研究方向---飞秒激光微加工技术

研究方向---飞秒激光微加工技术
研究方向---飞秒激光微加工技术

飞秒激光微加工技术国内外的研究现状

超短、超强和高聚焦能力是飞秒激光的3大特点。飞秒激光脉宽可短至4 fs(1 fs=10-15 s)以内…,峰值功率高达拍瓦量级(1 Pw=1015w)聚焦功率密度达到1020-1022 W/cm2。飞秒激光可以将其能量全部、快速、准确地集中在限定的作用区域,实现对玻璃、陶瓷、半导体、塑料、聚合物、树脂等材料的微纳尺寸加工,具有其它激光加工无法比拟的优势:①耗能低,无热熔区,"冷"加工;②可加工的材料广泛:从金属到非金属再到生物细胞组织,甚至是细胞内的线粒体;③高精度、高质量、高分辨率,加工区域可小于焦斑尺寸,突破衍射极限;

④对环境没有特殊要求,无污染。飞秒激光微加工是当今世界激光、光电行业中极为引人注目的前沿研究方向。世界各国学者在飞秒激光与材料相互作用机理研究方面已取得重大的进展,开发出以钛宝石激光器为主的飞秒激光微加工系统,开展了飞秒激光微纳加工的工艺研究,促进了多学科的融合,推动着飞秒激光微纳加工技术向着低成本、高可靠性、多用途、产业化的方向发展。飞秒激光微加工技术将在超高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。本文旨在综述飞秒激光微加工技术国内外的研究状况,介绍飞秒激光微加工的重要应用,展望其今后的发展趋势。

1 国内外飞秒激光微加工技术研究状况

1.1飞秒激光微加工基础理论的研究

飞秒激光加工机理的研究、试验大多是探索陛的,多与长脉冲情形相比较而确定飞秒激光的烧蚀特性,在一定程度上解释了飞秒激光与物质相互作用的物理本质。目前理论研究较系统的材料有金属和透明介质。

(1)金属前苏联Anisimov SI等人于1975年第一次提出了超短脉冲烧蚀金属材料的双温模型。该模型从一维非稳态热传导方程出发,考虑到超短脉冲作用时,存在光子与电子、电子与晶格两种不同的相互作用过程,列出了电子与晶格的温度变化微分方程,即双温方程。一些学者以该模型为基础,在不同的激光脉宽下对双温方程进行约化,求得解析解"-。发现当激光脉宽远远小于晶格的受热时间时,烧蚀时间不依赖于激光脉宽。试验得到的金属铜材料的烧蚀速率与双温模型基本一致。1999 年,Falkovsky L A和Mishchenko E G基于玻尔兹曼方程和费米狄拉克配分函数提出热电子爆炸模型来描述金属材料中的超快形变。2002年,chen J K等人综合双温模型及电子爆炸模型,假定单轴应变三维高压条件,提出了一系列相关联的瞬时热弹性变形方程。数值结果表明,超短激光脉冲烧蚀过程中,非熔融态损伤占支配地位,这种非熔融态损伤的主要动力来源于热电子爆炸力。

(2)透明介质1990年,Hand D P和RusseU P St J根据K-K(Kmmers-Kronig)因果关系提

出了色心模型,该模型的前提是假设光敏效应产生于缺陷处局域电子的激发。在一定范围内解释了折射率变化的原因。但RusseU、Williams等人分别通过吸收光谱测量及进行K.K 变换发现得到的折射率变化与实验结果有两个数量级的差异。随后有学者提出了偶极模型、压力模型、应力压缩模型等。1997年,哈佛大学Maur E领导的小组研究了飞秒激光在熔融SiO2、BK7光学玻璃等透明材料内部产生的微爆炸现象。除化学气相沉积金刚石外,均导致了直径为亚微米的立体像素,通过分析表明:飞秒激光在透明介质中引发的强烈自聚焦效应使激光焦斑尺寸小于衍射极限,微爆炸形成一个微腔,腔周围是高密度材料。2002年,德国Henyk M等人分析了飞秒激光烧蚀蓝宝石,表明烧蚀的基本过程是由于表面爆炸即库仑爆炸所引起的。另外,该小组还研究了飞秒激光烧蚀NaCl及BaF2等宽带隙晶体材料,同样证实了库仑爆炸的合理性。2003年,Egidijus Vanaga8等人采用纳焦能量的飞秒激光在硼酸硅玻璃形成丘状纳米结构,烧蚀机理与库仑爆炸相一致。丘状烧蚀物没有明显的熔融和环形凹痕,受损部位的横向尺寸小于聚焦样品表面的焦斑4至5倍,这与多光子效应所导致的破坏机理相一致。总之,关于飞秒激光与材料相互作用的物理机制,目前还没有一个统一的看法,这个问题仍然是未来研究的热点。

1.2飞秒激光微加工系统的发展现状

飞秒激光出现以来,啁啾脉冲放大、以钛宝石晶体为主的增益介质、克尔透镜锁模。和半导体可饱和吸收镜等技术促使着它从染料激光器发展到自启动克尔透镜锁模激光器,以及后来的二极管泵浦全固态飞秒激光器和飞秒光纤激光器。为满足科研和生产进一步发展的要求,国内外学者仍然致力于飞秒激光器研究,纷纷搭建起微加工系统。飞秒激光系统由振荡器、展宽器、放大器和压缩器4部分组成。表1是近年来国内外最具有代表性的飞秒激光器、微加工系统。从表l可以看出:①输出脉宽大约几百飞秒,真正短到几飞秒的甚少,因而平均功率较低,限制了它在商业中的应用,生产效率较低;②工作稳定性提高,寿命延长,如畅销全球的CPA- 21××系列的种子光有20年的平均无故障时间;③实现MHz的重复频率输出;④可调谐波长范围变广,加工精度、光束质量较高;⑤利用它的超快特性,逐渐实现三维精细加工。但飞秒激光系统在小型化、可调可控性、实用性、全光纤等方面还有很大的发展空间。

另外,对比国内外的发展状况,可以看出国内存在的差距:①国内生产飞秒激光器、微加工系统的知名公司较少;②完全用国产元件搭建的飞秒激光系统甚少;③国内飞秒激光微加工基本上停留在实验室研究阶段,真正用于超快、微加工领域实际生产的极少。

2 飞秒激光微加工技术的应用

2.1飞秒激光加工微结构

基于能量高度集中、热影响区小、无飞溅无熔渣、不需特殊的气体环境、无后续工艺、双光子聚合加工精度可达0.7μm等优势,飞秒激光在诱导金属微结构加工应用方面和精细加工方面都取得了很大的进展。

(1)孔加工在1mm厚的不锈钢薄片上,飞秒激光进行了具有深孔边缘清晰、表面干净等特点的纳米级深孔加工(如图1a);在金属薄膜上,钛宝石飞秒激光加工制备出了微纳米级阵列孔(如图1b),孔径最小达2.5μm,孔直径在2.5~10μm间可调,最小间距可达10μm,很容易实现10-50μm间距调整。

(2)金属材料表面改性1999年,德国汉诺威激光中心Nolte S等人首次报道了结合钛宝石飞秒激光三倍频光(260 nm)和SNOM(扫描近场光学显微镜)在金属镉层制出了线宽仅200 nm的凹槽。为以后的无孔径近场扫描光学显微镜(ANSOM)取代SNOM奠定了基础,获得了高达70 nm的空间分辨率,开拓了远场技术在纳米范围下的物理化学特性以及输运机制的研究。

(3)金属纳米颗粒加工自1993年Henglein A等人首次利用激光消融法制备金属纳米颗粒以来,许多研究小组制备出高纯度、粒度分布均匀的金属纳米颗粒。Link H等人进一步控

制飞秒激光的能流密度和照射时间,将金属纳米棒完全融化为金属纳米点。与其它激光脉冲相比,飞秒激光改变的金属颗粒尺寸大小和特定形状,使金属纳米颗粒特别是贵金属(Au、Hg、Pt、Pd等)在催化、非线性光学、医用材料科学等领域具有广阔的应用前景。

(4)金属掩模板加工新加坡南洋科技大学Venkatakrishnan K等人利用飞秒激光直写方法制作了以金属薄膜为吸收层、石英为基底的金属掩模板,并将前入射与后入射两种方案作了比较,发现采用前入射的方法能够得到更小的特征尺寸和好的边缘质量。并且利用飞秒激光超衍射极限加工有效地修补了金属镉掩模板的缺陷,修复的线宽达到小于100 nm的精度。目前构建的飞秒激光修正光掩模板工具已在IBM的柏林顿、佛蒙特州的掩模制作设备中运行。这对微电子技术的发展将具有重要意义。

(5)复杂的微结构加工①耐热玻璃上的水渠道结构(图2),边缘质量较好。但结构的精确性、表面和底端形态还有待改进;②光敏树脂里面制作的世界上最小的人造动物模型:10μm长,7μm高的公牛;③ScR500树脂内制备的约10μm的微型金字塔和房子模型;④光刻胶上飞秒双光子聚合(Two- Photon P01ymerization:TPP)的微型蜘蛛和恐龙模型(图3)等。

这些都为飞秒激光加工将在高密度内联接印刷电路板、MEMS制造、微纳米过滤技术中具有良好的工业应用前景奠定了基础。

2.2光通信领域

光通信的高速率、大容量和宽带宽的发展方向,要求光电器件的高度集成化。而集成化的前提是光电器件的微型化。因此,光电器件的微型化是当前光通信领域研究的前沿和热点。近年来,相比传统的光电技术,飞秒激光微加工技术将成为新一代光电器件的制造技术。国内外学者在光波导的制备技术等诸多方面进行了有益的探索,取得了很大的进展。

(1)光波导的制备光波导易于和光纤通信系统耦合且损耗小,在频域中呈现出丰富的传输特性,成为光纤器件的研究热点。与离子注入法和热扩散型离子交换法等目前常用的制作方法相比,飞秒激光制作波导在室温环境下进行,过程简单,波导结构在高温时仍能保持良好的质量和稳定性。美国学者用飞秒激光制备的增益光波导长1 cm,可产生3 dB/cm的信号增益。大阪大学的Watanabe W等用85 fs、重复频率l kHz、单脉冲能量1.5 μJ的钛蓝宝石激光制作的多模干涉波导阵列,实现了高阶模输出。目前,利用计算机精密控制飞秒激光加工平台,可以在材料内部的任意位置制得任意形状的二维、三维或单模光波导。

(2)光栅的制备光栅在光通讯、色散补偿、光纤传感等领域中发挥着不可替代的作用。光产业的发展,对光栅提出了更高的要求:①不同几何形状排列,如六角阵列光栅;②在光纤内部刻划,如Bragg(布拉格)光纤光栅。传统加工方法工序繁杂、制作的光栅稳定性差、寿命短。而飞秒激光微加工克服了这些缺点,永久性改变折射率,改变量高达0.05,实现直接刻划,顺应了现代光栅微型化和多样化的发展趋势。Mihailov S等人采用钛宝石飞秒激光在掺锗通信光纤纤芯上获得的反射Bragg光栅,具有折射率调制范围广,温度稳定性高的特点。

(3)光子晶体的制备光子禁带和光子局域是光子晶体的两大特征,使其极有可能取代大多数传统的光学产品。但是微米甚至亚微米级三维复杂光子晶体的制备技术是急需解决的关键问题。飞秒激光双光子聚合法灵活,加工精度高,是制备光子晶体的理想选择。Sun H B等人采用飞秒激光制出任意晶格的光子晶体,它能单独地为单个原子选址。serbin J等人采用飞秒激光双光子聚合得到结构尺寸小于200 nm,周期为450 nm的三维微结构和光子晶体㈣J。Markus Deubel采用飞秒激光直接扫描法制出应用于无线电通信的三维光子晶体。国内的戴起勋等制出杆、层间距均5μm,共4层,分辨率为1.1μm的层状木堆型光子晶体(如图4)。

(4)光存储使用高分辨率存储材料无疑会增加记录密度,而采用超短激光进行亚微米级操作会得到更好的效果。飞秒激光多光子吸收作用引起材料的永久性光致还原现象,为超高密度三维立体光存储提供了一个全新的思路,存储密度可达1013bits/cm3。其特点:①快速的数据读、写、擦写、重写;②并行数据随机存取;③相邻数据位层间串扰小;④存储介质成本低。飞秒激光三维立体光存储技术成为当前海量存储技术发展的一个新研究方向。

(5)微通道的制备聚合物力学性能好,具有生物相容性,而且飞秒激光光束几乎可以毫无衰减地到达透明材料内部的聚焦点,入射激光唯有在该点位置才能获得较高的功率密度,发生非线性多光子吸收和电离,实现材料内任意部位三维微结构的直写。采用150 fs钛蓝宝石脉冲激光在聚甲基丙烯酸甲脂(Polymethyl Methacrylate:PMMA)内制备出最小直径2μm、最长达10 mm的微通道(如图5),道壁光滑且没有裂纹,没有损坏透明材料表面,这种微通道将广泛用于生物医学技术如DNA拉伸、微统计分析系统等。

2.3生物医疗领域

飞秒激光具有"冷"加工、能量消耗低、损伤小、准确度高、三维空间上严格定位的优点,最大限度地满足了生物医疗的特殊要求:①手术风险低,可对同一患处进行多次手术,治疗愈合周期短;②相比传统手术刀,医源性感染少;③"全激光"手术,无刀胜有刀,精确度高;

④无痛,无并发症。

目前,在此方面取得的研究进展有:①在牙齿、隐形眼镜上钻孔,边缘干净、无损伤;

②非热性手术切割烧蚀脑组织样品b51;③纳米切割人体染色体;④制作血管支架,力学性能好,可望解决血管再狭窄问题,即治疗冠心病;⑤飞秒激光飞行质谱DNA排序;⑥飞秒激光激发的荧光显微术对小鼠植入前胚胎内细胞中的钙信号和染色体实现真正的三维、四维实时成像。等。最具有现实意义的是美国INTRALASE公司的Intmlase飞秒激光,可以按任何角度、形状设计制作光滑而且厚度均匀一致的角膜瓣,精确到±10μm。至今Intralase飞秒激光的LASIK手术已经超过30万例,临床统计它的精度要超过传统角膜刀100多倍。IntraLase"飞秒激光"的出现,使人类第一次在眼角膜手术上离开了手术刀,真正实现了"全程无刀手术"。现在科研者正努力将其用于青光眼及白内障等手术中。在生物医学中,飞秒激光仅局限为一种外科手术工具,要想将其广泛用于医学诊断、生物活体检测、蛋白质分析等方面,还有许多技术层面上的问题需要研究和解决。

此外,飞秒激光微加工技术在一些特殊领域具有广阔的应用前景:①钻孔、切割高热导性、高熔点金属(如铼、钛等)和高硬度金刚石。②安全切割一些高爆危险物品如:LX-16、TNT、PETN、PBx等,避免了长脉冲激光线性吸收、能量转移和扩散等的影响,断面处没有炸药熔化和反应的痕迹。但在研究切割雷管时,由于热感度较高,处理过程中发生了爆炸H1|,应该深入研究分析,使之能够被安全切割。③利用飞秒激光观测分析物理化学反应本质,有望控制核聚变,以获得可控的无污染核聚变能源。④将光频与波频联系起来的飞秒光梳技术,为更精确的频率机构一光钟的诞生铺平了道路。

3 展望

飞秒激光微加工还处于起步阶段,该技术的发展和应用还需解决一系列的关键技术问题:(1)目前没有形成一套完整的理论来解释:在超快、超短、超强的极端条件下,激光与物质相互作用的物理本质;(2)加大力度投资生产飞秒激光器、微加工系统,将其体积进一步小型化;改善其微加工的工作环境,延长其寿命等;(3)针对飞秒激光微加工的特性以及被加工材料的属性,开发模型设计的软件,对加工过程进行模拟和仿真,实现最佳参数加工;

(4)飞秒激光微纳加工应用现阶段都只局限于实验室阶段,尽快探索其产业化途径,解决一

些在能源、材料、环境、航天以及国防方面国家急需解决的问题;(5)降低加工成本,实现高效率生产,以满足市场需求。

可以肯定,随着工业需求的扩大和技术的进步,飞秒激光微加工技术将会变得越来越成熟,它将会不断地开辟新的研究领域,具有广阔的应用前景。

激光切割技术介绍 及 发展 论文

激光切割技术及发展 作者:张莽 学号:200803050503 (红河学院 云南红河哈尼族、彝族自治洲 661100) 摘要:激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料。 关键词:激光切割技术 应用 优缺点 发展现状 Laser Cutting Technology and Development Zhang Mang 200803050503 (The HongHe University of Yunnan HongHe Hani Nationality, Yi Autonomous State 661100) Abstract: Laser cutting technology is widely used in metallic and nonmetallic material processing, can greatly reduce the processing time, reduce the processing cost and improve the quality.Because it has precision manufacturing, flexible cutting, the heterogeneous type processing, once shaping, speed and higher efficiency, so in industrial production in solving many conventional method can not solve the problem. Laser can cut most metal materials and nonmetal materials . Keywords: Laser cutting technology; Application; Advantages and Disadvantages; Development situation 引言 在五、六十年代作为板材下料切割的主要方法中:对于中厚板采用氧乙炔火焰切割;对于薄板采用剪床下料,成形复杂零件大批量的采用冲压,单件的采用振动剪。七十年代后,为了改善和提高火焰切割的切口质量,又推广了氧乙烷精密火焰切割和等离子切割。为了减少大型冲压模具的制造周期,又发展了数控步冲与电加工技术。各种切割下料方法都有其有缺点,在工业生产中有一定的适用范围。从二十世纪七十年代以来随着CO 2激光器及数控技术的不断完善和发展,目前已成为工业上板材切割的一种先进的加工方法。 1 激光切割的原理 在激光束能量作用下(氧助切割机制下,还要加上喷氧气与到达燃点的金属发生放热反应放出的热量),材料表面被迅速加热到几千乃至上万度(℃)而熔化或气化,随着气化物逸出和熔融物体被辅助高压气体(氧气或氮气等惰性气体)吹走,切缝便产生了[1]。脉冲激光适用于金属材料, 连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。与计算机控制的自动设备结合,激光束具有无限的仿形切割能力,切割轨迹修改方便通过预先在计算机内设计, 进行众多复杂零件整张板排料,可实现多零件同时切割, 节省材料[2]。

浅谈激光加工技术的发展及应用

浅谈激光加工技术的发展及应用 浅谈激光加工技术的发展及应用 【摘要】因为激光的加工技术的优点是生产的效率极高、加工的质量极好、适用的范围很广等,所以越来愈多的人希望在很多的领域中使用激光加工技术。本文介绍其相关的理论,重点论述其发展和应用。 【关键词】激光加工技术相关理论发展应用 一、前言 近年来重大的发明之一是激光技术。随着社会经济的快速发展,把激光器当成基础的激光加工的技术得到了快速发展。目前其正在被广泛应用在生产、通讯、医疗、军事及科研等多种领域。并且在这些领域都取得了非常好的经济与社会的效益,是我国未来经济的发展的关键。 二、激光加工技术相关理论 笔者认为,了解与应用激光加工技术需要对其相关理论深入的研究。以下笔者从其原理和特点来介绍激光加工技术。 (一)原理 激光加工能够获得极高的能量密度与极高的温度是因为采用的光学系统能够让激光聚焦成为一个非常小的光斑,在这样的高温下,每种坚硬的材料都会被瞬间熔化与气化,然后熔化物被气化而产生的蒸汽压力推动,以很高的速度喷射出来,从而实现了对工件加工的特种加工方法。 (二)特点 激光加工的技术对于加工工具与特殊环境没有要求,不会造成工具的磨损,易于使用自动控制来进行连续加工,且加工效率极高;同时激光的强度极高,聚焦后差不多能够熔化和气化全部的材料,所以能够加工所有硬度的金属与非金属的材料;加上激光加工是属于非接触的加工,及加工速度非常的快,工件没有受力与受热而产生变形;其还能聚焦成为极小的光斑(微米级),能够调节输出的功率,所以

可进行精密且细微的加工。这些均是激光加工优点。但由于其设备的投资比较大,及操作和维护技术要求比较高;且在精微加工的时候,重复的精度与表面的粗糙度难以保证等。这些缺点尽管在一定的程度上缩小了其应用规模,也限制了其发展,但是由于进一步的研究,越来越成熟的技术,激光加工技术有着非常广阔的发展前景。 三、激光加工技术的发展及应用 近年来,由于激光加工技术的快速发展,其被应用于许多的领域。以下是笔者从激光器与激光加工技术领域来介绍激光加工技术的发展,同时介绍目前激光加工技术的具体应用。 (一)激光加工技术的发展 了解激光加工技术的发展,就要研究激光器以及其应用的领域的变化。只有这样才能从根本上了解其发展。 迅速发展的激光器。我国研制出的第一台激光器是在1961年。通过几十年的努力,我国的激光器技术快速的发展起来了,从固体的激光器到气体的激光器,再到如今光纤的激光器、半导体的激光器与飞秒的激光器。光纤的激光器与传统激光器来比较,其优势是功率输出大,光束的质量较好,转换的效率较高,良好的柔性传输等。其在使用激光加工技术加工材料中有着极大的吸引力。现在应用于使用激光来打标、切割以及焊接。而飞秒的激光器则能够使超精微的加工可以实现。其在高技术的领域如微电子、光子学等应用的前景极宽广。同时半导体的激光器正在被直接用在焊接、热处理等方面。总之激光器的迅速发展导致了激光加工技术的快速发展。 广泛的应用领域。激光加工是在机械加工、力加工、火焰加工与电加工之后新产生的一种的加工技术,是借助激光束和物质相互作用的特性,对材料进行切割、焊接、表面处理、打孔以及微加工的综合性技术。激光焊接广泛应用在汽车的零件、密封的器件等多种要求焊接无污染与无变形的器件。激光切割主要应用在汽车的行业、航天的工业等领域。而激光打孔则应用在汽车的制造、化工等产业。广泛的应用领域也使得激光加工技术快速发展。 (二)激光加工技术的应用 激光加工技术在我国的许多领域里占据着重要的位置,以下是笔

研究方向---飞秒激光微加工技术

飞秒激光微加工技术国内外的研究现状 超短、超强和高聚焦能力是飞秒激光的3大特点。飞秒激光脉宽可短至4 fs(1 fs=10-15 s)以内…,峰值功率高达拍瓦量级(1 Pw=1015w)聚焦功率密度达到1020-1022 W/cm2。飞秒激光可以将其能量全部、快速、准确地集中在限定的作用区域,实现对玻璃、陶瓷、半导体、塑料、聚合物、树脂等材料的微纳尺寸加工,具有其它激光加工无法比拟的优势:①耗能低,无热熔区,"冷"加工;②可加工的材料广泛:从金属到非金属再到生物细胞组织,甚至是细胞内的线粒体;③高精度、高质量、高分辨率,加工区域可小于焦斑尺寸,突破衍射极限; ④对环境没有特殊要求,无污染。飞秒激光微加工是当今世界激光、光电行业中极为引人注目的前沿研究方向。世界各国学者在飞秒激光与材料相互作用机理研究方面已取得重大的进展,开发出以钛宝石激光器为主的飞秒激光微加工系统,开展了飞秒激光微纳加工的工艺研究,促进了多学科的融合,推动着飞秒激光微纳加工技术向着低成本、高可靠性、多用途、产业化的方向发展。飞秒激光微加工技术将在超高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。本文旨在综述飞秒激光微加工技术国内外的研究状况,介绍飞秒激光微加工的重要应用,展望其今后的发展趋势。 1 国内外飞秒激光微加工技术研究状况 1.1飞秒激光微加工基础理论的研究 飞秒激光加工机理的研究、试验大多是探索陛的,多与长脉冲情形相比较而确定飞秒激光的烧蚀特性,在一定程度上解释了飞秒激光与物质相互作用的物理本质。目前理论研究较系统的材料有金属和透明介质。 (1)金属前苏联Anisimov SI等人于1975年第一次提出了超短脉冲烧蚀金属材料的双温模型。该模型从一维非稳态热传导方程出发,考虑到超短脉冲作用时,存在光子与电子、电子与晶格两种不同的相互作用过程,列出了电子与晶格的温度变化微分方程,即双温方程。一些学者以该模型为基础,在不同的激光脉宽下对双温方程进行约化,求得解析解"-。发现当激光脉宽远远小于晶格的受热时间时,烧蚀时间不依赖于激光脉宽。试验得到的金属铜材料的烧蚀速率与双温模型基本一致。1999 年,Falkovsky L A和Mishchenko E G基于玻尔兹曼方程和费米狄拉克配分函数提出热电子爆炸模型来描述金属材料中的超快形变。2002年,chen J K等人综合双温模型及电子爆炸模型,假定单轴应变三维高压条件,提出了一系列相关联的瞬时热弹性变形方程。数值结果表明,超短激光脉冲烧蚀过程中,非熔融态损伤占支配地位,这种非熔融态损伤的主要动力来源于热电子爆炸力。 (2)透明介质1990年,Hand D P和RusseU P St J根据K-K(Kmmers-Kronig)因果关系提

激光加工技术论文--

机械工程系 机制方向课大作业 课程名称: 特种加工 姓名: 班级: 学号:

激光加工技术的应用与发展 摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。 关键词:加工原理、发展前景、强化处理、微细加工、发展前景。 一激光加工的原理及其特点 1.激光加工的原理 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 激光加工的特点 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。 ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。 ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。 ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。 ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。 ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。 ⑦使用激光加工,生产效率高,质量可靠,经济效益好。例如:①美国通用电器公司采用板条激光器加工航空发动机上的异形槽,不到4H即可高质量完成,而原来采用电火花加工则需要9H以上。仅此一项,每台发动机的造价可省5万美元。②激光切割钢件工效可提高8-20倍,材料可节省15-30%,大幅度降低了生产成本,并且加工精度高,产品质量稳定可靠。虽然激光加工拥有许多优点,但不足之处也是很明显的。 二激光技术 用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激

飞秒激光超微细加工技术简介

飞秒激光超微细加工技术简介 摘要:本文首先简单地介绍了飞秒激光和超微细加工技术飞秒激光加工技术的技术背景,然后较为详细地介绍了飞秒激光超微细加 工技术及其特点与应用,结合飞秒激光超微细加工技术的特点 将其与其它的微机械加工技术进行了比较,最后分析飞秒激光 超微细加工技术的发展趋势和应用前景。 关键词:飞秒激光超微细加工技术飞秒激光超微细加工 Femtosecond laser micro machining technology Introduction Abstract: This paper first briefly describes the technical background of the femtosecond laser and micro machining technology and femtosecond laser micro machining technology, then a more detailed description the femtosecond laser micro machining technology and its features and applications, combined with the femtosecond laser micro machining technology will be characterized by with other micro-machining technology, the final analysis of the femtosecond laser micro machining technology trends and application prospects. Keywords:femtosecond laser micro machining technology femtosecond laser ultra-fine processing 0引言 激光(Laser,即Light Amplification by stimulated Emission of Radiation的缩写),意思是利用辐射受激得到的加强光,激光加工(Laser Beam Machining)就是把激光的方向性好和输出功率高的特性应用到材料的加工领域中去。【1】用聚焦的方法,把激光束汇聚在面积很小的一个区域,从而在该区域提供足够的热量使该区域的材料荣华或者气化从而达到机械加工的目的,显然激光加工是一种非接触式的加工,可以用于各种材料的微细加工。知道了什么是激光加工,那么飞秒激光超微细加工和普通的激光加工又有什么区别呢?

材料工程新工艺新技术论文——激光切割的原理及应用

激光切割的原理及应用 【摘要】 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料 【关键词】激光切割的原理 激光切割的分类及特点 激光切割技术的应用 1.概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代一些需要采用复杂大型模具的冲切加工方法,能大大缩短生产周期和降低成本。 因此,目前激光切割已广泛地应用于汽车、机车车辆制造、航空、化工、轻工、电器与电子、石油和冶金等工业部门中。 2.激光切割的原理 在激光束能量作用下(氧助切割机制下,还要加上喷氧气与到达燃点的金属发生放热反应放出的热量),材料表面被迅速(ms 范围)加热到几千乃至上万度(℃)而熔化或汽化,随着汽化物逸出和熔融物体被辅助高压气体(氧气或氮气等惰性气体)吹走,切缝便产生了(原理图见图2)[1]。脉冲激光适用于金属材料, 连续激光适用于非金属材料, 后者是激光切割技术的重要应用领域。与计算机控制的自动设备结合, 激光束具有无限的仿形切割能力, 切割轨迹修改方便通过预先在计算机内设计, 进行众多复杂零件整张板排料, 可实现多零件同时切割 , 图 2激光切割的原理图 图 1 激光切割

“飞秒激光微加工

【摘要】飞秒激光微加工技术作为一种新兴的加工技术,具有非接触、效率高、加工精度高、热效应小、损伤阈值低以及能够实现真正的三维结构微加工等传统技术无法比拟的诸多优点,其应用领域相当广泛。文章描述了飞秒激光加工透明材料时,激光能量沉积在光学趋肤层,热效应极小的特性。指出了目前打孔普遍利用激光的直写技术,针孔掩模加工技术可以改善孔形的事实。最后展望了飞秒激光微加工的研究方向。 【关键词】飞秒激光;微加工;打孔;阈值;优点;前景 1.引言 激光是在粒子数反转情况下通过受激辐射放大产生的高亮度相干光束,其原理早在1916年就由物理学家爱因斯坦提出,但直到1960年,梅曼(t?maiman)成功制造的第一台红宝石激光器问世[1],量子光学才由理论研究发展到技术工程。随着各类激光器的出现,激光器的脉宽急剧缩小,峰值功率大幅提高,可调型和稳定性等优势逐渐凸显,飞秒激光在工业加工领域备受青睐,各界根据不同的需要将其广泛应用于微光学、微电子、微机械、微生物、微医学等领域。 2.飞秒激光脉冲技术 1976年,人们首次在染料激光器中实现了飞秒量级的激光脉冲输出[2]。20世纪90年代初,克尔透镜锁模飞秒钛宝石激光器使得飞秒激光技术获得了一次飞跃发展。2003年,n h rizvi总结了飞秒激光对金属、玻璃、金刚石、陶瓷以及各种聚合物等材料的微加工进展情况,并论证了飞秒激光是一种优秀的微加工光源[3]。 人们利用飞秒激光可以聚焦到透明材料内部进行三维加工这一特性,在石英玻璃中制备出各种微光学元件和微流体器件,并将其成功集成在同一块玻璃芯片上,飞秒激光于是在生物传感和生化分析等领域得到一定应用。 在信息电子领域,研发人员将新型激光精细加工装备应用于半导体集成电路、印刷线路板、平板显示、fbg光纤光栅,大大提高了制作效率和工艺水平。经过科研人员的努力,飞秒激光在半导体照明、太阳能光伏电池、燃料电池、微创医用器械及各类mems等新兴产业中也得到了广泛应用。另外,由于激光加工的非接触性,它还可应用于昂贵或危险物品的加工。 3.飞秒激光微加工的发展现状 激光微加工被誉为“未来制造业的共同加工手段”。在世界范围内,欧洲、美国、日本在飞秒激光微纳加工领域至今仍处于领先地位。我国的激光微加工技术研究大多集中在高校和科研机构,国内也有一些新兴的激光设备制造企业开发的激光微孔加工设备应用于生产中,但由于落后的加工控制技术和较为薄弱的研发能力,产品的孔型和径深比都无法与欧美日等激光产业比较发达的国家相比。 4.飞秒激光与透明介质的相互作用 飞秒激光脉冲具有极短的脉冲宽度和极高的峰值功率,与物质相互作用时呈现强烈的非线性效应,如自聚焦、自相位调制、群速色散、白光超连续谱的产生等。它主要依靠多光子吸收机制来加工一些长脉冲激光无法作用的透明材料,并且其作用时间极短,热效应小,可以克服等离子体屏蔽的现象[4]。 4.1 飞秒激光烧蚀的特性 为了对材料造成烧蚀作用,激光的能流密度必须超过某一特定的值,即烧蚀阈值fth。原本不会吸收可见光和近红外光这一波段的透明介质,会在极小范围内因多光子电离而快速产生大量的等离子体。当等离子体密度达到1021cm-3时,由于对激光能量的强烈吸收,激光能达到的深度只有lμm。大量激光能量在物质中沉积,给局部加热并使其形成光损伤,而周围的物质仍处于“冷状态”。因此和长脉冲相比,飞秒激光加工的边缘较为光滑、清洁[5]。 飞秒激光针对透明介质以及其他各类材料(包括金属)的烧蚀打孔实验均表明了飞秒激

激光加工论文

激光加工论文 题目:激光加工技术 专业:电子科技 班级:08-1 学号:200811010145 姓名:杨林

激光加工技术 摘要: 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。 关键词: 加工原理、发展前景、强化处理、微细加工、发展前景。 一、激光加工的起源和原理 随着科学技术的发展和社会需求的多样化,产品的竞争越来越激烈,更新换代的周期也越来越短。为此,要求不但能根据市场的要求尽快设计出新产品,而且能在尽可能短的时间内制造出原型,从而进行性能测试和修改,最终形成定型产品。而在传统制造系统中,需要大量的模具设计、制造和调试等工作,成本高,周期长,已不能适应日新月异的市场变化。为了提高研发和生产速度,快速而精确地制作出高质量、低成本的模具和产品,能对市场变化做出敏捷响应,人们作了大量的研究和探索工作。随着工业激光器价格的不断下降和工业激光加工技术的日益成熟,给模具制造和产品生产工艺带来了重大变革 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 二、激光加工的特点

飞秒激光简介

飞秒激光简介 ●飞秒激光和传统准分子的区别 ●飞秒激光的六大优势 ●飞秒激光优越性 ●飞秒激光安全性 ●飞秒激光看得见的优势 ●飞秒激光昂贵的原因 飞秒激光和传统准分子的区别 飞秒激光被视为神秘之光,是一种以脉冲形式运转的激光,持续时间非常短。只有几个飞秒(一飞秒就是10的负15次方秒,也就是1/1000万亿秒),它比利用电子学方法所获得的最短脉冲要短几千倍,是人类目前在实验条件下所能获得的最短脉冲。 飞秒激光完全是人类创造的奇迹。它能聚焦到比头发的直径还要小的空间区域,用来进行微精细加工。用飞秒激光进行切割,几乎没有热传递。美国劳伦斯利弗莫尔国家实验室的研究人员发现,这种激光束能安全地切割高爆炸药。生物医学专家已将它作为超精密外科手术刀,用于视力矫正,既能减少组织损伤又不会留下后遗症,甚至可对单个细胞动精密手术或者用于基因疗法。https://www.360docs.net/doc/427332372.html,/ 让我们再来看看准分子激光是怎么工作的。准分子激光与生物组织作用时发生的不是热效应,而是光化反应。 所谓光化反应,是指组织受到远紫外光激光作用时,会断裂分子之间的结合键,将组织直接分离成挥发性的碎片而消散无踪。对周围组织则没有影响,达到对角膜的重塑目的,能精确消融人眼角膜预计去除的部分空间精确度达细胞水平,不损伤周围组织。它的波长短,不会穿透人的眼角膜,因此对于眼球内部的组织没有任何不良的作用。 常用的准分子激光术式有LASIK、LASEK、超薄LASIK和飞秒激光(这些术式均可加波前像差和虹膜定位技术)。LASIK、和超薄LASIK都是用板层刀制作角膜瓣,LASEK是用酒精制作角膜瓣,而飞秒激光是通过激光来完成对角膜瓣的制作,所以更精确更精准,术后的视觉质量会更好。

飞秒激光技术

飞秒激光技术 金属的氧化腐蚀一度是件让人头疼的事。如何让金属不在岁月中失去光泽?飞秒激光技术从光学手段入手,不但让金属免遭腐蚀,还能将其变成神奇的超疏水材料。 水是生命之源,哪怕在一些只能算作潮湿的地方,细菌等微生物都能够得以生存或成长;同时水也是许多化学反应所需的基本条件,比如因水的存在,金属会以不被察觉的速度氧化。 不过在许多地方,人们并不希望金属氧化或菌落滋生——比如室外的天线、飞机的机翼、煮饭的锅……人们期待将一些疏水、超疏水材料用在这些地方。 其实超疏水材料在我们身边比比皆是:“出淤泥而不染,濯清涟而不妖”的荷花、荷叶就是典型的超疏水材料,许多昆虫的足上也有超疏水材料,比如大名鼎鼎的水黾,它们正是靠着“不沾水的腿”,在水面行走如飞。 在疏水材料家族中,鲜见金属的身影。不过,美国罗切斯特大学光学院的物理学家郭春雷(音译)与同事最新的研究发现,利用一项叫作飞秒激光的技术,他们能够把金属变成比荷花还要疏水的“极疏水材料”。疏水效果之强,以至于水滴滴在金属表面不仅不会散开,甚至会不断弹起。 飞秒激光让金属获超疏水“技能” 这项听来让人难以置信的研究刊发于美国物理联合会1月20日出版的《应用物理杂志》上。郭春雷研究团队使用超高能且超短的激光脉冲来改变金属的表面,持续时间为毫微微秒(即飞秒)量级。他们用这样的超短飞秒脉冲轰击铂、钛、铜3种样品,获得了上述新型的表面材料。 这种工艺的优势在于“激光在金属上创造的结构本质上是材料表面的一部分。”郭春雷在近期的新闻报道中说,这意味着它们不会被擦掉,并且正是这些结构使得金属具有超级疏水性能。 据研究人员介绍,超能激光脉冲在金属表面刻蚀出大量肉眼不及的诸如洼坑、小珠状和细纹等“痕迹”,这些痕迹形成了密集分布且高低不平的纳米微结构。这种纳米微结构从根本上改变了金属表面的光学性质和润湿性质。 特氟龙是一种常规疏水材料,常作为“不粘锅”涂层的不二之选。但飞秒激光处理过的金属材料远比特氟龙光滑。水滴从特氟龙涂层表面滚落,需要在水滴滚落之前将这个表面倾斜到70度,而经飞秒激光轰击过的金属,只需要倾斜不到5度甚至不必倾斜,水滴就能从表面滚落。

激光加工技术论文

激光加工技术的应用与发展 摘要: 关键词: 1.引言: 1.激光加工的原理 激光加工是以激光为热源对工件进行热加工。 从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达107~1012瓦/厘米2,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。通常用于加工的激光器主要是固体激光器(图1)和气体激光器(图2)。使用二氧化碳气体激光器切割时,一般在光束出口处装有喷嘴,用于喷吹氧、氮等辅助气体,以提高切割速度和切口质量。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

加工过程大体上可分为如下几个阶段: 1.激光束照射工件材料(光的辐射能部分被反射,部分被吸收并对材料加热,部分因热传导而损失); 2.工件材料吸收光能; 3.光能转变成热能是工件材料无损加热(激光进入工件材料的深度极浅,所以在焦点中央,表面温度迅速升高);

4.工件材料被熔化、蒸发、汽化并溅出去除或破坏; 5.作用结束与加工区冷凝。 3.主要特点 (1)、激光束容易控制,易于与精密机械、精密测量技术和电子计算机相 结合,实现加工的高度自动化和达到很高的加工精度;(2)、激光头与工件 不接触,不存在加工工具磨损问题;(3)、工件不受应力,不易污染;(4)、可以对运动的工件或密封在玻璃壳内的材料加工;(5)、激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细 加工,又适于大型材料加工;(6)、激光功率密度大,工件吸收激光后温度迅 速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等) 也可用激光加工;(7)、在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。[2] 4.激光加工技术种类

飞秒激光微细加工

飞秒激光微细加工 [文档副标题] 姓名: 学号: 班级:

飞秒激光微细加工 摘要:本文简单地介绍了微细加工技术和飞秒激光及其特点、原理,并列出几个典型的飞秒激光加工技术的应用,分析了该技术相对其他维系加工技术的优势所在,最后分析飞秒激光微细加工技术的发展趋势和应用前景。 关键词:飞秒激光微细加工技术飞秒激光微细加工 引言:随着时代发展,各种新兴的加工工艺不断出现而改变了现代加工方式,虽然其仍在发展之中,有其局限性,,但随着研究的深入,新技术的引用,而使其愈加完善。微细加工作为一种新兴的加工方式,在现代加工行业的地位愈显重要,用飞秒激光这一前沿科技进行微细加工,有其独特的优点,而成为了微细加工工艺中一个重要的分支。 1·微细加工简介 微细加工(microfabrication)是指制造微小尺寸(尺度)零件的生产加工技术。微细加工是为微传感器、微执行器和微电子机械系统制作微机械部件和结构的加工技术。他起源于半导体制造工艺,原来是只加工尺度约在微米级范围的加公方式。【1】而它现在所指的加工等级的范围已经扩展到纳米级。微细加工在半导体继承电路上的应用,使得大规模集成电路和计算机技术得到了发展,而它现在已经涉及到各种现代加工方式,特别是微机械研究和制造上已经成为了必不可少

的基础环节。 2·飞秒激光简介及其特点介绍 飞秒(femtosecond)也叫毫微微秒,是一种标衡时间长短的计量单位,1飞秒只有1秒的一千万亿分之一,飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段。【2】飞秒激光技术不仅可以获得超短波长的激光、产生瞬间高功率,而且可以高密度聚集而使电磁场强度比原子核对其周围电子的作用力还要高数倍,这样在短时间去除较浅深度的物质所引起的变形量就小。 飞秒激光主要特点:①超短脉冲,飞秒激光是我们人类目前在实验条件下能够获得的最短脉冲;②瞬时高功率,飞秒激光有非常高的瞬间功率,它的瞬间功率可达百万亿瓦,比目前全世界的发电总功率还要多出上百倍;③精确定位性,飞秒激光具有精确的靶向聚焦定位特点,能够聚焦到比头发的直径还要小的多的超细微空间区域。由上述特点可以看出飞秒激光在维系加工领域的前景。 3·飞秒激光的加工机理【3】 准分子激光加工的物理过程大致可分为以下几个阶段: ①自由电子吸收激光能量,运动加速;②高能量电子与原子碰撞,产生更多的自由电子,产生雪崩过程;③电子与晶格碰撞,使得晶格温度升高,并使其融化、气化和等离子体出现;④晶格之间传递能量使作用区域扩散。飞秒激光进行微加工时,其起始物理过程就是物质内部自由电子吸收激光能量。对于长脉冲,它不能迅速产生自由电子,完全依赖介质内部已经存在的自由电子,而这种自由电子的分布对小

飞秒激光在微纳加工领域的应用 准分子激光微孔加工技术研究

飞秒激光在微纳加工领域的应用 飞秒激光开始应用到微纳加工领域始于20世纪90年代初。正是由于飞秒激光具有持续时间短及高脉冲功率密度的特性,使得其与物质相互作用时具有许多独特的优点:确定的烧蚀阈值,规则的加工边缘,层层微加工以及可加工任何材料等。最近研究结果表明:飞秒激光微细加工在微光学、微电子、微机械、微生物、微医学等多个领域具有潜在的应用价值。不同学科、不同实验具有不同的具体要求,这就需要采取相应的加工手段来实现特定加工目的,囚此飞秒激光深孔加工技术等加工工艺开始引起越来越多研究者的重视。 激光整形技术是指在激光腔内或腔外采用光学元件改变光束形态实现光束整形。飞秒激光脉冲整形有别于传统整形概念,主要是在保留原有高峰值功率特性基础上,在光路中引人扩束器、滤波器以及衍射模板等光学器件,达到缩小聚焦尺寸、去除高斯光束周围荧光成分、减少脉冲形变及多种形状加工等目的。常用的是空间滤波和掩模控制技术。空间滤波是实现对光束边缘荧光的屏蔽效用,实现聚集点光学质量的改善,掩模控制是通过掩模形状来实现对脉冲的调制,以达到确定的加工目的。 本文采用聚焦物镜与接收材料同步运动的方法,可以很容易地将焦点前后脉冲的空间形态在材料表面以二维平面图形式表示出来。在聚焦物镜前加小孔掩模板,通过小孔直径及小孔前后脉冲能量的变化,可直观观察到光束空间形态的改变。最后,实验选取合适参数,成功刻划出边缘光滑的透射型金属光栅。 1 实验装置及方法 实验设备采用的是Clark公司飞秒激光加工工作台(UMW-2110i,Clark-MXR Inc.)。激光具体参数为:中心波长775nm,脉宽148 Fs,重复频率1kHz,最大单脉冲能量1mJ,在光路上加衰减片可以调整脉冲能量,聚焦前光斑直径5mm;掩模小孔直径可调范围为0.5~10mm;接收材料为喷溅法镀在溶石英基片上的金膜(厚度约为300nm)。飞秒激光经掩模小孔后由5×显微物镜(有效焦距为40 mm)聚焦金膜表面。采用物镜与接收平台同步运动的方法,将焦点前后脉冲的空间形态以二维平面图形式在金膜表面显示出来;加工结果采用透射式光学显微镜和 SEM进行分析测试。实验装置如图1所示。

激光加工技术在机械制造领域中的应用与发展

金陵科技学院 Jinling Institute of Technology 课程论文 论文题目激光加工技术在机械 制造领域中的应用与发展 学院机电工程学院 年级10机械设计制造及其自动化1班姓名孙志会 指导教师宇海英 成绩 2013 年 5 月 17 日

目录 摘要 (2) 引言 (3) 一、激光加工技术的原理和优势 (3) (一)激光加工的原理 (3) (二)激光加工的优势 (3) 二、激光加工技术在机械制造业中的重要应用 (4) (一)激光切割机产品的飞速发展 (4) (二)激光焊接手段的广泛应用 (4) (三)激光表面强化与热处理技术的重要体现 (4) (四)激光打孔技术的成熟使用 (5) (五)激光标记技术的持续前冲 (5) (六)激光内腔加工技术的重要应用 (5) (七)激光快速成型技术的开发使用 (6) (八)用于再制造业的激光熔覆技术及装备 (6) 三、激光加工技术在机械领域的发展展望 (6) 结论 (7) 致谢 (8) 参考文献 (9)

激光加工技术在机械制造领域中的应用与发展 金陵科技学院机电学院孙志会 [摘要]由于现代机械制造业的快速发展,机械制造已包含了一种新的意义。它已经不是传统意义上的机械制造。它是集机械、电子、光学、信息科学、材料科学、生物科学、激光学、管理学等最新成就为一体的一个新兴技术与新兴工业。我们所了解的激光技术是20世纪60年代初发展起来的一门科学,在材料加工方面,已逐步形成一种崭新的加工方法——激光加工,它是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,靠光热效应来加工各种材料的。激光加工技术包括:激光快速成型技术、激光焊接技术、激光切割技术、激光打孔技术、激光标记技术、激光热处理技术和激光内腔加工技术。现在,激光加工技术是国家重点支持和推动应用的一项高新技术,特别是政府强调要振兴制造业,这就给激光加工技术应用带来发展机遇。在国家制定中长远期发展规划时,又将激光加工列为关键支撑技术,因为它涉及国家安全、国防建设、高新技术的产业化和科技前沿的发展,这就把激光加工提升到很高的重视程度,也必将给激光加工机的制造和升级带来很大的商机。 [关键词] 激光高新技术应用重视发展规划

飞秒激光加工超光滑光学表面综述

飞秒激光加工超光滑光学表面综述 精密和超精密加工技术、制造自动化是先进制造技术的两大领域,精密工程、精细工程和纳米技术是现代制造技术的前沿,也是未来制造技术的基础。超精密加工是一门新兴的综合性加工技术,它集成了现代机械、电子、测量及材料等先 级,极大地改善了产品的性能进技术成就,使得目前的加工精度达到了0.01m 和可靠性。超光滑表面加工技术是超精密加工体系的一个重要组成部分,在国防工业、信息产业民用产品的制造中占有非常重要的地位且有着广泛的市场需求,具有良好的发展前景。 科技的进步极大地推动了技术的发展,随着光学领域和微电子学领域及其相关技术的发展,对所需材料的表面质量的要求越来越高。大规模和超大规模集成电路对所用衬底材料的表面精度提出了很高的要求;短波段光学的发展尤其是强激光技术的出现,对光学元件表面粗糙度的要求极为苛刻。从而产生了超光滑表面的概念,并出现一系列用于进行超光滑表面加工的技术和方法。超光滑表面具有以下主要特征[1]: (1)表面粗糙度小于1nm Ra,对于光学元件,表面粗糙度小于1nm RMS(粗糙度均方根值), (2)尽可能小的表面疵病与亚表面损伤; (3)表面残余应力极小; (4)晶体表面具有完整的晶体结构,即表面无晶格错位。 超光滑表面的加工手段有抛光和超精密机械加工等,而抛光应用得最广泛。超光滑表面加工的对象是晶体、陶瓷等硬脆性材料。超光滑表面主要应用于现代武器惯导仪表的精密陀螺的平面反射镜、激光核聚变反射镜、大规模集成电路的基片、计算机磁盘、磁头和蓝宝石红外探测器窗口的透镜等。 对于各种超光滑表面的抛光加工手段,根据在加工过程中工件和抛光盘之间的接触状态可分为3种类型:直接接触、准接触和非接触。在各种抛光方法中的接触状态均只属于其中一种,并在抛光过程中基本保持不变[1],[2]。 1.直接接触抛光 直接接触抛光是指抛光盘和工件在抛光过程中直接发生接触,依靠抛光磨料的机械磨削作用和抛光盘的摩擦作用去除材料。浴法抛光、Teflon法抛光等都属于这种接触方式。 2. 非接触抛光

飞秒激光微加工技术在微加工中的应用

飞秒激光微加工技术在微加工中的应用 1飞秒激光加工微结构 基于能量高度集中、热影响区小、无飞溅无熔渣、不需特殊的气体环境、无后续工艺、双光子聚合加工精度可达0.7μm等优势,飞秒激光在诱导金属微结构加工应用方面和精细加工方面都取得了很大的进展。 (1)孔加工在1mm厚的不锈钢薄片上,飞秒激光进行了具有深孔边缘清晰、表面干净等特点的纳米级深孔加工(如图1a);在金属薄膜上,钛宝石飞秒激光加工制备出了微纳米级阵列孔(如图1b),孔径最小达2.5μm,孔直径在2.5~10μm间可调,最小间距可达10μm,很容易实现10-50μm间距调整。 (2)金属材料表面改性1999年,德国汉诺威激光中心Nolte S等人首次报道了结合钛宝石飞秒激光三倍频光(260 nm)和SNOM(扫描近场光学显微镜)在金属镉层制出了线宽仅200 nm的凹槽。为以后的无孔径近场扫描光学显微镜(ANSOM)取代SNOM奠定了基础,获得了高达70 nm的空间分辨率,开拓了远场技术在纳米范围下的物理化学特性以及输运机制的研究。

(3)金属纳米颗粒加工自1993年Henglein A等人首次利用激光消融法制备金属纳米颗粒以来,许多研究小组制备出高纯度、粒度分布均匀的金属纳米颗粒。Link H等人进一步控制飞秒激光的能流密度和照射时间,将金属纳米棒完全融化为金属纳米点。与其它激光脉冲相比,飞秒激光改变的金属颗粒尺寸大小和特定形状,使金属纳米颗粒特别是贵金属(Au、Hg、Pt、Pd等)在催化、非线性光学、医用材料科学等领域具有广阔的应用前景。 (4)金属掩模板加工新加坡南洋科技大学Venkatakrishnan K等人利用飞秒激光直写方法制作了以金属薄膜为吸收层、石英为基底的金属掩模板,并将前入射与后入射两种方案作了比较,发现采用前入射的方法能够得到更小的特征尺寸和好的边缘质量。并且利用飞秒激光超衍射极限加工有效地修补了金属镉掩模板的缺陷,修复的线宽达到小于100 nm的精度。目前构建的飞秒激光修正光掩模板工具已在IBM的柏林顿、佛蒙特州的掩模制作设备中运行。这对微电子技术的发展将具有重要意义。 (5)复杂的微结构加工①耐热玻璃上的水渠道结构(图2),边缘质量较好。但结构的精确性、表面和底端形态还有待改进;②光敏树脂里面制作的世界上最小的人造动物模型:10μm长,7μm高的公牛;③ScR500树脂内制备的约10μm的微型金字塔和房子模型;④光刻胶上飞秒双光子聚合(Two- Photon P01ymerization:TPP)的微型蜘蛛和恐龙模型(图3)等。

激光加工技术论文

激光加工技术 摘要:作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。本文论述了激光加工技术在国内外发展趋势,以及它的加工原理、特点及其应用。 关键词:激光技术特点应用 一、前言 激光技术是20世纪60年代初发展起来的一门新兴科学,在材料加工方面,已逐步形成一种崭新的加工方法——激光加工(Lasser Beam Machining 简称LBM)。由于激光加工不需要加工工具、而且加工速度快、表面变形小,可以加工各种材料,已经在生产实践中愈来愈多地显示了它的优越性,所以很受人们重视。 激光技术在我国经过30多年的发展,取得了上千项科技成果,许多已用于生产实践,激光加工设备产量平均每年以20%的速度增长,为传统产业的技术改造、提高产品质量解决了许多问题,如激光毛化纤技术正在宝钢、本钢等大型钢厂推广,将改变我国汽车覆盖件的钢板完全依赖进口的状态,激光标记机与激光焊接机的质量、功能、价格符合国内目前市场的需求,市场占有率达90%以上。 二、激光技术在国内外发展现状 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW级到10kW级CO2激光器和百瓦到千瓦级YAG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。据1997~1998年的最新激光市场评述和预测,1997年全世界总激光器市场销售额达32.2亿美元,比1996年增长14%,其中材料加工为8.29亿美元,医疗应用3亿美元,研究领域1.5亿美元。1998年总收入预计增长19%,可达到38.2亿美元。其中占第一位的材料加工预计超过10 亿美元,医用激光器是国外第二大应用。 我国科研成果转化为商品的能力差,许多有市场前景的成果停留在实验室的样机阶段;激光加工系统的核心部件激光器的品种少、技术落后、可靠性差。国外不仅二级管泵浦的全固态激光器已用于生产过程中,而且二级管激光器也被应用,而我国二极管泵浦的全固态激光器还处在刚开始研究开发阶段。对加工技术的研究少,尤其对精细加工技术的研究更为薄弱,对紫外波激光进行加工的研究进行的极少。激光加工

特种加工技术论文

分述电子束加工与离子束加工 摘要 由于传统的机械加工技术不能满足人们的加工要求,通过人类的探索和研究,找到了可以提高加工精度的特殊方法-特种加工方法。现在以电子束加工与离子束加工技的对比来发现他们各自的优缺点,并对此进行分析,找到他们的异同,从而在工业发展中可以选择正确的加工方法。 ABSTRACT Because the traditional mechanical processing technology can not meet the processing requirements. Through the human’s exploration and research, found it can improve the machining accuracy of special methods of special machining method. Now with the electron beam processing and ion beam processing technologycontrast to find their respective advantages and disadvantages, and then analyzes this, we can find their similarities and differences, so that we can choose the correct processing methodin the develop of the industry. 关键词:加工原理; Key words 引言 当今世界特种加工技术在工业发展中发挥着重要的作用,它完成了传统的机械加工方法所不能达到的加工质量。为了能够合理的选择加工方法,下面以电子束加工与离子束加工为例进行论述。 1.特种加工技术的发展历史 特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到取出或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。 特种加工是指那些不属于传统加工工艺范畴的加工方法,它不同于使用刀具、磨具等直接利用机械能切除多余材料的传统加工方法。特种加工是近几十年发展起来的新工艺,是对传统加工工艺方法的重要补充与发展,目前仍在继续研究开发和改进。直接利用电能、热能、声能、光能、化学能和电化学能,有时也结合机械能对工件进行的加工。特种加工中以采用电能为主的电火花加工和电解加工应用较广,泛称电加工。 20世纪40年代发明的电火花加工开创了用软工具、不靠机械力来加工硬工件的方法。50年代以后先后出现电子束加工、等离子弧加工和激光加工。这些加工方法不用成型的工具,而是利用密度很高的能量束流进行加工。对于高硬度材料和复杂形状、精

相关文档
最新文档