高速铁路信号系统的抗电磁干扰技术研究

高速铁路信号系统的抗电磁干扰技术研究
高速铁路信号系统的抗电磁干扰技术研究

高速铁路信号系统的抗电磁干扰技术研究

发表时间:2019-06-21T16:03:58.057Z 来源:《防护工程》2019年第6期作者:刘磊

[导读] 作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。

中铁建电气化局集团南方工程有限公司湖北武汉市 430074

摘要:作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。另一方面,高速铁路采用的综合接地方式、共用的接地钢轨使得电磁骚扰传输耦合途径错综复杂,这些均对高速铁路信号系统的抗电磁干扰提出了较高挑战,由此可了解本文研究具备的较高现实意义。

关键词:高速铁路;信号系统;抗电磁干扰技术;研究

1高速铁路信号系统抗电磁干扰技术措施

1.1基本抑制措施

高速铁路信号系统的抗电磁干扰技术措施一般由三个方面入手,以高速铁路车载信号系统为例,具体的抑制措施如下:①骚扰源:高速铁路的电磁噪声在1.88~2.6GHz频段基本不会对设备的孔缝、信号端口、电源线端口造成影响,设备的天线端口也不会受到影响,因此仅需要考虑实际工程中的具体设备以采用针对性措施。②耦合途径:需考虑电缆的合理布线和接地,并保证不同类别的电缆间隔敷设,不同类别电缆之间的最小距离应遵循(表1)规定,同时保证电缆间互为直角;如出现不同类别间电缆最小距离无法满足情况,需设法将电缆隔开,一般采用连接整体屏蔽、金属电缆槽、金属板、金属管的方式,在信号电缆和电力电缆共存情况下,还需要重点关注电路馈线与回流电缆的敷设距离,保证二者尽可能拉近,将在接近导电的机车结构处安装电缆能够有效抑制电缆的发射场,一般情况下电缆屏蔽层需接地,且需要关注机箱屏蔽,机箱孔缝尺寸需满足最小波长要求,必要时可通过安装金属密闭塾片、导电性填料进行改善,接地线应短而宽并与接地面实现可靠搭接,电缆合理的接地和布线可有效提升其抗电磁干扰能力。③敏感设备:信号设备的电磁兼容性也需要得到重视,由于高速铁路车载信号系统本身属于敏感设备,该设备本身的防护措施必须得到重视,这种重视需体现在设计层面。具体来说,通信系统在设计阶段应选择适当的接收电平,电磁兼容设计需使用,浪涌防护器件设置电压限幅环节,瞬变电压抑制器、压敏电阻、硅雪崩二极管、放电管均属于常用的浪涌防护器件,此种措施下冲击电流可得到较好抑制(如雷电、变电所过流保护开关瞬时开闭引发的相关现象)。

表1 不同类别电缆之间的最小距离

同样以车载信号系统为例,其处理流程可概括为:“故障现象分析→现场实际测试→干扰耦合途径验证→敏感设备分析→抗干扰措施实施→验证试验”,通过列举可能导致故障现象的因素、选择针对性较强的仪器设备、围绕典型干扰传输耦合途径开展分析、建立被干扰信号系统电磁抗扰度模型,即可完成高质量的电磁干扰故障处理,最终合理应用抗干扰措施并验证其有效性,即可有效解决电磁干扰导致的故障问题。为取得优秀的高速铁路信号系统抗电磁干扰效果,一般需同时应用屏蔽、接地、滤波技术,但如果三种技术存在应用不当情况,则很容易引起更为严重的电磁干扰问题,因此必须保证抗干扰措施应用的针对性、定制性,并从整个系统角度思考问题,避免解决问题的过程引入新的电磁干扰耦合,结合故障实际和相关经验属于其中关键,这些必须得到相关业内人士的重点关注。

2实例分析

2.1故障现象分析

为提升研究的实践价值,本文选择了某高速列车作为研究对象,在通过某一位置时,该高速列车出现了ATP(车载自动列车防护系统)和多次报人机交互单元DMI出现通信超时故障,结合故障现象开展分析,技术人员初步确定了电磁骚扰源及其耦合途径,具体判断如下:①由于DMI临近的弱电设备未出现类似故障(通信超时故障报警时),因此可初步判断空间的辐射电磁场骚扰与主要电磁干扰信号基本不存在联系。②与DMI共用电源的弱电设备未出现类似故障,因此来自电源线的传导电压/电流骚扰与主要电磁干扰信号基本不存在联系。③ATP与DMI间的Profibus总线平行于220V交流输电线平行走线,且长度为23m,电压骚扰信号进入Profibus总线因此获得可行性较高的方式,即线间的容性耦合方式,ATP与DMI之间的数据传输也很容易出现误码故障,因此可初步判断信号线的传导电压骚扰为干扰源。

2.2敏感设备分析

图1为车载ATP系统基本结构图,结合该图不难发现,主机柜内的设备主要有JRU单元、BTM单元、DC/DC电源、车载电台、ATP核心运算单元,主机柜外则安装有天线、速度传感器、DMI单元等设备,ATP与DMI间的数据传输采用Profibus总线,设备的连接采用菊花链结构,在ATP核心运算单元支持下,总线可实现间隔性的DMI状态查询,必要时需上报DMI通信超时故障,如出现多次无法收到响应数据包的

高速铁路控制中心信号设备(RBC、TSRS)维修作业标准

高速铁路控制中心信号设备(RBC、TSRS)维修 作业标准 1、范围 本标准规定了铁路电务系统高速铁路控制中心信号设备的无线 闭塞中心(RBC)、临时限速服务器(TSRS)维修的工作内容。 本标准适用于铁路电务系统高速铁路控制中心信号设备(RBC、TSRS)维修作业。 2、规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用 文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 铁路技术管理规程(高速铁路部分) 铁路信号维护规则 高速铁路信号维护规则 铁路营业线施工安全管理办法 高速铁路主要行车工种岗位准入管理办法 铁路局高速铁路行车组织细则 铁路局铁路营业线施工及安全管理实施细则 铁路局电务系统现场作业安全风险控制制度 铁路局高速铁路信号设备检修标准化作业程序及质量标准 铁路局高速铁路岗位准入管理实施办法

3、工作内容与要求 3.1日常巡检作业 3.1.1作业前准备 3.1.1.1召开作业准备会,作业负责人布置巡检任务,明确作 业地点、时间、任务及相关人员分工。 3.1.1.2班前安全讲话,安全员布置劳动安全和行车安全的具 体措施并督导检查。 3.1.1.3工具材料准备,检查通信工具作用良好、电池电量充足;准备好相关工具材料,并逐一清点登记。 3.1.1.4作业人员按规定正确穿防护服、佩戴标志及携带规定 的防护用具。 3.1.2登记联系 3.1.2.1严格执行《铁路局电务系统现场作业控制制度》的有 关规定。 3.1.2.2作业前,室内联系防护人员必须按照规定在《行车设 备检查登记簿》或《行车设备施工登记薄》内进行登记。 3.1.2.3作业人员须经室内联系防护人员同意,方可进行作业。 3.1.2.4作业过程中,室内联系防护人员须随时监视设备运用 情况。 3.1.3巡视检查内容 3.1.3.1检查机房温、湿度,确认无异常,无异声、异味,设 备及器材表面无过热现象。

欧洲铁路信号系统概况

欧洲铁路信号系统概况 欧洲是世界上铁路最发达的地区之—。欧洲国家多,国土面积小,各国内部的铁路网很密集。近几年来,欧洲铁路公司和信号公司在对各自的既有信号系统进行升级或者技术改造的同时,在欧盟(EU)委员会和国际铁路联盟(UIC)的推动下,欧洲7大铁路信号公司,如法国的Alstom(阿尔斯通)公司、瑞典的Adtranz公司、德国的Siemens(西门子)公司、法国的Alcatel(阿尔卡特)公司、意大利的Ansaldo(安萨尔多)公司(含法国CSEE公司)、英国WestingHouse(西屋)公司,以及Invensys公司,联合起来为信号系统的互联和兼容问题制定信号标准,并制造了相关的产品: 在较大范围内开发并应用新型计算机辅助铁路运输管理系统; 在进路控制方面,随着区域计算机联锁技术逐步取代陈旧技术,自动化系统得到广泛应用; 在列车防护和控制系统方面,研制了基于通信的列车控制系统(CBTC); 为了欧洲铁路信号系统的互联和兼容问题,制定了统一的、开放性信号系统标准,从而实现欧洲各国铁路互通运营。 本章根据搜集到的有关欧洲铁路信号系统的论文、报道和技术资料,对它们进行了归纳整理,从列车运行控制系统、欧洲统一先进的列车运行控制系统(即ETCS)、联锁系统、行车指挥系统、高速铁路,以及磁悬浮铁路等方面介绍欧洲铁路信号系统的现状和发展,有关法国、英国和德国的铁路信号系统的详细情况在另外章节专门介绍。 第一节列车运行控制系统 一、种类繁多的列控系统 欧洲有7大铁路信号公司(Alstom、Adtranz、Siemens、Invensys、Alcatel、Ansaldo、WestingHouse,它们都是UNIFE的成员),它们研制生产的列车运行控制系统(ATP/A TC)有十余种,如德国的LZB系列和FZB系列、法国的TVM系列等。这些运行控制系统有的适用于中速铁路,有的适用于高速铁路。在欧洲铁路网上,各个国家的铁路部门使用各自不同的信号制式管理列车的运营。 二、基于通信的列车运行控制系统 近年来,几乎所有欧洲国家铁路都在建立列车运行管理和保证行车安全系统方面寻求新的经济有效的技术方案,其中包括地区性线路。德国铁路和Adtranz公司共同研究制定了无线通信管理列车运行(FFB)地区性线路运营规划,在建立的列车运行管理系统中,几乎全部通过无线通信系统来实现通信服务联系,完全不用地面信号和监督线路空闲的线路设备,保证在任何线路上的列车运行安全。基于通信的列车控制系统(CBTC)按欧洲统一的安全标准设计,系统符合欧洲PrEN50129和PrEN50128标准设计的一体化安全要求(SIL4,安全完善度等级4)。 三、列车控制系统向标准化、统一化发展 目前,欧洲由于种类繁多的铁路信号帛式互不兼容,影响了欧洲铁路跨国运输的效率。在欧盟(EU)和国际铁路联盟UIC的支持下,欧洲铁路制定了统一的列车运行管理系统ERTMS(欧洲铁路运输管理系统),包括欧洲列车运行控制系统ETCS(欧洲列车控制系统)、列车与地面的双向无线通信系统GSM-R和欧洲运输管理系统ETMS。

脉冲干扰抗扰度及测试技术

脉冲干扰抗扰度及测试技术 摘要:电气或电子电路和系统中所遇到的多种电磁干扰并不是连续波干扰,而是脉冲或瞬态形式的干扰。传统的连续波测试并不能在较短的时间间隙内聚集足够的能量以有效地模拟脉冲或瞬态干扰。因此,应该使用脉冲干扰的电磁抗扰度测试方法。分别介绍了ESD、EFT、Surge原理和测试方法及注意事项。 关键字:电磁干扰静电放电电快速瞬变脉冲浪涌 Abstract:Electrical or electronic circuits and systems encountered in a variety of electromagnetic interference is not continuous waves interference, but the pulse or transient forms of interference. The traditional continuous wave test can not gather enough energy in order to effectively simulate the pulse or transient interference in a short period of time. Therefore, we should use the pulsed electromagnetic interference immunity test methods. Introduced the ESD, EFT, Surge principles and testing methods and precautions. Keywords: EMI ESD EFT/burst Surge 电磁骚扰是指可能引起一个器件、一台设备或一个系统性能下降的任何一种电磁现象。电磁骚扰可以是自然界的电磁噪声、无用信号或在媒质中传播时自身发生的改变。 电磁干扰(EMI)是电磁骚扰造成的器件、设备或系统的性能下降现象,从它的源到达接收机的主要机制是传导和辐射,如图1所示。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络,在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。 图1 电磁干扰耦合机制 1静电放电 静电放电(ESD)即累积的静电电荷放电,是一种自然现象,这种放电产生电磁干扰。当两种不同介电常数的材料互相摩擦时、加热或与带电物体接触将产生静电。静电放电是把累积的电荷泄放给具有较低对地电阻的另一个物体,这

浅谈高速铁路信号系统

浅谈高速铁路信号系统 发表时间:2018-06-20T15:28:32.577Z 来源:《建筑学研究前沿》2018年第2期作者:张广智 [导读] 高速铁路最重要的指导理念是动车组在经过特殊建造的专用线路上高速、高密度安全运行并得到最佳匹配。 通号工程局集团有限公司天津分公司天津市 300240 摘要:中国高速铁路自九十年代到如今,经过了十多年的科学研究和时间积累,依靠国内自身的技术力量,走过了学习、引进、创新、超越的一个不平凡的道路,形成了中国高速铁路技术体系,中国高铁是中国改革开放成果的一个成功典范。目前中国高速铁路营运里程两万五千多公里,占世界营运里程三分之二,“复兴号”动车组奔驰在祖国的大江南北,中国高铁为中国国民经济发展插上腾飞的翅膀。而高速铁路信号系统是高铁核心技术,被形象的比喻为高铁的眼睛。 关键词:高速铁路;信号 1.高速铁路与普速铁路的区别 高速铁路最重要的指导理念是动车组在经过特殊建造的专用线路上高速、高密度安全运行并得到最佳匹配。与普速铁路的主要区别有:1.列车运行速度大于200KM/h;2.列车晚点在1-2分钟;3.列车追踪间隔在3-5分钟;4.采用全封闭式、全立交;5.采用列车自动控制(ATC)系统,地面不设信号机,司机按车载信号显示行车,具有超速防护系统;6.车站进路不用值班员办理而是由调度中心的计算机统一控制;7.站间距离较大,区间建有无人值守的中继站;8.具有安全监控系统,监视轴温、线路、风、雨、地震灾害并进行报警。 2.保证高速列车运行安全的主要手段 火车是靠车轮在钢轨上运行的,停止时靠车轮踏面产生摩擦力使列车减速。考虑最不利条件下,也能安全停车并顾及旅客乘车舒适性,司机制动时的平均速度一般只有0.5-0.8m/s时,时速120KM/s.时,时速120km/h的列车制动距离约为800m,列车制动距离与列车制动初速的平方成正比。制动初速高,制动距离较长。 高速列车采用普通自动闭塞,红灯停、绿灯行,闭塞分区要达到6~8KM,才能保证安全。这样线路上的列车间隔加大,降低了通行能力。因此高速铁路闭塞分区设为1~2km,但是信号要分成若干速度等级,这样才能保证安全又满足行车密度的要求。 普速铁路地面信号机显示距离为1000m,时速120km/h的列车走过这段距离为30s,如果列车时速为320120km/h则只有11s。如果闭塞分区为1.5km,则高铁列车司机每十几秒就要辨认一次信号显示,既紧张又不安全。国外曾做过实验,当列车速度超过200120km/h时,司机辨识信号的错误率会大大增加,据此不可以使用地面信号机指挥列车运行。 司机靠地面信号驾驶列车需要经过识别信号、理解信号、按照信号要求操纵列车。司机从看信号到做出正确反应需要4~5s左右,任何环节出现错误,都会造成事故。据此高速铁路闭塞改为列车自动控制系统(ATC),其特点是:1.以车载信号显示为行车凭证;2.用速度命令代替色灯含义;3.信号直接控制列车制动。 3.高速铁路信号安全系统 高速铁路信号安全系统是完成行车控制、运营管理的综合自动化系统。这个系统主要由行车、指挥系统、列车运行自动控制系统、车站联锁系统等组成。 3.1综合调度系统:高速铁路有许多车站,线路上有许多列车要协调一致运行,必须实行统一的行车指挥,高速铁路的服务宗旨是:快速、舒适、安全、正点。要做到这八个字光靠总调度协调调度员、调度员向所属基层站、段下计划、下命令,再向各站、段值班人员实施,这套管理需要人数众多,环节也多。为了取得高效率,需要利用先进的通信网和计算机组成综合调度系统。全线所有列车位置、进路、信号及各种行车设备状态、列车及旅客售检票情况、接触网及供电设备状况显示在调度中心。 为了使各列车均能按运行图正点运行,调度中心的计算机自动排列进路,控制车站的信号设备,直接通过列控系统向列车发出速度命令。这一切都自动进行,只有在特殊情况下例如设备故障、天灾、人祸等,调度员才干预计算机计算机控制亲自下达命令。计算机系统在涉及安全或者不允许中断工作时多采用多系统设置。调度中心一般采用两套或者三套系统,并且供电和通信网也有冗余并形成闭环。保证高速列车的指挥一般不会中断,列车的正点率也会大大提高。 调度中心主要任务是:行车计划编制、行车调度、机车车辆调度、电力调度、客运调度及旅客服务、行车设备监视及维修管理、维修点及天窗点管理、安全监控和应急抢险指挥。 3.2列车运行自动控制系统(ATC):列车运行控制系统直接控制列车运行,主要由车载设备和地面设备组成。列车控制系统在车站设有控制中心,如果距离较大,则每15~20公里还要设置单独的控制中心。控制中心通过电缆与铁路上的轨道电路、信号机等设备相连。主要王城列车位置检测、形成速度信号并将此信号传递给列车。车载设备将按照速度信号控制列车制动。地面设备与车载设备一起才能完成列车运行控制功能。 3.3车载设备主要由天线、信号接收单元、制动控制单元、司机操作显示屏、速度传感器等组成。地面信号命令通过轨道电路向机车传送。机车头部的天线接收速度信号命令,经过信号接收机放大、滤波、解调后将此命令的数据送到司机显示器和制动控制单元。制动控制单元收到速度传感器传来的信号,测量出列车的实际速度,将超级速度与信号命令比较,如果判断列车需要制动则产生制动信号,直接控制列车制动系统,列车就会自动减速和停车。列控系统主要任务是:1.防止列车冒进信号;2.防止列车错误出发;3.防止列车超速通过道岔; 4.防止列车超过线路允许的最大速度; 5.监督列车通过临时限速区段;6在出入库无信号区段限制列车速度。为保证列车运行控制系统不间断的工作和加强设备维修和管理,列车运行控制系统中在地面和车上都安装有监视设备。地面监视系统可以检测信号机、轨道电路、地面控制中心的接收和发送设备等。检测结果可以在维修工区显示、储存,也可以通过通信网送往调度中心。 车上监视设备可以将列车运行过程中速度信号、制动装置动作以及列车实际速度和司机操作等状态保存下来。 3.4列控系统是高速铁路信号控制核心,目前国内普遍使用的高速铁路列控系统基于GSM-R无线传输方式的CTCS3级和ZPW-2000轨道电路与点式应答器构成的CTCS2级组成的冗余配置的列控系统,预留CTCS3级系统接口。CTCS2级系统与既有200km/h提速线列控系统兼容。同时作为CTCS3级系统备用系统,CTCS2级系统中的轨道电路、点式应答器等在CTCS3级系统中作为列车占用检查和列车定位对标的平台。CTCS2级列控系统由车站列控中心,ZPW2000轨道电路、点式应答器设备及车载列控设备等组成。CTCS3级列控系统在

高速铁路概论习题及问题详解

一、单选题 1、世界上第一条高速铁路是………………………………………………………(C ) A TGV东南线 B TGV大西洋线 C 东海道新干线 D 山阳新干线 2、我国第一条准高速铁路在哪两个城市间改建…………………………………(A ) A 和 B 和 C 和 D 和 3、迄今为止铁路上速度最高运营时速为…………………………………(B ) A 200km/h B 300 km/h C 350 km/h D 400 km/h 4、我国普通铁路的一般干线,竖曲线半径为………………………………(C ) A 8000米 B 9000米 C 10000米 D 12000米 5、高速铁路线路所用的钢轨类型为………………………………………………(A ) A 60千克/米 B 50千克/米 C 43千克/米 D 55千克/米 6、在当今世界上时速为多少时称为准高速( B ) A 100 –200 km/h B 120-160 km/h C 200-400 km/h D 160-400 km/h 7、我国第一台交-直-交流电传动电力机车是…………………………………( D ) A 6Y1型 B 韶山3型 C 红3型 D AC4000型 8、下列制动方式中属于非粘着制动的是……………………………………( D ) A 盘形制动 B 油压制动 C 电阻制动 D 磁轨制动 9、利用了轨道电缆构成的双向信息传输通道的自动列车速度控制系统是………( A ) A LZ B B A T C C TVM D ICE 10、采用了吸流变压器的的供电方式是…………………………………………( C ) A 直接供电方式 B AT供电方式 C BT供电方式 D CC供电方式 11、从发展趋势看,什么将成为高速客车体主导材料( A ) A 铝合金 B 铜板 C 铝板 D 以上都可 12、人们认为在能源消耗、噪声等方面哪种方式更优越( B ) A 燃列车 B 磁悬浮 C 气悬浮 D 电力列车 13、一般认为中程磁悬浮运输速度为(B ) A 200公里/小时 B 300公里/小时 C 300公里以上/小时 D 400公里/小时 14、下列高速铁路中采用部分修建新线,部分旧线改造,旅客列车专用的铁路模式是( B ) A 日本新干线模式 B 法国TGV模式 C 德国ICE模式 D 英国APT模式 15、目前世界各国最高运行速度在200km/h以上的高速列车,除了( A )高速列车以外, 其余均采用电力牵引。 A 英国的HST 型 B 瑞典的X2型 C 意大利的ETR500型 D 日本100系列 16、法国TGV高速电动车组和英国HST高速燃动车组上使用的制动方式是( C ) A 摩擦制动 B 闸瓦制动 C 盘形制动 D 电磁轨道制动 17、下列高速铁路列车自动控制系统的控制方式中采用采用以设备为主,人控为辅的控制方 式的代表国家是( A ) A 日本 B 法国 C 德国 D 美国 18、高速铁路引入既有枢纽的方式,按其引入线的平,纵断面不同,有三种引入方式,下面 哪一种不是这三种引入方式的( D )

电磁干扰(EMI)抑制技术

电磁干扰(EMI)抑制技术 时间:2012-08-14 11:38:34 来源:作者: 1 电磁干扰基本概念 在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic Interference,EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic Compatibility,EMC)[1]。 21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。 电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。 2 人类必须关注电磁兼容问题 2.1 电磁环境不断恶化 20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。 1996年3月,日本SAPIO杂志公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于1993年所作的联合调查指出:人类长期受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。 表1 家用电器电磁辐射检测结果(单位:mG)[2] 2.2 电磁污染危害不浅 电磁干扰和污染看不见、摸不着、听不到,因其无色、无味也无形,但它确实无处不在、危害不浅,威胁人体健康。德国专家指出,电磁污染能影响对人体生物钟起作用的激素和传达神经信息的激素,还能破坏细胞膜;美国科学家的研究表明,电磁污染可直接杀伤人

高速铁路信号工程监理实施细则 (适用

新 建 高 速 铁 路 250-350Km/h 信号工程
监理实施细则
编制: 审核: 审批:
Kk 工程监理公司 二〇一二年四月

高速铁路信号工程专业监理实施细则


第一部分 第二部分 第三部分 第四部分 第五部分 第六部分 第七部分 第八部分
应答器安装监理实施细则 地面固定信号机安装监理实施细则 地面信号标志安装监理实施细则 转辙装臵监理实施细则 轨道电路监理细则 光电缆线路监理实施细则 室内信号设备安装监理实施细则 信号联锁试验监理实施细则
第一部分 应答器安装监理实施细则
2

高速铁路信号工程专业监理实施细则
第一章
一、特点 略
专业工程(或专项工作)特点及其技术、质量标准
二、技术、质量标准 1.《高速铁路信号工程施工质量验收标准》(TB10756-2010) 2.《高速铁路信号工程施工技术指南》(铁建设{2010}241 号) 3.《铁路建设工程监理规范》(TB10402-2007) 4.《铁道部技术管理规程》 5.《铁路信号设计规范》 6. 施工图纸及业主下发的相关文件要求等。 (一)应答器技术、质量标准 1、应答器设备进场应进行验收,其规格、型号、数量及质量应符合设计要 求和相关技术标准的规定。 2、应答器实际设臵位臵与设计位臵允许偏差±0.5m。应答器组内相邻应答 器间的距离为5+0.5 0m。 3、应答器安装位臵与设备编号必须相符。 4、 应答器安装固定应符合下列要求: 1)在有砟轨道窄型混凝土枕上,应采用抱箍方式固定在轨枕上。 2)在有砟轨道宽型混凝土枕及无砟轨道板上,应采用化学锚栓方式安装。 3)在框架式轨道板中空地段,应采用连接支架方式安装。 4)两个或四个安装孔的应答器安装均应牢固、固定螺栓齐全。 5)应答器安装支架结构应具有抗震能力。 5、 应答器尾缆固定在轨道板、宽枕板上时,应采用卡具及采用化学锚栓固 定。应答器尾缆固定在路肩上时,应采用防护管防护并埋入沥青防水层下。应答 器尾缆与应答器连接口应连接应牢固,无松动。 6、 应答器周围无金属体空间位臵应符合下列要求:
3

中国高速铁路信号系统分析与思考

文章编号:1673-0291(2012)05-0090-05 中国高速铁路信号系统分析与思考 郭 进,张亚东 (西南交通大学信息科学与技术学院,四川成都610031) 摘 要:介绍中国高速铁路信号系统的发展历程及成果,对比分析了中国高速铁路列车运行控制系统的技术水平及特点.在总结成果的基础上,针对现有信号系统的技术标准与体系结构存在缺陷、基础研究薄弱、安全保障体系不符合高速铁路安全需求等问题进行了思考,并提出了改进建议. 关键词:高速铁路;铁路信号;中国列控系统中图分类号:U284 文献标志码:A Study and consideration on Chinese high speed railway signal system G UO Jin ,ZH AN G Yadong (School of Infor matio n Science and T echnology,Southw est Jiaotong U niversity,Cheng du Sichuan 610031,China) Abstract:The paper introduced the achievement of Chinese high -speed railway signal system,and then analyzed the technical characteristics of China Train Control System (CTCS).After summarizing the development of CTCS,some problems of the technical standard and config uration on CTCS w ere men -tioned,and the modification suggestions w ere put forw ard to decrease the risk on CTCS.Key words:high -speed railw ay ;railw ay sig nal;China Train Control System 收稿日期:2011-10-20 基金项目:铁道部科技研究开发计划项目资助(2011X025-C,2012X007-D) 作者简介:郭进(1960 ),男,四川成都人,教授,博士,博士生导师.研究方向为铁路信号.email:jguo -scce@sw https://www.360docs.net/doc/427789309.html,. 近年来,我国高速铁路建设取得了迅猛发展,截至2011年底,高速铁路营业里程达7531km(不包括台湾地区),在建高速铁路1万多千米,已成为世界高速铁路运营速度最高,运营里程最长、在建规模最大的国家[1] .铁路信号系统是为了保证铁路运输安全而诞生和发展的,它的第一使命是保证行车安全,没有铁路信号,就没有铁路运输的安全[2].随着列车运行速度的提高,完全靠人工 望、人工驾驶列 车已经不能保证行车安全了,当列车提速到200 km/h 时,紧急制动距离将达到2km (常用制动距离超过3km ),因此,国际上普遍认为当列车速度大于时速160km 时,必须装备列车运行控制系统(简称列控系统),以实现对列车间隔和速度的自动控制,提高运输效率,保证行车安全.要实现列车自动控 制,需要解决许多关键技术问题,例如:车-地之间大容量、实时和可靠信息传输,列车定位,列车精确、安全控制等,需要车载设备、轨旁设备、车站控制、调度指挥、通信传输等系统良好的配合才能实现,以现代列车运行控制技术为核心的信号系统可以称为现代铁路信号系统. 高速铁路装备了列控系统后,提高了列车运行速度和行车密度,同时对中国铁路信号技术还具有积极的促进作用,但由于发展速度太快,设备、标准、管理与养护都免不了存在一些缺陷和不足.本文作者简要阐述了中国列车运行控制系统为我国铁路发展所产生的促进作用,也对现有系统存在的若干问题进行了分析,在分析的基础上,针对今后中国列车运行控制系统的建设提出了改进建议. 第36卷第5期 2012年10月 北 京 交 通 大 学 学 报 JOU RNAL OF BEIJING JIA OT ON G U N IV ERSIT Y Vol.36No.5Oct.2012

高速铁路信号系统的抗电磁干扰技术研究

高速铁路信号系统的抗电磁干扰技术研究 发表时间:2019-06-21T16:03:58.057Z 来源:《防护工程》2019年第6期作者:刘磊 [导读] 作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。 中铁建电气化局集团南方工程有限公司湖北武汉市 430074 摘要:作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。另一方面,高速铁路采用的综合接地方式、共用的接地钢轨使得电磁骚扰传输耦合途径错综复杂,这些均对高速铁路信号系统的抗电磁干扰提出了较高挑战,由此可了解本文研究具备的较高现实意义。 关键词:高速铁路;信号系统;抗电磁干扰技术;研究 1高速铁路信号系统抗电磁干扰技术措施 1.1基本抑制措施 高速铁路信号系统的抗电磁干扰技术措施一般由三个方面入手,以高速铁路车载信号系统为例,具体的抑制措施如下:①骚扰源:高速铁路的电磁噪声在1.88~2.6GHz频段基本不会对设备的孔缝、信号端口、电源线端口造成影响,设备的天线端口也不会受到影响,因此仅需要考虑实际工程中的具体设备以采用针对性措施。②耦合途径:需考虑电缆的合理布线和接地,并保证不同类别的电缆间隔敷设,不同类别电缆之间的最小距离应遵循(表1)规定,同时保证电缆间互为直角;如出现不同类别间电缆最小距离无法满足情况,需设法将电缆隔开,一般采用连接整体屏蔽、金属电缆槽、金属板、金属管的方式,在信号电缆和电力电缆共存情况下,还需要重点关注电路馈线与回流电缆的敷设距离,保证二者尽可能拉近,将在接近导电的机车结构处安装电缆能够有效抑制电缆的发射场,一般情况下电缆屏蔽层需接地,且需要关注机箱屏蔽,机箱孔缝尺寸需满足最小波长要求,必要时可通过安装金属密闭塾片、导电性填料进行改善,接地线应短而宽并与接地面实现可靠搭接,电缆合理的接地和布线可有效提升其抗电磁干扰能力。③敏感设备:信号设备的电磁兼容性也需要得到重视,由于高速铁路车载信号系统本身属于敏感设备,该设备本身的防护措施必须得到重视,这种重视需体现在设计层面。具体来说,通信系统在设计阶段应选择适当的接收电平,电磁兼容设计需使用,浪涌防护器件设置电压限幅环节,瞬变电压抑制器、压敏电阻、硅雪崩二极管、放电管均属于常用的浪涌防护器件,此种措施下冲击电流可得到较好抑制(如雷电、变电所过流保护开关瞬时开闭引发的相关现象)。 表1 不同类别电缆之间的最小距离 同样以车载信号系统为例,其处理流程可概括为:“故障现象分析→现场实际测试→干扰耦合途径验证→敏感设备分析→抗干扰措施实施→验证试验”,通过列举可能导致故障现象的因素、选择针对性较强的仪器设备、围绕典型干扰传输耦合途径开展分析、建立被干扰信号系统电磁抗扰度模型,即可完成高质量的电磁干扰故障处理,最终合理应用抗干扰措施并验证其有效性,即可有效解决电磁干扰导致的故障问题。为取得优秀的高速铁路信号系统抗电磁干扰效果,一般需同时应用屏蔽、接地、滤波技术,但如果三种技术存在应用不当情况,则很容易引起更为严重的电磁干扰问题,因此必须保证抗干扰措施应用的针对性、定制性,并从整个系统角度思考问题,避免解决问题的过程引入新的电磁干扰耦合,结合故障实际和相关经验属于其中关键,这些必须得到相关业内人士的重点关注。 2实例分析 2.1故障现象分析 为提升研究的实践价值,本文选择了某高速列车作为研究对象,在通过某一位置时,该高速列车出现了ATP(车载自动列车防护系统)和多次报人机交互单元DMI出现通信超时故障,结合故障现象开展分析,技术人员初步确定了电磁骚扰源及其耦合途径,具体判断如下:①由于DMI临近的弱电设备未出现类似故障(通信超时故障报警时),因此可初步判断空间的辐射电磁场骚扰与主要电磁干扰信号基本不存在联系。②与DMI共用电源的弱电设备未出现类似故障,因此来自电源线的传导电压/电流骚扰与主要电磁干扰信号基本不存在联系。③ATP与DMI间的Profibus总线平行于220V交流输电线平行走线,且长度为23m,电压骚扰信号进入Profibus总线因此获得可行性较高的方式,即线间的容性耦合方式,ATP与DMI之间的数据传输也很容易出现误码故障,因此可初步判断信号线的传导电压骚扰为干扰源。 2.2敏感设备分析 图1为车载ATP系统基本结构图,结合该图不难发现,主机柜内的设备主要有JRU单元、BTM单元、DC/DC电源、车载电台、ATP核心运算单元,主机柜外则安装有天线、速度传感器、DMI单元等设备,ATP与DMI间的数据传输采用Profibus总线,设备的连接采用菊花链结构,在ATP核心运算单元支持下,总线可实现间隔性的DMI状态查询,必要时需上报DMI通信超时故障,如出现多次无法收到响应数据包的

高速铁路信号系统的抗电磁干扰技术分析

高速铁路信号系统的抗电磁干扰技术分析 发表时间:2019-07-09T16:32:18.260Z 来源:《建筑模拟》2019年第20期作者:李文强[导读] 我国现阶段应大力研究及实践高速铁路信号系统的抗电磁干扰技术,在现存的技术前提下不断创新、优化及升级,保证铁路信号系统的安全运行。 李文强 中国铁路北京局集团有限公司石家庄电务段摘要:我国道路建设随着科技的快速发展而发展迅速。随着电气化铁路的飞速发展及进步,现阶段高速铁路信号系统中涵盖着越来越多的高科技设备及仪器,但随着信号系统的应用及发展会出现较强的电磁干扰,影响高速铁路信号系统的正常使用,甚至影响高速铁路的运行安全,危害人们的生命安全。因此,有效的抗电磁干扰技术尤为重要。 关键词:高速铁路信号系统;抗电磁干扰技术引言 我国道路建设的快速发展离不开国家经济的大力支持。作为高速移动的复杂巨系统,高速列车在高速铁路系统中存在电磁骚扰源数量众多特点,且相关干扰多为突发性脉冲干扰,高速铁路采用的综合接地方式、共用的接地钢轨也使得电磁骚扰传输耦合途径错综复杂,这些均对高速铁路信号系统的抗电磁干扰提出了较高挑战。 1信号系统发展过程 高速铁路信号专业是故障-安全的信息化,经历了机械、电气、电子以及计算机应用等发展阶段,从人工控制、设备控制向信息控制为主体的方向发展。车站信号、区间信号和列车运行控制技术的一体化,通信信号技术的相互融合,以及行车调度指挥自动化等技术的应用,使现代高速铁路信号系统不再是各种传统的机械、电子类信号设备的简单组合,而是一个包含列车追踪、安全防护、速度控制等功能完善、层次分明、基于计算机处理技术的复杂控制系统。从而打破了铁路信号功能单一、控制分散、相对独立的传统理念,发展成集信号指示、列车运行控制、调度集中、数据通信等多项功能为一体,软件与硬件紧密结合的大型安全相关系统,具有网络化和系统化的技术特点,且系统功能复杂多样。 2现阶段高速铁路信号系统中存在的电磁干扰类型强电磁干扰主要是指由于电磁引发的传输通道、系统性能或设备元件等出现的故障及性能下降问题,现阶段的强电磁干扰主要分为雷电电磁干扰及电气化牵引供电系统干扰两部分,其中雷电电磁干扰主要是指大气放电产生的,由两种带异电荷的雷云接近后产生的较为强烈的放电现象,虽然雷云对于铁路信号的影响较小,但雷击产生的放电现象会严重影响铁路信号系统。第二种是电气化牵引供电系统干扰,主要分为牵引电磁干扰及传导性干扰两种,牵引电磁干扰主要是由于铁路沿线强电线产生的电磁影响,使得信号电缆出现感应电,影响线路信号的传输质量,甚至击穿信号电缆绝缘层,导致行车安全无法收到保障;传导性干扰主要是由传导电流产生,牵引电流通过机车、钢轨到地面的传输耦合途径,钢轨中的地中回流、平衡电流及大地迷流等对高速铁路信号设备产生了干扰及影响。 3高速铁路信号系统抗电磁干扰技术措施 3.1基本抑制措施 高速铁路信号系统的抗电磁干扰技术措施一般由三个方面入手,以高速铁路车载信号系统为例,具体的抑制措施如下:①骚扰源:高速铁路的电磁噪声在1.88~2.6GHz频段基本不会对设备的孔缝、信号端口、电源线端口造成影响,设备的天线端口也不会受到影响,因此仅需要考虑实际工程中的具体设备以采用针对性措施。②耦合途径:需考虑电缆的合理布线和接地,并保证不同类别的电缆间隔敷设,不同类别电缆之间的最小距离应遵循规定,同时保证电缆间互为直角;如出现不同类别间电缆最小距离无法满足情况,需设法将电缆隔开,一般采用连接整体屏蔽、金属电缆槽、金属板、金属管的方式,在信号电缆和电力电缆共存情况下,还需要重点关注电路馈线很如回流电缆的敷设距离,保证二者尽可能拉近,将在接近导电的机车结构处安装电缆能够有效抑制电缆的发射场,一般情况下电缆屏蔽层需接地,且需要关注机箱屏蔽,机箱孔缝尺寸需满足最小波长要求,必要时可通过安装金属密闭塾片、导电性填料进行改善,接地线应短而宽并与接地面实现可靠搭接,电缆合理的接地和布线可有效提升其抗电磁干扰能力。③敏感设备:信号设备的电磁兼容性也需要得到重视,由于高速铁路车载信号系统本身属于敏感设备,该设备本身的防护措施必须得到重视,这种重视需体现在设计层面,具体来说,通信系统设计应选择适当的接收电平,电磁兼容设计需通过浪涌防护器件设置电压限幅环节,瞬变电压抑制器、压敏电阻、硅雪崩二极管、放电管均属于常用的浪涌防护器件,冲击电流可得到较好抑制,如雷电、变电所过流保护开关瞬时开闭引发的相关现象。 3.2高速铁路信号系统电磁干扰故障排查技术 在排查高速铁路信号系统电磁干扰现象时首先应借助相应的技术设备及仪器开展相应的测量,结合实际测量结果、理论知识储备、工作经验、现场电磁干扰的实际情况初步定位骚扰源,寻找出干扰传输耦合途径,通过进一步的测量手段证明对电磁骚扰源定位,针对干扰传输耦合途径的判断属于正确的,继而针对电磁干扰故障进行解决。 3.3多源异构数据融合技术 电务运维数据包括集中监测系统采集的结构化时间序列数据,图像监控、列控司法记录仪等半结构化数据,以及记录日志等非结构化文本数据,不能有效实现知识的共享和互操作,这将影响高速铁路的智能运营维护决策和行车效率。多源异构信息融合技术和方法,可以实现结构化、半结构化和非结构化多源异构数据的融合互补,形成一致性、综合性电务维护数据。 3.4多层域状态智能感知 轨道交通自动化等级的进一步提高和高速列车自动驾驶的发展等,需要运用列车运行周界检测与入侵物智能感知技术和识别技术,实现对轨道交通运载工具、运行环境、运行周界等进行全天候、全场景、跨区间、多层域的状态实时感知,除了在列车上增加智能感知设备外,在铁路沿线也要增加智能感知设备,并将感知状态实时传输给列车,实现车、地相结合的智能感知。未来高速铁路信号系统可对车、电、机和环境的状态进行数据收集和融合。通过M-M网络实现设备间信息传输,利用全感知信息的障碍物状态输入,实现高精度、高安全的列车移动闭塞控制。 3.5智能调度控制一体化

高速铁路信号系统

高速铁路信号系统 近年来,我国高速铁路建设取得了迅猛发展,截至2011年底,高速铁路营业里程达7 531 km(不包括台湾地区),在建高速铁路1万多千米,已成为世界高速铁路运营速度最高,运营里程最长、在建规模最大的国家.铁路信号系统是为了保证铁路运输安全而诞生和发展的,它的第一使命是保证行车安全,没有铁路信号,就没有铁路运输的安全.随着列车运行速度的提高,完全靠人工望、人工驾驶列车已经不能保证行车安全了,当列车提速到200km/h时,紧急制动距离将达到2 km(常用制动距离超过3 km),因此,国际上普遍认为当列车速度大于时速160 km 时,必须装备列车运行控制系统(简称列控系统),以实现对列车间隔和速度的自动控制,提高运输效率,保证行车安全.要实现列车自动控制,需要解决许多关键技术问题,例如:车-地之间大容量、实时和可靠信息传输,列车定位,列车精确、安全控制等,需要车载设备、轨旁设备、车站控制、调度指挥、通信传输等系统良好的配合才能实现,以现代列车运行控制技术为核心的信号系统可以称为现代铁路信号系统. 高速铁路装备了列控系统后,提高了列车运行速度和行车密度,同时对中国铁路信号技术还具有积极的促进作用,但由于发展速度太快,设备、标准、管理与养护都免不了存在一些缺陷和不足.本文作者简要阐述了中国列车运行控制系统为我国铁路发展所产生的促进作用,也对现有系统存在的若干问题进行了分析,在分析的基础上,针对今后中国列车运行控制系统的建设提出了改进建议. 中国列车控制系统(CTCS) 2003年,铁道部参照欧洲列车运行控制系统(ETCS)相关技术[3],根据中国高速铁路建设需求制定了5中国列车运行控制系统(CTCS)技术规范总则(暂行)6,以分级的形式满足不同线路运输需求.CTCS系统由车载子系统和地面子系统组成.地面子系统包括:应答器、轨道电路、无线通信网络(GSM-R)、列控中心(TCC)/无线闭塞中心(RBC).车载子系统包括:CTCS车载设备、无线系统车载模块等. CTCS依次分CTCS-0~CTCS-4共5个等级, 以满足不同线路速度需求.CTCS0级为既有线的现状;CTCS1级为面向160 km/h以下的区段;CTCS2级为面向干线提速区段和200~250 km/h高速铁路;CTCS3级为面向300~350 km/h及以上客运专线和高速铁路;CTCS4级为面向未来的列控系统. TCS-2级列控系统[5]是基于轨道电路和点式应答器传输列车运行许可信息,并采用目标-距离模式监控列车安全运行的控制系统.地面一般设置通过信号机,是一种点-连式列车运行控制系统.在CTCS-2级列控系统中,用轨道电路实现列车占用及完整性检查,并连续向车载设备传送空闲闭塞分区数量等信息.用应答器向车载设备传输定位、线路参数、进路参数、临时限速等信息.列控中心具有轨道电路编码、应答器报文储存和调用、区间信号机点灯控制、站间安全信息传输等功能.同时,列控中心根据轨道电路、进路状态及临时限速等信息,产生行车许可,并通过轨道电路及有源应答器将行车许可传递给列控车载设备.列控车载设备根据地面设备提供的信号动态信息、线路参数、临时限速等信息,结合动车组参数,按照目标-距离模式生成控制速度,监控列车安全运行. CTCS-3级的列控系统[6]是基于无线通信网GSM-R传输列控信息并采用轨道电路检查列车占用的连续式控制系统.CTCS-3级列控系统采取目标距离控制模式和准移动闭塞方式,地面可不设通过信号机,司机凭车载信号行车,同时具有CTCS-2级功能.CTCS-3级列控系统地面设备包括:无线闭塞中心、列控中心、轨道电路、点式应答器、GSM-R通信接口设备等.车载设备包括:车载安全计算机、GSM-R无线通信单元、轨道电路信息接收单元、应答器信息接收模块、列车接口单元等. 在CTCS-3级列控系统中,无线闭塞中心根据轨道电路、联锁进路等信息生成行车许可,

电子仪器仪表抗电磁干扰措施探讨

电子仪器仪表抗电磁干扰措施探讨 随着科学技术的发展,人们在工作、生活中使用了各种智能化、自动化电子仪器仪表。在上述精密器件使用过程中,存在许多的電磁干扰,导致仪器仪表的信息传输性能降低,无法发挥应有的功能。因此,在研发和设计电子仪器仪表过程中实现抗电磁干扰,以便有效地保证电子仪器仪表在电磁干扰环境中依然正常工作,成为许多学者研究的热点。 2 电磁干扰类别及危害 2.1 电磁干扰源分类 电子仪器仪表在使用过程中将会产生各种各样的电磁干扰,成为电子设备无法正常工作的诱因,因此,针对电磁干扰源进行分析和归类,成为规避电磁干扰的首要任务。 (1)电子仪器仪表内部干扰。电子仪器仪表内部存在多种元器件,这些元器件通电之后将会产生各种电磁场,因此会互相干扰。比如传输信号的导线、地线和电源之间产生阻抗耦合干扰,或者传输信号的导线之间因互感产生的干扰;功率较大的元器件也会产生磁场,通过耦合产生干扰,导致其他元器件无法正常工作。 (2)电子仪器仪表外部干扰。电子设备或者仪器仪表系统外部相关因素也会干扰线路设备或系统正常的工作。外部因素包括外部大功率设备、外部高电压设备或线路,其可以通过耦合产生电磁干扰,影响电子仪器仪表正常工作;电子仪器仪表工作环境的温度忽高忽低,也会导致内部元器件参数发生一些变化,造成干扰。 2.2 电磁干扰的传播方式 电磁干扰将会产生似稳场和辐射场两种类型。如果干扰信号的波长大于被干扰对象的结构尺寸时,干扰信号产生似稳场,采用感应的形式进入干扰对象的线路,或者通过直线传导进入电子仪器仪表的线路或设备系统中。当电磁干扰信号的波长小于被干扰对象结构尺寸时,

干扰信号就会产生辐射场,辐射产生的电磁能量将会进入被干扰对象的通路中,干扰信号传输,并且能够按照漏电或者耦合的形式通过绝缘支撑物,经过公共阻抗的耦合进入到被干扰电子仪器仪表的线路、设备等系统中。 2.3 电磁干扰造成的危害 随着电子仪器仪表技术的迅速发展和进步,其已经逐渐向精密仪器方向发展,并且电子仪器仪表在智能化、自动化机械中得到了广泛的应用,精度要求也越来越高。在机械正常工作过程中,由于电磁干扰导致其精准程度发生偏差,将会产生不可估量的损失。比如在武器制造仪器和设备中,通常使用很多类型的电子仪器仪表,如果仪器仪表因电磁干扰导致参数发生改变,将会直接导致武器研制失败,甚至产生严重的后果;比如现代导航设备中,如果仪器仪表因电磁干扰使导航结果产生较大的偏差,将会导致导航设备的准确性大大降低,偏离航向,造成极大的损害。 3 电子仪器仪表抗电磁干扰措施 3.1 屏蔽磁场降低电磁干扰 降低仪器仪表电磁干扰的最为重要的一种方法是屏蔽,其可以有效减低电磁场的穿透能力,屏蔽可以有效地衰减或者隔离辐射干扰,屏蔽电磁干扰的基本原理或者屏蔽方法包括三种,具体如下:一是电磁屏蔽,电磁屏蔽的屏蔽体与经典屏蔽较为类似,并且电磁屏蔽采用的金属材料也具有较低的电阻,通过利用金属的特性,电磁场产生的感染将会被反射或者吸收,可以大大地降低高频电磁场的干扰;二是利用静电屏蔽,其屏蔽体可以采用电阻非常低的金属材料设计制作而成,并且采用接地的方法,可以有效地降低或者消除电路之间的电磁干扰;三是实施磁屏蔽,其可以使用高饱和、高导磁的磁性材料,通过吸收、损耗电磁屏蔽干扰,可以有效地防止低频磁场产生干扰。 3.2 滤波器抑制电磁干扰 可以利用具有静电防护功能的电磁干扰滤波器来防护电磁干扰,滤波器可以在很大程度上有效地抑制电磁干扰,大大降低电磁干扰的

相关文档
最新文档