仪器分析复习总结

仪器分析复习总结
仪器分析复习总结

仪器分析复习总结

第八章电位分析法

P198 电分析化学法原理:主要是应用电化学的基本原理和技术,研究在化学电池内发生的特定现象,利用物质的组成及含量与该电池的电学量,如电导、电位、电流、电荷量等有一定的关系而建立起来的一类分析方法。

电位电极:如将一金属片浸入该金属离子的水溶液中,在金属和溶液界面间产生了扩散双电层,两相之间产生了一个电位差,称之为电极电位。

能斯特关系:利用电极电位值与其相应的离子活度遵守能斯特关系就可达到测

定离子活度的目的。

P199 指示电极:在原电池中,借以反映离子活度的电极。即电极电位随溶液中待测离子活度的变化而变化,并能指示待测离子活度。

参比电极:在原电池中,借以反映离子活度的电极。即电极电位随溶液中待测离子活度的变化而变化,并能指示待测离子活度。常见的参比电极有甘汞电极、银-

氯化银电极、汞=硫酸亚汞电极等。

P200 标准氢电极:是参比电极的一级标准,它的电位值规定在任何温度下都是0 V。用标准氢电极与另一电极组成构成电池,测得的电池两极的电位差值即为另一电极

的电极电位。

甘汞电极:金属汞和Hg2Cl2及KCl溶液组成的电极。其半电池组成:Hg,

Hg2Cl2|KCl。

P201 银-氯化银电极:银丝镀上一层AgCl,浸在一定浓度的KCl溶液构成的电极。

其半电池组成:Ag,AgCl|KCl。

标准甘汞电极(NCE):KCl溶液的浓度mol/L 饱和甘汞电极(SCE):KCl溶液的浓度饱和溶液

3类指示电极:1)金属-金属离子电极(第一类电极):金属离子与金属直接交

换电子

2)金属-金属难溶盐电极(第二类电极):甘汞电极

3)惰性电极(零类电极):常用铂电极或石墨电极,协助电子转移。P205 离子选择性电极(ISE):用于以电位法测定试液中某些特定离子活度的指示电

极。

特征:1、电位的产生是由于在膜表面发生离子交换或迁移2、电极电位满足能斯特

方程

P206 液接电位:在两种组成不同或浓度不同的溶液接触界面上,由于溶液中正负离子扩散通过界面的迁移率不相等,产生的接界电位差。

P208 不对称电位:玻璃膜两侧存在一定的电位差,这种电位差称为不对称电位,由于薄膜内外两个表面的状态不同,如含钠量、张力以及外表面的机械和化学损伤等

不同而产生的。

酸差:在酸度过高的溶液中,测得pH偏高(pH<1),这种误差称为“酸差”。P209 碱差:在碱度过高的溶液中,由于[H+]太小,其它阳离子在溶液和界面间可能进行交换而使测得pH值偏低,以Na+的干扰较显着,这种误差称为“碱差”。

晶体膜电位与玻璃膜的区别:

膜电位是试液和水化层界面进行离子迁移的结果。

玻璃膜电位的产生是由于相界面H+交换所致。

P216 电位选择系数(K ij):在实验条件相同时,待测离子和干扰离子产生相同电位时待测离子活度与干扰离子活度的比值ai/aj。Kij=,意味着aj等于ai的100倍时,j 离子提供的膜电位才等于i离子提供的膜电位。Kij越小,干扰越小,选择性越好。

Kij仅能用来估计干扰离子存在时产生的测定误差或确定电极的适用范围。

例1某硝酸根电极对硫酸根的选择系数:K NO3-,SO42-= ×10-5,用此电极在molL-1硫酸盐介质中测定硝酸根,测得a NO3-为×10-4 mol/L。SO42-引起的测量误差是多少

解:

%

100

ij

?

?

=

i

j

zj

zi

a

a

K

相对误差

=×10-5××100%/×10-4)

=%

PPT上例:某硝酸根电极对硫酸根的选择系数:K NO3-,SO42-= ×10-5,用此电极在molL-1硫酸盐介质中测定硝酸根,如果要求测量误差不大于5%,试计算可以测定的

硝酸根的最低活度为多少

解:

盐桥的作用:使正、负离子能够在左右溶液之间移动,又能防止两边溶液迅速混合,维持溶液中各部分保持电中性,消除液接电位。

P222 (问答题)简述标准加入法

测定体系为复杂体系时,适宜采用标准加入法。设某一试液待测离子浓度为cx,体

积V0,游离离子百分数x1,测得E1

然后在试液中准确加入一小体积Vs (<

P223 影响测定准确度的因素:温度、电动势的测量、干扰离子、溶液的pH、待测

离子浓度、电位平衡时间。(6个)

PPT上例1 以银电极为指示电极,双液接饱和甘汞电极为参比电极,用mol/L AgNO3标准溶液滴定含Cl试液, 得到的原始数据如下(电位突越时的部分数据)。用二级微商法求出滴定终点时消耗的AgNO3标准溶液体积

解: 将原始数据按二级微商法处理,

一级微商和二级微商由后项减前项比体积差得到,例:

表中的一级微商和二级微商由后项减前项比体积差得到,例: 二级微商等于零时所对应的体积值应在~之间,准确值可以由内插法计算出:

例3(原题)在1mol/L Fe2+溶液中,插入Pt电极(+)和SCE(-),在25℃时测得电池电动势为,问有多少Fe2+被氧化成Fe3+ (忽略液接电位)

解: SCE‖a(Fe3+), a(Fe2+)|Pt

E = E铂电极-E甘汞

= + lg([Fe3+]/[Fe2+])-

lg([Fe3+]/[Fe2+]) = +-/

= -

假定有1L溶液,设有Xmol 的Fe2+ 氧化为Fe3+,则:

lg([Fe3+]/[Fe2+]) = lg X /(1-X)=-

X/(1-X)=;

X=;

被氧化Fe 2+的百分数= / 1) ×100%

即有约%的Fe2+被氧化为Fe3+

P232 思考题3 (问答题)简述pH玻璃电极的作用原理

玻璃电极的主要部分是一个玻璃泡,泡的下半部是对H+有选择性响应的玻璃薄膜,泡内装有pH一定的L的HCl内参比溶液,其中插入一支Ag-AgCl内参比电极,这样就构成了玻璃电极。玻璃电极中内参比电极的电位是恒定的,与待测溶液的pH无关。玻璃电极之所以能测定溶液pH,是由于玻璃膜产生的膜电位与待测溶液pH有关。玻璃电极在使用前必须在水溶液中浸泡一定时间。使玻璃膜的外表面形成了内水和硅胶层。当浸泡好的玻璃电极浸入待测溶液时,水合层与溶液接触,由于硅胶层表面和溶液的H+活度不同,形成了活度差,H+便从活度大的一方向活度小的一方迁移,硅胶层与溶液中的H+建立了平衡,建立了胶-液两相界面的电荷分布,产生了一定的相界电位。同理,在玻璃膜内测水合硅胶层-内部溶液界面也存在一定的相界电位。

其相界电位可用下式表示:

Φ外=k1+ a1/a1′Φ内=k2+ a2/a2′

式中a1、a2分别表示外部溶液和内参比溶液的H+活度;a1′、a2′分别表示玻璃膜外、内水合硅胶层表面的H+活度;k1、k2分别为由玻璃膜外、内表面性质决定的常

数。

因为玻璃膜内外表面性质基本相同,所以k1=k2,又由于水合硅胶层表面的Na+都被H+所替代,故a1′=a2′,因此Φ膜=Φ外-Φ内= a1/a2由于内参比溶液H+活度a2是一定值,故Φ膜=K+ a1=K+试,说明在一定的温度下玻璃电极的膜电位与试液的pH

呈直线关系。

第九章吸光光度法

P238 颜色口诀:

红橙黄绿

青青蓝蓝紫

P240 例题铁(Ⅱ)质量浓度为×10-4g/L的溶液,与1,10-邻二氮菲反应,生成橙红色配合物,最大吸收波长为508nm。比色皿厚度为2cm时,测得上述显色溶液的A=,计算1,10-邻二氮亚铁比色法对铁的a及ε。

解:已知铁的相对原子质量为。根据朗伯-比尔定律得

a=A/(bc)=[(2××10-4)]L/(g·cm)=190L/(g·cm)

ε=Ma=×190L/(mol·cm)=×10-4L/(mol·cm)

P242 偏离朗伯定律的主要原因:目前仪器不能提供真正的单色光,以及吸光物质性质的改变,并不是由定律本身不严格所引起的。因此,这种偏离只能称为表观偏离。

引起偏离的原因有:

非单色光引起的偏离:现有仪器无法获得纯单色光,只能获得小范围的复合光。当ε1=ε2时,A=εbc,呈直线关系。如果ε1≠ε2,A与c则不呈直线关系。ε1与ε2差别愈大,A与c间线性关系的偏离也愈大。其他条件一定时,ε随入射光波长而变化,但在λmax处的光作入射光,所引起的偏离就小,标准曲线基本成直线。

化学因素引起的偏离:朗伯-比尔定律除要求单色入射光外,还假设吸光粒子彼此间无相互作用,因此稀溶液能很好地服从该定律。在高浓度时影响其邻近粒子的电荷分布,这种相互作用可使它们的吸光能力发生改变。此外,由吸光物质等构成的溶液化学体系,常因条件的变化而发生吸光组分的缔合、解离、互变异构、配合物的逐级形成以及溶剂的相互作用等,从而形成新的化合物或改变吸光物质的浓度,都

将导致偏离朗伯-比尔定律。

例如,重铬酸钾在水溶液中存在如下平衡,如果稀释溶液或增大溶液pH,部分Cr2O72-就转变成CrO42-,吸光质点发生变化,从而引起偏离朗伯-比尔定律。如果控制溶液均在高酸度时测定,由于均以重铬酸钾形式存在,就不会引起偏离。

P243 选用的光源:可见光区常用钨丝灯为光源。近紫外区常采用氢灯或氘灯。P249 发色团:分子中含有一个或一个以上的某些不饱和基团(共轭体系)的有机化合物,往往是有颜色的,如偶氮基、硫羰基、亚硝基等,这些基团称为发色团(生

色团)

助色团:本身没有颜色,会影响有机试剂及其金属离子的反应产物的颜色,如胺

基、羟基等,这些基团称为助色团。

红移:如水杨酸中引起甲氧基后,与Fe(Ⅲ)产物的最大吸收波长向长波方向移动,颜色也因此而加深,这种现象称为“红移”。

P258 跃迁的类型:有机化合物的紫外吸收光谱是由于分子的价电子(σ电子,п电子,未成键孤对电子(称为n电子)跃迁产生的。所以常见的电子跃迁类型为σ→σ*、п→п*、n→σ*、n→п*跃迁,能量高低的顺序为:σ→σ*>n→σ*>п→п*>n→

п*。

P271 习题1 将的Fe3+用硫氰酸盐显色后,在容量瓶中用水稀释到50mL,用1cm比

色皿,在波长480nm处测得A=.求吸收系数a及ε。

解:a=A/(bc)=[(1××50)]L/(g·cm)=×10-2L/(g·cm)

ε=Ma=××10-2L/(mol·cm)=×104L/(mol·cm)

通过吸收曲线得到的四点信息:

(1)同一物质对不同波长光的吸收程度不同;

(2)每种物质都有一个最大吸收波长(λmax);

(3)同一物质c不同时吸收曲线不同, λmax 不变;

(4)λmax有特征性,可作为定性依据。

第十章原子吸收光谱法

P275 原子吸收光谱法(AAS):又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,以定量测定化学元素的方法。测定对象——金属元素及少数非金属元素。

P276 基态、基态原子:在通常情况下,电子都处于各自最低的能级轨道下,这时整个原子能量最低也最稳定,称为基态,处于基态的原子称为基态原子。所以,基态

原子就是不电离、不激发的自由原子。

P277 多普勒变宽:是由于原子在空间做无规则的热运动产生多普勒效应而引起的,

又称热变宽。

在通常原子吸收光谱条件下,吸收线轮廓主要受多普勒变宽和劳伦兹变宽的影

响。

P280 光源的作用:发射待测元素的特征光谱。

光源满足的要求:

(1)发射待测元素的共振线。

(2)发射共振线必须是锐线,它的半宽度要比吸收线的半宽度窄很多。这样测出的

是峰值吸收系数。

(3)发射光强度要足够大,稳定性要好,寿命长。

(问答题)空心阴极灯作用原理:

普通空心阴极灯是一种气体放电管。它包括一个阳极和圆筒形阴极。两电极密封于带有适应窗的玻璃管中,管中充有低压惰性气体。当正、负两极间施加适当电压时,电子将从空心阴极内壁流向阳极,在电子通路上与惰性气体原子碰撞而使之电离,带正电荷的惰性气体离子在电场作用下,向阴极内壁猛烈轰击,使阴极表面金属原子溅射出来。溅射出来的金属原子再与电子、惰性气体原子及离子发生碰撞而被激

发,从而发射出阴极物质的共振线。

P283 形成火焰的3种状态:

(1)化学计量火焰(中性火焰):燃色与助燃色比例与它们之间化学反应计量关系相近。具有温度高、干扰少、稳定、背景低等特点。除碱金属和难解离氧化物的元

素,大多数常见元素均使用这种火焰。

(2)富燃火焰(还原性火焰):燃色与助燃色比例与大于化学反应计量关系。由于燃气过量,燃烧不完全,火焰中存在大量半分解产物,故火焰具有较强的还原性气氛。它适用于测定较易形成难熔氧化物的元素如Mo、Cr、稀土金属等。(3)贫燃火焰(氧化性火焰):燃色与助燃色比例与小于化学反应计量关系。由于助燃气过量,大量冷的助燃气带走火焰的热量,故火焰温度较低。又由于燃气燃烧充分,火焰具有氧化性火焰,因此适用于碱金属元素的测定。

P285 石墨炉测定的4个阶段:

(1)干燥阶段蒸发除去试样的溶剂,如水分、各种酸溶剂。

(2)灰化阶段破坏和蒸发除去试样中的基体,在原子化阶段前尽可能多的将共存组分与待测元素分离开,以减少共存物和背景吸收的干扰。

(3)原子化阶段使待测元素转变成基态原子,供吸收测定。

(4)烧净阶段净化除去残渣,消除石墨管记忆效应。

P286 通带选择:如果待测元素的分析线没有邻近谱线干扰(如碱金属、碱土金属),背景小,通带宜调宽。进入单色器光通量增加,有效地提高了信噪比。如果待测元素具有复杂背景(如铁族元素、稀土金属),邻近线干扰和背景干扰大,则宜调窄通带,这样可以减少非吸收线的干扰,单色器的分辨率相应地得到提高,其工作曲线

的线性关系也得到了改善。

P289 原子吸收光谱法的四个干扰及其抑制:

电离干扰:由于基态原子电离而造成的干扰。消除方法一是降低火焰温度,二是加入比待测元素更易电离的物质,使其产生大量自由电子,抑制待测元素电离。

化学干扰:待测元素与试样中共存组分或火焰组分发生化学反应,引起原子化程度改变造成的。消除方法一是加入释放剂,加入某种物质,它与干扰元素形成更加稳定的化合物使待测元素释放出来。二是加入保护剂加入某种物质,它与待测物质形成更加稳定的化合物,将待测物质保护起来,防止干扰元素与它作用。三是基体改进剂加入某种物质,它与基体形成易挥发的化合物,在原子化前除去,避免与待测

元素共挥发。

物理干扰:试样一种或多种物质性质改变所引起的干扰。可用配制与待测样组成尽量一致的标准溶液的方法来消除,也可采用蠕动泵、标准加入法或稀释法来减少和

消除物理干扰。

光谱干扰:与光谱发射和吸收有关的干扰,主要来自光源和原子化装置,包括谱线干扰和背景干扰。可用减小狭缝,另选分析线的方法来抑制谱线干扰。在现代原子吸收光谱仪多采用氘灯扣背景和塞曼效应扣背景的方法来消除背景干扰。

P290 灵敏度:校正曲线的斜率,用S表示。它表示待测元素的浓度改变一个微小量(dr)时,吸光度的变化量(dA),也就是校正曲线的斜率。S大,则灵敏度高。S=dA/dc P291 检出极限:仪器能与适当的置信度检出的待测元素的最小浓度或最小量。通常是指空白溶液吸光度信号标准偏差的3倍所对应的待测元素浓度或质量。

P294 原子发射光谱(AES):是根据待测元素发射出的特征光谱而对元素组成进行分析的方法。测量各元素特征光谱的波长和强度便可对元素进行定性和定量分析。激发光源:激光光源的主要作用是提供试样蒸发、解离、原子化和激发所需的能量。

为了获得较高灵敏度和准确度,激发光源应满足如下条件:

(1)能够提供足够的能量

(2)光源背景小,稳定性好

(3)结构简单,易于维护

常见的激发光源有:直流电弧、交流电弧、火花放电及其电感耦合等离子炬(ICP)电感耦合等离子炬(ICP):目前性能最好、应用较广泛的新型光源。

P298 试样光谱图中没找到某元素的特征谱线,并不能说明该元素完全不存在。有两种可能,一是该元素确实不存在,二是该元素含量低于方法的检出限,因此只能说

未检出该元素而不能说该元素不存在。

P299 原子荧光光谱法(AFS):指待测物质的气态原子蒸气受到激发光源特征辐照

后,由基态跃迁到激发态,然后由激发态跃迁到基态,同时发射出与激发光源特征波长相同的原子荧光。根据发射出荧光强度对待测物质进行定量分析的方法。

原子荧光与原子发射的区别:

原子荧光光谱和原子发射光谱都是由激发态原子发射的线光谱,但激发的机理却不同。原子荧光是原子吸收光子而被光致激发,辐射出原子荧光光谱。原子发射是原子受到热运动粒子碰撞而被激发,辐射出原子发射光谱。

第十一章气相色谱法和高效液相色谱法

P306 色谱分离基本原理:由于组分性质的差异,固定相对它们的溶解或吸附的能力也不相同,易被溶解或吸附的组分,挥发或脱附较难,随载气移动的速度慢,在柱内停留的时间长;反之,不易被溶解或吸附的组分随载气移动的速度快,在柱内停留的时间短,所以,经过一定的时间间隔(一定柱长)后性质不同的组分便彼此分离。组分在固定相和流动相间发生的吸附、脱附或溶解、挥发的过程叫做分配过程。在一定温度下,组分在两相间分配达到平衡时的浓度比,称为分配系数,用K表示。分配系数小的组分,每次分配在流动相中的浓度较大,随载气前移速度快,在柱内停留时间短,分配系数大的组分,每次分配在流动相中的浓度较小,随载气前移的速度慢,在柱内停留时间长,因此经过足够多次的分配后,各组分便彼此分离。色谱法是利用不同物质在流动相和固定相两相间的分配系数不同,当两相作相对运动时,试样中各组分就在两相中经过反复多次的分配,从而使原来分配系数仅有微小

差异的各组分能够彼此分离。

分配系数K :在一定温度下,组分在两相间分配达到平衡时的浓度比,称为分配系数,用K表示,即K=cs/c M,cs是组分在固定相中浓度,c M是组分在流动相的浓

度。

P307 分配比k:分配比来表征平衡过程,亦称容量因子或容量比,用k表示,k是指在一定温度、压力下组分在两相间达到分配平衡时,它在两相间的质量比。

k=ms/m M

流出曲线:混合试样经色谱柱分离后,各组分依次从色谱柱尾流出。以出现在柱尾部的组分浓度(或质量)为纵坐标,流出时间为横坐标,绘得的组分浓度(或质量)随时间变化的曲线称为色谱图,也称色谱流出曲线。

在一定的进样量范围内,色谱流出曲线遵循正态分布,它是色谱定性、定量和评价

色谱分离情况的基本依据。

基线:只有流动相通过检测器时响应信号的记录即为基线。在实验条件稳定时,

基线是一条直线。

保留值:表示试样中各组分在色谱柱内滞留的程度。通常用时间或相应的载气体

积来表示。

保留时间:指待测组分从进样到色谱峰出现最大值时所需的时间。

死时间:指不与固定相作用的气体(空气、甲烷)的保留时间。

调整保留时间:指扣除了死时间的保留时间。

P309 区域宽度:即色谱峰宽度。

标准偏差:流出曲线上二拐点间距离之半,即倍峰高处色谱峰宽度的一半。

半峰宽:峰高一半处色谱峰的宽度。W h/2=2σ2

2=σ

ln

峰宽:也称峰底宽,即通过流出曲线的拐点所作的切线在基线上的截距。W=4

σ

P311 速率方程H和塔板理论H的不同

在速率方程中,H是被分析组分的分子在色谱柱中进行无规行走时单位步长的离散程度,是色谱峰展宽程度的度量,它是一个统计学的概念。塔板理论的H为理论塔

板高度。

A:涡流扩散项。由于试样组分分子进入气相色谱填充柱碰到填充物颗粒时,不得不改变流动方向,因而它们在气相中形成紊乱的、类似涡流的流动。组分分子所经过的路径,有的长,有的短,使得该组分分子在色谱柱进行运动时离散程度增大,引起色谱峰形的额扩展,分离变差。A=2λdp,dp为固定相的平均颗粒直径,λ是表征固定相填充的不均匀性参数。因此使用适当细颗粒和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有限途径。对于空心毛细管柱,A项为零。

B /u称为分子扩散项。由于进样后试样仅存在于色谱柱中很短的一段空间,可以认为试样是以“塞子”形式色谱柱的。在塞子前后存在浓度差,于是当试样各组分随着载气在柱中前进时,各组分的分子将产生沿着色谱柱方向的纵向扩散运动,结果使色谱峰展宽,塔板高度增加,分离变差。B=2Dg,是与组分分子在柱内扩散路径的弯曲程度有关的弯曲因子。Dg是组分在气相中的扩散系数,它的大小与载气的摩尔质量、柱温等有关。通常采用摩尔质量大的载气如N2,可使Dg值较小,从而使B 值减小。载气流速愈小,保留时间愈长,分子扩散项的影响也愈大,从而使色谱峰

扩展,塔板高度增加。

Cu即为传质阻力项,包括气相传质阻力Cg和液相传质阻力C1,Cu=Cg+C1。Cg是指试样组分从气相移动到固定相表面进行浓度分配时所受到的阻力。可以采用粒度小的填充物和摩尔质量小的载气,可减小气相传质阻力,提高柱效。

P313 R=时,分离达%,一般采用R=作为相邻两峰完全分离的标志。

P314 例题

假设两组分的相对保留值r21为,要在一根填充柱上获得完全分离(即R=),需有

效塔板数和柱长各为多少

解:n有效=16R2[r21/(r21-1)]2

=16××2=2116(块)

L有效= n有效·H有效= 2116×= 212 cm

在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R= 。计算需要多少块有效塔板。若填充柱的塔板高度为cm,柱长是多少

解:r21= 100 / 85 =

n有效= 16R 2 [r21 /(r21 —1)]2

= 16××/ ) 2 = 1547(块)

L有效= n有效·H有效= 547×= 155 cm

即柱长为米时,两组分可以得到完全分离。

P322 气样色谱分析流程:载气由高压钢瓶1供给,经减压阀2减压后,通过净化干燥管3干燥、净化。用气流调节阀(针形阀)4调节并控制载气流速至所需值(由流量计5及压力表6显示柱前流量及压力),而到达汽化室7.试样用注射器(气体试样也可用六通阀)由进样口注入,在汽化室经瞬间汽化,被载气带入色谱柱8中进行分离。分离后的各个组分随载气先后进入检测器9.检测器将组分及其浓度随时间的变化量转变为易测量的电信号(电压或电流)。必要时将信号放大,由记录系统11记录下信号随时间的变化量,从而获得一组峰形曲线。一般情况下每个色谱峰代表

试样中一个组分。

一般气相色谱仪的五个组成部分:

(1)载气系统(包括气源、气体净化、气体流速的控制和测量)

(2)进样系统(包括进样器、汽化室)

(3)色谱柱

(4)检测器

(5)记录系统(包括放大器,记录仪或积分仪、色谱工作站)

其中色谱柱和检测器是色谱分析仪的关键部件。混合物能否被分离决定于色谱柱,分离后的组分能否灵敏地被准确检测出来,取决于检测器。

P324 担体的要求:它应是一种化学惰性的、多孔性的固体微粒,能提供较大的惰性表面,使固定液以液膜状态均匀分布在其表面。对担体一般提出如下的要求:

(1)表面积大,孔径分布均匀

(2)化学惰性好,其表面没有吸附性或吸附性很弱,与被分离组分不起任何化学反

(3)热稳定性好,有一定的机械强度,不易破碎

(4)颗粒均匀,大小适度,常用60-80目、80-100目。

P326 规定相对极性:规定β,β′-氧二丙腈相对极性为100,角鲨烷的相对极性为

零。

P330 固定液的选择:

(1)分离非极性组分,一般选用非极性固定液。试样各组分按沸点次序流出色谱柱,沸点较低的先出峰,沸点较高的最后出峰。

(2)分离极性组分,选用极性固定液。各组分按极性大小顺序流出色谱柱,极性小

的先出峰。

(3)分离非极性和极性的(或易被极化的)混合物,一般选用中等极性固定液。此时,非极性组分先出峰,极性的(或易被极化的)组分后出峰。

(4)对于能形成氢键的组分,如醇、胺和水等的分离,一般选择极性的或氢键型的

固定液。

(5)对于复杂的难分离得组分,常采用特殊的固定液或两种甚至两种以上的固定液,

配成混合固定液。

至于固定液用量,应以能均匀覆盖担体表面形成薄的液膜为宜。各种担体表面积大

小不同,固定液配比也不同。一般在5%-25%之间。采用低的固定液配比时,柱分离效能高,分析速度快,但允许的进样量少。

P331 热导检测器(TCD):结构简单,灵敏度适中,稳定性好,线性范围宽,对可挥发的无机物及有机物均有响应。是典型的浓度型检测器。

P334 氢火焰离子化检测器(FID):简称氢焰检测器。它对大多数有机物有很高的灵敏度,一般较热导检测器高出近3个数量级,能够检出10-12g/mL的有机物质,适于痕量有机物的分析。载气一般用N2,燃气用H2,是质量型检测器。

P336 电子俘获检测器(ECD):一种高选择性、高灵敏度的浓度型检测器。只对具

有电负性的物质(如含有卤素、硫、氧的物质)有响应,电负性愈强,灵敏度愈高,

能测出10-14g/mL的强电负性物质。

P348 正相液-液色谱:在液-液分配色谱中,为避免固定液被流动相溶解而流失,对

于亲水性固定液,常采用疏水性的流动相,此时流动相的极性弱于固定液,称为正

相液-液色谱。

反相液-液色谱:反之,流动相的极性强于固定液,则称为反相液-液色谱。

P358 思考题

12 (问答题)什么是内标法、外标法、归一化法它们的应用范围和优缺点各有什么

不同

内标法:在一定量试样,加入一定量的选定的标准物(称内标物),根据内标物和试样的质量以及色谱图上相应的峰面积(或峰高),计算待测组分的含量。内标物应是试样中不存在的纯物质,加入的量应接近待测组分的量,其色谱峰也应位于待测组分色谱峰附近或几个待测组分色谱峰的中间。

内标法适用于试样中所有组分不能全部出峰,或者试样中各组分含量悬殊,或某些组分在检测器上无信号响应时的样品测定。内标法的优点是定量准确,进样量和操作条件不要求严格控制,试样中含有不出峰的组分也可以应用。但每次分析都要称取试样和内标物质量,比较费时,不适用于快速控制分析。

外标法又称标准曲线法。具体操作是:取被测组分的纯物质配成一系列不同浓度的标准溶液,分别取一定体积,注入色谱仪,测出峰面积,作出峰面积(或峰高)和浓度的关系曲线,即标准曲线,然后在同样操作条件下向色谱柱注入相同量(一般为体积)的未知试样,从色谱图上测出峰面积(或峰高),由标准曲线查得待测组分

的浓度。

外标法的操作和计算都比较简便,并且不用校正因子,适用于操作条件稳定,进样量重复性好,无法找到合适的内标的样品测定。

归一化法可用下面的公式计算各组分含量:

当测量参数为峰高时,也可用峰高归一化法计算组分含量。

归一化法简便,准确。即使进样量不准确,对结果毫无影响,操作条件的变动对结果影响也较小,适用于试样中所有的组分流出色谱柱,并且在色谱图上显示色谱峰

的样品测定,无法找到合适的内标的样品测定。

20 什么是浓度型检测器什么是质量型检测器各举例说明之。

检测器按其响应特征可分为浓度型检测器和质量型检测器。

浓度型检测器:检测的是载气中组分浓度的瞬间变化,其响应信号与进入检测器的组分浓度成正比,如热导检测器(TCD)和电子俘获检测器(ECD)。

质量型检测器:检测的是载气中组分的质量流速的变化,其响应信号与单位时间内进入检测器的组分的质量成正比,如氢火焰离子化检测器(FID)。

28 什么是程序升温什么情况下应采用程序升温它有什么优点

程序升温是指柱温按预定的加热速度,随时间呈线性或非线性地增加。一般升温速度是呈线性的,即单位时间内温度上升的速度是恒定的,例如每分钟上升2℃、4℃、6℃等。对于沸点范围较宽的试样,宜采用程序升温方式。若采用恒定柱温进行分析,则会造成低沸点组分出峰密集,分离不好,而高沸点组分峰形平坦,定量困难。采用程序升温时,开始时柱温较低,低沸点得到很好分离,随着柱温逐渐升高,高沸点组分也获得满意的峰形。低沸点和高沸点组分按照沸点高低的顺序,由低沸点到高沸点分别出峰,使低沸点和高沸点组分获得良好分离。

32 什么是梯度洗提它有何作用

梯度洗提又称梯度洗脱、梯度淋洗。在高效液相色谱分析中梯度洗提的作用与色谱分析中程序升温相似。梯度洗提是按一定程序连续改变流动相中不同极性溶剂的配比,以连续改变流动相的极性,或连续改变流动相的浓度、离子强度及pH,借以改变被分离组分的分配系数,以提高分离效果和加快分离效果。

第十二章波谱分析法简介

P362 红外光谱(IR):分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。通常指中红外光谱。

波数与波长关系:σ(cm-1)=1×104/λ(μm)

P364 四个区域:

(1)4000~2500 cm-1含氢基团伸缩振动区

(2)2500~2000 cm-1叁键和累积双键伸缩振动区

(3)2000~1500 cm-1双键伸缩振动区

(4)在1500cm-1以下单键区(指纹区)吸收峰主要来自各种单键伸缩振动和含氢基团的弯曲振动,数量多而特征性差,但对分子整体结构十分敏感,一般用于与标准红外谱图比较,以确定被测物质分子的结构。

前三个区域的吸收峰基本上与化合物的基团一一对应,特征性强,能用于确定化合物中是否存在某些官能团,又统称为基团特征频率区。

PPT 例2(原题)化合物的分子式为C8H14,IR光谱图如下如下,试推断其

可能的分子结构结构。

U=8+1+(0-14)/2=2

武汉大学版仪器分析知识点总结(适用考中科院的同学)

第一部分:AES,AAS,AFS AES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。 特点: 1.灵敏度和准确度较高 2.选择性好,分析速度快 3.试样用量少,测定元素范围广 4.局限性 (1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。 (2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。 (3)仪器设备比较复杂、昂贵。 术语: 自吸 自蚀 ?击穿电压:使电极间击穿而发生自持放电的最小电压。 ?自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。 ?燃烧电压:自持放电发生后,为了维持放电所必需的电压。 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。 仪器: 光源的作用: 蒸发、解离、原子化、激发、跃迁。 光源的影响:检出限、精密度和准确度。 光源的类型: 直流电弧 交流电弧 电火花 电感耦合等离子体(ICP)

ICP 原理 当高频发生器接通电源后,高频电流I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气体发生进样(如氢化物发生法)。 例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样 (1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰: 光源 蒸发温度 激发温度/K 放电稳定性 应用范围 直流电弧 高 4000~7000 较差 定性分析,矿物、纯物质、 难挥发元素的定量分析 交流电弧 中 4000~7000 较好 试样中低含量组分的定量分析 火花 低 瞬间10000 好 金属与合金、难激发元素的定量分析 ICP 很高 6000~8000 最好 溶液的定量分析

仪器分析各个章节小结

第八章电位法和永停滴定法- 章节小结 1.基本概念 指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。 参比电极:在一定条件下,电极电位基本恒定的电极。 膜电位:跨越整个玻璃膜的电位差。 不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。 酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。 碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。 转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。 离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。 电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。 可逆电对:电极反应是可逆的电对。 此外还有相界电位、液接电位、原电池、残余液接电位。 2.基本理论 (1)pH玻璃电极: -浓度一定)、内参比电极(Ag-AgCl电极)、绝缘套; ①基本构造:玻璃膜、内参比溶液(H+与 Cl ②膜电位产生原理及表示式:; ③玻璃电极作为测溶液pH的理论依据。 (2)直接电位法测量溶液pH: ①测量原理。 ②两次测量法。pHs 要准,而且与pHx差值不大于3个pH单位,以消除液接电位。(3)离子选择电极: ①基本构造:电极膜、电极管、内参比溶液、内参比电极; ②分类:原电极、敏化电极; ③响应机理及电位选择性系数; ④测量方法:两次测量法、校正曲线法、标准加入法。 (4)电位滴定法:以电位变化确定滴定终点(E-V曲线法、曲线法、曲线法)。 (5)永停滴定法:以电流变化确定滴定终点,三种电流变化曲线及终点确定。 第九章光谱分析法概论- 章节小结 1.基本概念 电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。 磁辐射性质:波动性、粒子性 电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。 光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。 非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。 原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。 分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级

《现代仪器分析》考试知识点总结

《现代仪器分析》考试知识点总结 一、填空易考知识点 1、仪器分析的分类:光学分析,电化学分析,色谱分析,其他仪器分析。 2、紫外可见分光光度计组成:光源,单色器,样品室接收检测放大系统,显示器或记录器。常用检测器:光电池,光电管,光电倍增管,光电二极管 3、吸收曲线的特征值及整个吸收曲线的形状是定性鉴别的重要依据。 4、定量分析的方法:标准对照法,标准曲线法。 5、标准曲线:配置一系列不同浓度的标准溶液,以被测组分的空白溶液作参比,测定溶液的标准系列吸光度,以吸光度为纵坐标,浓度为横坐标绘制吸光度,浓度关系曲线。 6、原子吸收分光光度法的特点:(优点)灵敏度高,测量精度好,选择性好,需样量少,操作简便,分析速度快,应用广泛。(缺点)由于分析不同的元素需配备该元素的元素灯,因此多元素的同时测定尚有困难;测定难熔元素,和稀土及非金属元素还不能令人满意。 7、在一定条件下,被测元素基态原子蒸汽的峰值吸收与试液中待测元素的浓度成正比,固可通过峰值吸收来定量分析。

8、原子化器种类:火焰原子化器,石墨炉原子化器,低温原子化器。 9、原子吸收分光光度计组成:空心阴极灯,原子化系统,光学系统,检测与记录系统。 10、离子选择性电极的类型:(1)PH玻璃膜电极(2)氟离子选择性电极(3)流动载体膜电极(4)气敏电极。 11、电位分析方法:直接电位法(直接比较法,标准曲线法,标准加入法)电位滴定法。 12、分离度定义:相邻两色谱峰保留时间的差值与两峰基线宽度和之间的比值 13、气象色谱仪组成:载气系统,进样系统,分离系统,检测系统,信号记录或微机数据处理系统,温度控制系统。 14、监测器分类:浓度型检测器(热导池检测器)质量型检测器(氢火焰离子化检测器) 15、基态:原子通常处于稳定的最低能量状态即基态激发:当原子受到外界电能,光能或者热能等激发源的激发时,原子核外层电子便跃迁到较高的能级上而处于激发态的过程叫激发。 16、紫外光:肉眼看不见的光波(100760nm) 17、锐光源:发射线的半宽度比吸收线的半宽度窄得多的光源(可以实现对峰值的准确测量) 18、参比电极:电位分析中电极电位不随待测溶液离子浓度变化而变化的电极(甘汞电极,银-氯化银电极)

仪器分析复习资料整理

第二章气相色谱分析 1、气相色谱仪的基本设备包括哪几部分?各有什么作用? 载气系统(气路系统) 进样系统: 色谱柱和柱箱(分离系统)包括温度控制系统(温控系统): 检测系统: 记录及数据处理系统(检测和记录系统): 2、当下列参数改变时,是否会引起分配系数的改变?为什么? (1)柱长缩短, 不会(分配比,分配系数都不变) (2)固定相改变, 会 (3)流动相流速增加, 不会 (4)相比减少, 不会 当下列参数改变时:,是否会引起分配比的变化?为什么? (1)柱长增加, 不会 (2)固定相量增加, 变大 (3)流动相流速减小, 不会 (4)相比增大, 变小 答: k=K/b(b记为相比),而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 3、试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些 因素的影响? A、涡流扩散项:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 B、分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很 小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 C、传质阻力项:传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两 项。所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略。 在色谱分析中,理论塔板数与有效理论塔板数的区别就在于前者___没有考虑死时间(死

仪器分析答案

《仪器分析》 一、选择题(共30分) 1 准确度、精密度高、系统误差、偶然误差之间的关系是( C ) A准去度高,精密度一定高B精密度高,一定能保证准确度高 C 系统误差小,准确度一般较高 D 偶然误差小,准确度一定高 2 可见光度分析中所用的比色血是用(A)材料制成的。 A玻璃 B 盐片 C 石英 D 有机玻璃 3 测定值的大小决定于( A) A待测物的浓度 B 待测物的性质 C 比色皿的厚度 D 入射光强度 4 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( A ) A 热电偶 B 光电倍增管 C 光电池 D 光电管 5 指出下列哪种因素对朗伯-比尔定律不产生偏差?( D ) A溶质的离解作用 B 杂散光进入检测器 C 溶液的折射指数增加 D 改变吸收光程长度 6 某化合物的浓度为1.0×10-5mol/L,在λMAX=380nm时, 有透射比为50%,用1.0cm吸收池,则在该波长处的摩尔吸收系数为/[L/(mol.cm)] ( D ) A 5.0 ×104 B 2.5 ×104 C 1.5 ×104 D 3.0 ×104 7 膜电位产生的原因是( B )。 A电子得失 B 离子的交换和扩散 C 吸附作用 D 电离作用 8 为使pH玻璃电极对氢离子响应灵敏,pH玻璃电极在使用前应在( )浸泡24 小时以上。A自来水中 B 稀碱中 C 纯水中 D 标准缓冲溶液中 9 控制电位库伦分析的先决条件是(A) A 100%电流效率 B 100%滴定效率 C 控制电极电位 D 控制电流密度 10 下列关于荧光光谱的叙述哪个是错误的( C ) A荧光光谱的形状与激发光的波长无关 B 荧光光谱和激发光谱一般是对称镜像关系 C 荧光光谱是分子的吸收光谱 D 荧光激发光谱和紫外吸收光谱重合 11 荧光分光光度计常用的光源是( C ) A空心阴极灯 B 氙灯 C 氘灯 D 硅碳棒 12 无火焰原子吸收谱线宽度主要决定于(A) A多普勒变宽 B 洛伦茨变宽 C 共振变宽D自然变宽 13 原子吸收的定量方法标准加入法,消除了下列哪种干扰?( D ) A背景吸收 B 电离干扰 C 光谱干扰 D 物理干扰 14 测定工作曲线时,工作曲线截距为负值原因可能是( D ) A参比池比样品池透光率大 B 参比池与样品池吸光度相等 C 参比池比样品池吸光度小D参比池比样品池吸光度大 15 在极谱分析中与被分析物质浓度呈正比例的电流时(A) A极限扩散电流 B 迁移电流 C 残留电流 D 极限电流 16 双波长分光光度计的输出信号是(B )

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

仪器分析答案

仪器分析 1.灵敏度和检出限 其定义为流动相中样品组分在检测器上产生两倍基线噪声信号时相当的浓度或质量流量。 方法检出限不但与仪器噪音有关,而且还决定于方法全部流程的各个环节,如取样,分离富集,测定条件优化等,即分析者、环境、样品性质等对检出限也均有影响,实际工作中应说明获得检出限的具体条件。 2.谱线自吸 在发射光谱中,谱线的辐射可以想象它是从弧焰中心轴辐射出来的,它将穿过整个弧层,然后向四周空间发射。弧焰具有一顶的厚度,其中心的温度最高,边缘处温度较低。边缘部分的蒸汽原子,一般比中心原子处于较低的能级,因而当辐射通过这段路程时,将为其自身的原子所吸收,而使谱线中心减弱,这种现象称为谱线的自吸。 谱线自蚀 原子发射光谱的激发光源都有一定的体积,在光源中,粒子密度与温度在各部位分布并不均匀,中心部位的温度高,边缘部位温度低。元素的原子或离子从光源中心部位辐射被光源边缘处于较低温度状态的同类原子吸收,使发射光谱强度减弱,这种现象称为谱线的自吸。谱线的自吸不仅影响谱线强度,而且影响谱线形状.一般当元素含量高,原子密度增大时,产生自吸。当原子密度增大到一定程度时,自吸现象严重,谱线的峰值强度完全被吸收,这种现象称为谱线的自蚀。在元素光谱表中,用r表示自吸线,用R表示自蚀线。 3.分配系数和分配比 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,

平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD 为一常数。 在稀溶液中可以用浓度代替活度 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比.用D表示: 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如:CCl4——水萃取体系萃取I2 在复杂体系中KD 和D不相等。分配系数与萃取体系和温度有关,而分配比除与萃取体系和温度有关外,还与酸度、溶质的浓度等因素有关。 1.下列哪一个不是仪器分析方法的主要评价指标( ) 主要:灵敏度和检测限 检出限和灵敏度、定量限、精密度、准确度、适用性 2.波长大于1mm,能量小于10-3 eV(电子伏特)的电磁波普,称为( 无线电波) 3.在紫外-可见光度分析中极性溶剂会使被测物吸收峰(C位移) A 消失 B 精细结构更明显 C 位移 D 分裂 5.双光束分光光度计与单光束分光光度计相比,其突出优点是( ) 1、双光束分光光度计以两束光一束通过样品、另一束通过参考溶液的方式来分析样品的分光光度计。这种方式可以克服光源不稳定性、某些杂质干扰因素等影响,还可以检测样品随时间的变化等; 2、单光束分光光度计是由一束经过单色器的光,轮流通过参比溶液和样品溶液,以进行光强度测量。这种分光光度计的特点是:结构简单价格便宜主要适于做定量分析; 缺点是:测量结果受电源的波动影响较大,容易给定量结果带来较大误差,此外,这种仪器操作麻烦,不适于做定性分析 6.若在一个1m 长的色谱柱上测得两组分的分离度为0.68,若要使它们完全分离,则柱长(m) 至少应为( ) 柱长至少为4.87m 。 公式:R1/R2=(L1/L2的开平方)或表示为L1/L2=(R1/R2)*(R1/R2)。 已知:L1=1m ,R1=0.68 ,R2=1.5 , 则L2=(R2/R1)*(R2/R1)*L1=(1.5/0.68)*(1.5/0.68)*1=4.87(m)。

化验室工作总结报告(精选多篇)

化验室工作总结(精选多篇) 第一篇:化验室工作总结2014 中化室2014年工作总结 技术中心中化室作为进厂原辅料检化验、质量监督检查、纪检效能监察单位,在公司占有重要地位,我室认真执行公司各项决策,努力完成公司下达的各项指标,不断提升自身业务水平,紧紧围绕公司七届五次职代会目标要求,解放思想,创新理念,勇于突破,一切以紧急效益为中心,在2014年度取得良好成绩,特总结汇报如下: 一、2014年主要工作 1、密切配合公司业务,圆满完成各项分析任务 中化室共有144人,主任1名,副主任1名,17个班组,主要负责烧结进厂精富矿、烧结用各种物料;炼铁用各种块状物料;炼钢用各种合金辅料及耐火材料、高炉的生铁和炉渣、煤气的检化验工作,高炉、制氧、炼钢生产用水的检化验及中间过程产品如焦炭、烧结矿等化验工作。原料取制样班分2个小班组,共16人,主要负责炼铁进厂物料、炼钢进厂合金辅料、烧结及炼铁辅料的取样及制样工作。同时负责烧结用煤、焦化用煤、金牛用煤、动力煤、动力烟煤、动力无烟煤、烧结地方精矿抽样的取样及制样工作。以及炼钢用耐火材料、纪委抽查样、质量科外委样、炼铁送瓦斯灰的制样工作。每天固定样27种,30个样;通知即取的8种,每周二个样的6种,每周一个的4

种,每周不固定的4种41个样,每旬一个样的9种,每季取样3种,38个样。荧光分析班14人,其中荧光分析11人,碳硫分析3人,主要负责烧结厂送精、富矿,中化室取的烧结矿、球团、块矿、精矿、白灰、白云石及瓦斯灰、铝质、镁质、低硅质耐火材料的全分析工作,还有硅锰、锰铁、碳化硅、脱氧剂等合金中碳、硫的分析工作。每天有样品15种、38个样子,300个元素,每个样做平行样,压片法10分钟一个样,熔样法1小时一个样。杂项分析班组共有9个人,主要负责炼钢厂用各类合金辅料中相应成分的分析工作,白灰活性度的分析工作,烧结矿、球团矿等试样中feo的分析工作,对仪器分析进行验证,和实验的内控标样的定值工作。每天有球团、烧结矿的氧化亚铁10个,白灰活性度1个,合金(20种)2~3个,均为化学方法,分析时间比较长,一般都在2个小时以上,重量法要6小时左右,合金中钡的分析要2天时间。煤焦分析班10人,主要负责中化室取的各类煤样、焦化厂焦炭、金牛焦炭、高炉喷吹煤粉、碳粉、碳线中c和ad以及高炉煤气的分析工作,中化室抽查动力厂、烧结厂、焦化厂化验室底样、胶质层的分析工作,以及焦炭、金牛焦炭热反应性、反应后强度的制样和分析工作。每天平均12个样,54个元素。水质分析班14人,主要负责水电厂供水系统、高炉发电、制氧、炼钢、污水处理厂个人生活与工业水处理系统各泵点水样的取样及水样中ph值,电导率、浊度、p碱、m碱、ca2+、总硬度、cl-、温度、总磷、浓缩倍数

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

仪器分析知识总结(改进版)

仪器分析复习资料(改进版) 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 校准曲线包括工作曲线和标准曲线: 工作曲线:配置4到6个不同浓度的标准溶液,加入与实际样品类似的基体中制成加标模拟样品采用和实际样品相同的分析方法测定(经过预处理的),以加标模拟样品的浓度为横坐标,响应信号为纵坐标绘制的标准曲线。 没有经过预处理的为标准曲线 标准参考物质法:取与待测试样相似的一定量标准参考物质,在规定的实验条件下进行检测根据测量值与给定的标准参考量值计算相对误差,越小越准确。 加标回收法:没有标准参考物质的条件下,向样品中加入一定量的被测成分的纯物质或者已知量的标准物质,两份试样同时按照相同的分析步骤加标的一份所得结果减去未加标的一份,差值同标准物质的理论值只比即加标回收率。(越接近100%越好) 注意事项:加标物质不能过多,一般为测量物含量的0.5-2.0倍,加标后的总含量不应超过方法测定的总含量。加标物质的浓度应该高,体积小,不超过原始试样体积的1% 标准方法比较法:和国标(已知方法)得到的结果比较。至少设计9组,分浓度的高,中,低三个浓度。 线性:被测物信号值与试样中被测物浓度直接呈正比关系的程度 线性范围:待测物质的浓度或量和测量信号值呈线性关系的浓度或者量的范围。(从测定的最低浓度扩展到校正曲线偏离线性浓度的范围。) ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv 的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 优点:灵敏度高,准确度高,选择性好,分析速度块,试样用量少,应用范围光 缺点:换等频率频繁,不可同时测定多个元素,对于难溶解元素有困难。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): 自然宽度:由原子本身性质引起,在无外界因素影响情况下谱线仍有一定宽度,这种宽度为自然宽度△VN ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收; ③具有良好的稳定性和重现形;④操作简单及低的干扰水平等。 锐线光源:指发射线的半宽度比吸收线半宽度窄得多,且发射中心频率与吸收线中心频率相一致的光源。 石墨炉原子化法的过程:干燥,灰化,原子化,净化 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。 Boltman分布定律:(Nj,N0分别代表单位体积内激发态原子数和基态原子数)1,Nj/N0值温度越高,比值越大2,在同一温度下,不同元素电子跃迁的能级Ej值越小,共振波长越长,比值越大。 习题 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶.压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

仪器分析第五版习题及答案

仪器分析第五版习题及答案 第一章引言 1-2 1,主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析使用物质的物理或物理化学特性进行分析。(2)化学分析不需要特殊的仪器和设备;仪器分析需要特殊的仪器和设备;(3)化学分析只能用于成分的定量或定性分析;仪器分析也可用于部件的结构分析。 (3)化学分析灵敏度低、选择性差,但测量精度高,适用于主要成分的分析。该仪器灵敏度高,选择性好,但测量精度稍差。适用于痕量、痕量和超痕量成分的分析。 2,共同点:两者都是成分测量的手段,都是分析化学的成分。1-5 分析仪器与仪器分析的区别:分析仪器是一种用于仪器分析的技术设备和装置;仪器分析是利用仪器和设备进行成分分析的技术手段。分析仪器和仪器分析的关系:仪器分析需要分析仪器来达到测量的目的,而分析仪器是仪器分析工具仪器分析和分析仪器的发展相互促进。1-7 ,因为仪器分析直接测量物质的各种物理信号,而不是它们的浓度或质量数,并且信号和浓度或质量数之间的关系仅在一定范围内是确定的,并且这种关系还受到仪器、方法和样品基质等的影响。因此,为了对组分进行定量分析,消除仪器、方法和样品基体对测量的影响,必须建立特定测量条件下信号与浓度或质量数的关系,即必须进行定量分析和校正。第二章光谱分析导论

2-1 光谱仪的总体组成包括:光源、单色仪、样品引入系统、探测器、信号处理和输出装置每个组件的主要功能是: 光源:提供能量使被测组件吸收,包括激发到高能态;单色仪:将合成光分解成单色光,收集特定波长的光进入样品或探测器;样品引入系统:样品以适当的方式引入光路,可以作为样品容器;检测器:将光信号转换成可量化的输出信号信号处理和输出设备:放大、转换、数学处理、滤除噪声,然后以适当的方式输出2-2: 单色仪由入射狭缝、透镜、单色仪、聚焦透镜和出射狭缝组成。每个组件的主要功能是:入口狭缝:从光源或样品池收集合成光;透镜:将入射狭缝收集的合成光分解成平行光;单色元件:将合成光分散成单色光(即按波长排列的光)的聚焦透镜:将单色元件分散的相同波长的光成像在单色仪的出射曲面上;出射狭缝:收集色散后特定波长的光入射样品或探测器2-3 棱镜的分光原理是光的折射因为不同波长的光在同一介质中具有不同的折射率,所以不同波长的光可以相应地分离光栅的分裂原理是光衍射和干涉的综合作用。不同波长的光被光栅衍射后具有不同的衍射角,从而分离出不同波长的光。 2-7 ,因为对于一阶光谱(n=1),光栅的分辨率为 R = nN = N =光栅宽度x光栅刻痕密度= 720 x 5 = 3600 ,并且因为

技术中心中化室工作总结报告

总结范本:_________技术中心中化室工作总结报告 姓名:______________________ 单位:______________________ 日期:______年_____月_____日 第1 页共5 页

技术中心中化室工作总结报告 技术中心中化室作为进厂原辅料检化验、质量监督检查、纪检效能监察单位,在公司占有重要地位,我室认真执行公司各项决策,努力完成公司下达的各项指标,不断提升自身业务水平,紧紧围绕公司七届五次职代会目标要求,解放思想,创新理念,勇于突破,一切以紧急效益为中心,在xx年度取得良好成绩,特总结汇报如下: 一、xx年主要工作 1、密切配合公司业务,圆满完成各项分析任务 中化室共有144人,主任1名,副主任1名,17个班组,主要负责烧结进厂精富矿、烧结用各种物料;炼铁用各种块状物料;炼钢用各种合金辅料及耐火材料、高炉的生铁和炉渣、煤气的检化验工作,高炉、制氧、炼钢生产用水的检化验及中间过程产品如焦炭、烧结矿等化验工作。原料取制样班分2个小班组,共16人,主要负责炼铁进厂物料、炼钢进厂合金辅料、烧结及炼铁辅料的取样及制样工作。同时负责烧结用煤、焦化用煤、金牛用煤、动力煤、动力烟煤、动力无烟煤、烧结地方精矿抽样的取样及制样工作。以及炼钢用耐火材料、纪委抽查样、质量科外委样、炼铁送瓦斯灰的制样工作。每天固定样27种,30个样;通知即取的8种,每周二个样的6种,每周一个的4种,每周不固定的4种41个样,每旬一个样的9种,每季取样3种,38个样。荧光分析班14人,其中荧光分析11人,碳硫分析3人,主要负责烧结厂送精、富矿,中化室取的烧结矿、球团、块矿、精矿、白灰、白云石及瓦斯灰、铝质、镁质、低硅质耐火材料的全分析工作,还有硅锰、锰铁、碳化硅、脱氧剂等合金中碳、硫的分析工作。每天有样品15种、38个样子,300 第 2 页共 5 页

实验室主任工作总结

我自xxxx年x月xx日进入xxxxx至今已满一年,在这一年当中,使我学习到了学校里面所不能学到的,不管是在做人还是在为人处事方面,都有了很大的提高和认识,也是我变的成熟,没有了以往的急噪、任性。清楚地认识到了自己目前所处的位置,就自己目前的情况而言,应该以岗位专业为主,个人爱好及其他特长为辅的重要性,只有干好了自己的本职工作才能够有其他方面的学习。最重要的是学会了怎样以一个平常心去对待任何事情,给自己重新定了位,树立了奋斗目标。因此,我就将自己一年来的工作学习情况做已以下四个方面的总结报告: 一、培训岗位学习及参加党委活动情况 ㈠培训内容及岗位学习内容 1、在天津学习期间系统地学习了分析方面的理论知识,是一个从基础到实际应用的学习,让我从工艺彻底转到了分析。在理论方面学习了:化验室常用玻璃仪器的使用维护,样品的的称量仪器的使用维护,化验分析的一般知识及基本操作,常用化学试剂溶液的配制,化验室建设,气、液相色谱的分析原理等。 2、在xx实习阶段,由理论学习转到了岗位实践,先后学习到岗位有中控分析岗位,包括①油品馏程(gb/t6536—97)、凝点(gb/t510—83)、水分(gb/t260—77)、闪点(gb/t261—83)、酸度gb/t258—64)、密度(gb/1884—XX)、粘度(gb/t266—88)此七项分析主要以手动为主。②水质岗位学习了水中氯离子测定(硝酸银gb/t15453—85)、正磷酸盐测定(opiizen2120紫外可见分光光度计)、水中钾离子测定火焰光度计ep640)。③色谱岗位学习了仪器分析包括炼厂气、液化气分析(惠谱5890仪器)、安全气分析、制氢装置有关气体分析(岛津—14b仪器)、硫化氢检测管使用及相关配置的积分仪里面的校正表编辑、峰形处理等。 ④在容器检查方面学习了油罐,油车的检查。⑤同时在辽化机电仪受到了为期两周的酸碱滴定(包括容量品瓶,酸碱滴定管,分析天平的操作使用),淋菲罗邻(铁离子)的测定(包括溶液配置、移液管、比色皿、容量瓶使用等), 3、去年7月至今,参加了由神华煤制油公司党委组织的:“永葆共产党员先进性”三个阶段的学习,xx总理视察神华煤制油现场的讲话等等,在此期间,我认真地做了学习笔记,撰写了自己学习后的心的体会和感想,多次在我中心的宣传报道上写了党小组报道。并在天津学习期间为预备党员、入党积极分子及积极要求向党组织靠拢的共青团员同志讲述了中国共产党发展史和党章的学习课。 4、自今年5月份来xxxxx公司实习期间,先后学习了两个岗位的项目分析,这两个岗位主要采用仪器自动化分析设备,①在凝点岗位主要学习了闪点(herzog电子mp329自动闪点测试仪)、密度(dma48型数字密度计、包括此密度计的校正)、微残炭(微残炭测定仪)凝点(dsy —014b凝点测定仪)。②色谱岗位主要学习了炼厂气分析(hp6890色谱仪)、液化气(pe9000auto system色谱仪)、低浓度氧含量分析操作(xpo—318型便携式氧含量分析仪)、硫化氢检测管使用。 ㈡学习总结 从这一年多的内容来讲,我已经能够独立操作并使用以上所出现的仪器,也能够处理在色谱分析过程中仪器所出现的一些问题。在辽化学习了基础理论,并通过实践操作掌握了这些基础理论,因而,现在对于学习和掌握西太平洋石化公司的自动分析设备比较快,在凝点岗位学习两天后,我已经在师傅不在的情况下开始独立做样并报送样品分析数据,色谱岗位在学习一周半以后开始独立做样、采样以及处理色谱图形。一年中,我在自己的实习岗位上努力学习师傅们的工作经验和工作方法,虽然我在实践操作方面学习取得了一定的成绩,当然也看到了自己的缺点和不足。这个缺点和不足就是自己的理论知识还学的不够和自己对任何事情过于急于求成的性格。 二、对所学仪器设备原理条件介绍

仪器分析总结

1仪器分析概述 1、1分析化学 1、1、1定义 分析化学就是指发展与应用各种方法、仪器与策略,获得有关物质在空间与时间方面组成与性质信息的一门科学,就是化学的一个重要分支。 1、1、2任务 分析化学的主要任务就是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)与存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析与结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1、1、3 分类 根据分析任务、分析对象、测定原理、操作方法与具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析与结构分析 ②无机分析与有机分析

③化学分析与仪器分析 ④常量分析、半微量分析与微量分析 ⑤例行分析与仲裁分析 1、1、4 特点 分析化学就是一门信息的科学,现代分析化学学科的发展趋势与特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息; ④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测;

⑧分析自动化及智能化。 1、2 仪器分析 仪器分析就是化学学科得到一个重要分支,以物质的物理与物理化学性质为基础建立起来的一种分析方法。 1、2、1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法与放射化学分析法,详见下表。 1、2、2特点 ①灵敏度高:大多数仪器分析法适用于微量、痕量分析。如原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g,电子光谱甚至可达10-18g; ②取样量少:化学分析法需用10-1~10-4g,而仪器分析试样常在10-2~10-8g;

相关文档
最新文档