先提出先解方程后平均的统计方法,就是说湍涡必须满足Navier—Stokes方程(Chou and Chou,1995年)。 真实的、可以观察到的湍流结构通过流动显示,以及稍后湍流直接数值模拟所证实。典型的例子是混合层的Brown—Roshko涡(1976年),图1明显地展示了混合层中存在规则的大涡和分布在大涡周围的细小湍涡。在边界层、槽道和圆管湍流中也存在各式各样的大涡结构。例如,用激光诱导荧光的显示方法,我们可以在圆管湍流中观察到周向(图2a)和流向大涡(图2b)。值得提出的是,不仅在剪切湍流中有大涡结构,简单的均匀各向同性湍流中也存在涡结构。图3展示的是各向同性湍流的直接数值模拟中强涡量等值面,它们是管状结构。仔细分析还可以确定管状涡的平均长度约等于各向同性湍流的积分尺度,它们的平均直径约等于湍流TayLor微尺度,更进一步分析可以算出管状涡内部的平均速度

LES,DNS,RANS三种模拟模型计算量比较及其原因

LES,DNS,RANS模型计算量比较 摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟(Direct Numerical Simulation: DNS),Reynolds平均方法(Reynolds Average Navier-Stokes: RANS)和大涡模拟(Large Eddy Simulation: LES)。直接数值模拟目前只限于较小Re数的湍流,其结果可以用来探索湍流的一些基本物理机理。RANS方程通过对Navier-Stokes方程进行系综平均得到描述湍流平均量的方程;LES方法通过对Navier-Stokes方程进行低通滤波得到描述湍流大尺度运动的方程,RANS和LES方法的计算量远小于DNS,目前的计算能力均可实现。 关键词:湍流;直接数值模拟;大涡模拟;雷诺平均模型 1 引言 湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态,是流体力学中有名的难题,其 性。传统计算复杂性主要表现在湍流流动的随机性、有旋性、统计[]1 流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S 方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为三种:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场紊动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到较雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省

湍流模拟的数值方法介绍

湍流模拟的数值方法介绍 湍流流动是自然界常见的流动现象,是一种高度非线性的复杂流动,但人们已经能够通过某些数值方法对湍流进行模拟,取得与实际比较吻合的结果。对于湍流运动,已经采用的数值计算方法主要可以分为三类:直接数值模拟、大涡模拟和雷诺时均方程法。 1.直接数值模拟(Direct Numerical Simulation,简称DNS) 方法就是直接用瞬时的N-S方程对湍流进行计算。DNS的最大好处是无需对湍流流动作任何简化或近似,理论上可以得到相对准确的计算结果。DNS对内存空间及计算速度的要求非常高,目前还无法用于真正意义上的工程计算,但大量的探索性工作正在进行之中。 2. 大涡模拟法(large eddy simulation, 简称LES) 为了模拟湍流流动,一方面要求计算区域的尺寸应大到足以包含湍流运动中出现的最大的涡,另一方面要求计算网格的尺度应小到足以分辨最小涡的运动。然而,就目前的计算机能力来讲,能够采用的计算网格的最小尺度仍比最小涡的尺度大许多。因此,目前只能放弃对全尺度范围上涡的运动的模拟,而只将比网格尺度大的湍流运动通过N-S方程直接计算出来,对于小尺度的涡对大尺度运动的影响则通过建立模型来模拟,从而形成目前的大涡模拟法。LES方法的基本思想可以概括为:用瞬时的N-S方程直接模拟湍流中的大尺度涡,不直接模拟小尺度涡,而小涡对大涡的影响通过近似的模型来考虑。总体而言,LES方法对计算机内存及CPU速度的要求仍比较高,但低于DNS方法。 3.雷诺平均法(RANS:Reynolds-averaged Navier-Stokes) 虽然N-S方程可以用于描述湍流,但N-S方程的非线性使得用解析的方法精确描写三维时间相关的全部细节极端困难,即使能真正得到这些细节,对于解决实际问题也没有太大的意义。这是因为,从工程应用的观点上看,重要的是湍流所引起的平均流场的变化,是整体的效果。雷诺平均法(Reynolds-averaged Navier-Stokes,简称RANS)是将非稳态的N-S控制方程组作时间平均运算,湍流的各种瞬时量被表示成时均值和脉动值之和,在所得的时均方程中会出现脉动值的乘积的时均值这一类新未知量,从而使方程组不封闭。要使方程组封闭,必须作出假设,即建立模型,把未知的更高阶的时间平均值表示成较低阶的在计算中可以确定的量的函数。雷诺平均法是目前使用最为广泛的湍流数值模拟方法。RANS把平均掉的“高频”运动对平均运动的影响通过雷诺应力(或称湍流应力)来模拟。根据Reynolds应力的确定方式可以分为两大类:雷诺应力模型和涡粘模型。 雷诺应力模型包括雷诺应力方程模型(Reynolds Stress equation Model,简称RSM)和代数应力模型(Algebraic Stress equation Model,简称ASM)。RSM 直接构建应力模型方程,用耗散方程考虑长度尺度的变化,并计算六个雷诺应力分量,因此克服了将涡粘性假设用于复杂湍流条件时的一些缺陷,在模拟浮力流、强旋流以及曲率、近壁效应等各向异性湍流时具有一定的优越性。尽管近年来,RSM获得了迅速发展,但由于计算工作量大大增加,再加上这种模型的关联处理和系数的确定多基于简单流动条件,在复杂湍流条件下尚需要作进一步的调整和改进,因此目前尚未达到便于工程应用的阶段,但最终有可能发展为人们寻求的具有广泛适应性的工程方法。ASM将RSM中包含有雷诺应力微商的项用不包含微

相关文档
最新文档