模拟分页式虚拟存储管理中硬件的地址转换和缺页中断 选择页面调度算法处理缺页中断

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断  选择页面调度算法处理缺页中断
模拟分页式虚拟存储管理中硬件的地址转换和缺页中断  选择页面调度算法处理缺页中断

操作系统实验二(第一题)

一.实验内容

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。

二.实验目的

在计算机系统总,为了提高主存利用率,往往把辅助存储器作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间综合可以超出主存的绝对地址空间。用这种办法扩充的主存储区成为虚拟存储器。

三.实验题目

模拟分页式存储管理中硬件的地址转换和产生缺页中断。

是 否

开始 取一条指令 取指令中访问的页号 查页表

该也标志=1?

输出“*”页号表示发生缺页中断 形成绝对地址

输出绝对地址 有后继指令? 取下一条指令 结束

四.程序清单

//

// 操作实验二.cpp : 定义控制台应用程序的入口点。

//

#include "stdafx.h"

#include

#include

#include

using namespace std;

class ins

{

private:string ope;

long int page;

long int unit;

public:

ins(){ }

ins(string o,long int p,long int u):ope(o),page(p),unit(u){}

void setope(string o){ ope=o;}

void setpage(long int p){ page=p;}

void setunit(long int u){ unit=u;}

string getope(){return ope;}

long int getpage(){return page;}

long int getunit(){return unit;}

};

class work

{

private:

long int Page;

int sym;

long int inum;

long int onum;

public:

work(){}

work(long int P, int s,long int i,long int o):Page(P),sym(s),inum(i),onum(o){} void setPage(long int P){ Page=P;}

void setsym( int s){ sym=s;}

void setinum(long int i){ inum=i;}

void setonum(long int o){ onum=o;}

long int getPage(){return Page;}

int getsym(){return sym;}

long int getinum(){return inum;}

long int getonum(){return onum;}

};

void diaodu(work *w,ins * i,int numofins)

{ for(int j=0;j

{

long int tempofk;

long int a =i[j].getpage();

for(int k=0;k<7;k++) //7是页表的页数

if(w[k].getPage()!=a)

continue;

else

{

tempofk=k;

break;

}

if(w[tempofk].getsym()==1)

cout<<"绝对地址:"<

else cout<<"*"<<"发生缺页中断"<

}

}

int main()

{

ins*INS=new ins[12];

INS[0].setope ("+");

INS[0].setpage(0);

INS[0].setunit(70);

INS[1].setope ("+");

INS[1].setpage(1);

INS[1].setunit(50);

INS[2].setope ("×");

INS[2].setpage(2);

INS[2].setunit(15);

INS[3].setope ("存"); INS[3].setpage(3);

INS[3].setunit(21);

INS[4].setope ("取"); INS[4].setpage(0);

INS[4].setunit(56);

INS[5].setope ("-");

INS[5].setpage(6);

INS[5].setunit(40);

INS[6].setope ("移位"); INS[6].setpage(4);

INS[6].setunit(53);

INS[7].setope ("+");

INS[7].setpage(5);

INS[7].setunit(23);

INS[8].setope ("存"); INS[8].setpage(1);

INS[8].setunit(37);

INS[9].setope ("取"); INS[9].setpage(2);

INS[9].setunit(78);

INS[10].setope ("+"); INS[10].setpage(4);

INS[10].setunit(1);

INS[11].setope ("存"); INS[11].setpage(6);

INS[11].setunit(84);

work*W =new work[7]; ifstream in("g://operate1.txt");

long int p;

int s;

long int i;

long int o;

for(int jj=0;jj<7 ;jj++)

{

in>>p;in>>s;in>>i;in>>o ;

W[jj].setPage(p);

W[jj].setsym(s);W[jj].setinum(i);W[jj].setonum(o);

}

diaodu(W,INS,12);

}

五.结果显示

操作系统实验二(第二题)

一.用先进先出(FIFO )

是 否

是 否

开始 取一条指令 取指令中访问的页号-->L

查页表 该页标志=1?

形成绝对地址 是存指令? 置L 页修改标志为“1”

输出绝对地址 有后继指令? 取下一条指令 结束 j=p[k] J 页修改标志为1? 输出 j ,修改L 页的标志及在内存中的地址,输出L P[k]=L,k=(k==m-1)?0:(k+1) 修改页表

九.程序清单

/ 操作系统实验二.cpp : 定义控制台应用程序的入口点。

//

#include "stdafx.h"

#include

#include

#include

using namespace std;

class ins

{

private:string ope;

long int page;

long int unit;

public:

ins(){ }

ins(string o,long int p,long int u):ope(o),page(p),unit(u){}

void setope(string o){ ope=o;}

void setpage(long int p){ page=p;}

void setunit(long int u){ unit=u;}

string getope(){return ope;}

long int getpage(){return page;}

long int getunit(){return unit;}

};

class work

{

private:

long int Page;

int sym;

long int inum;

int change;

long int onum;

public:

work(){}

work(long int P, int s,long int i,int c,long int o):Page(P),sym(s),inum(i),change(c),onum(o){}

void setPage(long int P){ Page=P;}

void setsym( int s){ sym=s;}

void setinum(long int i){ inum=i;}

void setchange(int c){ change=c;}

void setonum(long int o){ onum=o;}

long int getPage(){return Page;}

int getsym(){return sym;}

long int getinum(){return inum;}

int getchange(){return change;}

long int getonum(){return onum;}

};

void diaodu(work *w,ins * i,int numofins)

{

const int m=4;

int p[m]={0,1,2,3};

int k=0;

int tempofins=12;

for(int ii=0;ii

{

int L=i[ii].getpage();

for(int iii=0;iii<7;iii++)

if(w[iii].getPage()!=L)

continue;

else if(w[iii].getsym()==1)

{

if(i[ii].getope()=="存")

w[iii].setchange (1);

cout<<"绝对地址谓:"<

}

else {

cout<<"产生中断"<<"*"<

int j=p[k];

w[j].setsym(0);

w[j].setinum(-1);

w[L].setsym(1);

w[L].setinum(rand()%20+10);

if(w[j].getchange ()==1)

cout<<"第"<

p[k]=L;

k=(k==m-1)?0:(k+1);

}

cout<<"调入主存的页:";

for(int iiii=0;iiii

{

int kk=p[iiii];

cout<

}

cout<

}

}

int main()

{

ins*INS=new ins[12];

INS[0].setope ("+");

INS[0].setpage(0);

INS[0].setunit(70);

INS[1].setope ("+");

INS[1].setpage(1);

INS[1].setunit(50);

INS[2].setope ("×");

INS[2].setpage(2);

INS[2].setunit(15);

INS[3].setope ("存");

INS[3].setpage(3);

INS[3].setunit(21);

INS[4].setope ("取");

INS[4].setpage(0);

INS[4].setunit(56);

INS[5].setope ("-");

INS[5].setpage(6);

INS[5].setunit(40);

INS[6].setope ("移位");

INS[6].setpage(4);

INS[6].setunit(53);

INS[7].setope ("+");

INS[7].setpage(5);

INS[7].setunit(23);

INS[8].setope ("存");

INS[8].setpage(1);

INS[8].setunit(37);

INS[9].setope ("取");

INS[9].setpage(2);

INS[9].setunit(78);

INS[10].setope ("+");

INS[10].setpage(4);

INS[10].setunit(1);

INS[11].setope ("存");

INS[11].setpage(6);

INS[11].setunit(84);

work*W =new work[7];

ifstream in("g://operate.txt");

long int p;

int s;

long int i;

int c;

long int o;

for(int jj=0;jj<7 ;jj++)

{

in>>p;in>>s;in>>i;in>>c;in>>o ;

W[jj].setPage(p);

W[jj].setsym(s);W[jj].setinum(i);W[jj].setchange(c);W[jj].setonum(o);

}

diaodu(W,INS,12);

}

十.程序结果

操作系统课程设计--连续动态分区内存管理模拟实现

(操作系统课程设计) 连续动态分区内存 管理模拟实现

目录 《操作系统》课程设计 (1) 引言 (3) 课程设计目的和内容 (3) 需求分析 (3) 概要设计 (3) 开发环境 (4) 系统分析设计 (4) 有关了解内存管理的相关理论 (4) 内存管理概念 (4) 内存管理的必要性 (4) 内存的物理组织 (4) 什么是虚拟内存 (5) 连续动态分区内存管理方式 (5) 单一连续分配(单个分区) (5) 固定分区存储管理 (5) 可变分区存储管理(动态分区) (5) 可重定位分区存储管理 (5) 问题描述和分析 (6) 程序流程图 (6) 数据结构体分析 (8) 主要程序代码分析 (9) 分析并实现四种内存分配算法 (11) 最先适应算 (11) 下次适应分配算法 (13) 最优适应算法 (16)

最坏适应算法......................................................... (18) 回收内存算法 (20) 调试与操作说明 (22) 初始界面 (22) 模拟内存分配 (23) 已分配分区说明表面 (24) 空闲区说明表界面 (24) 回收内存界面 (25) 重新申请内存界面..........................................................26. 总结与体会 (28) 参考文献 (28) 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 课程设计目的和内容: 理解内存管理的相关理论,掌握连续动态分区内存管理的理论;通过对实际问题的编程实现,获得实际应用和编程能力。

北理工操作系统内存管理实验报告

实验三:内存管理 班级: 学号:

姓名: 一、实验目的 1.通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解; 2.熟悉虚存管理的页面淘汰算法; 3.通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验要求 1.设计一个请求页式存储管理方案(自己指定页面大小),并予以程序实现。 并产生一个需要访问的指令地址流。它是一系列需要访问的指令的地址。为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列。 2.页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页 表中抹去。而不再判断它是否被改写过,也不将它写回到辅存。 3.系统运行既可以在Windows,也可以在Linux。 三、实验流程图

图1 页式存储管理程序参考流程 四、实验环境 硬件设备:个人计算机。 系统软件:windows操作系统,Visual C++6.0编译环境。 五、实验结果

说明:模拟产生35个指令地址,随机产生20个指令地址进行排队,假设主存中共有10个工作集页帧。将前9个指令调入内存,因为前9个指令中,页号为13的指令有两个,所以调入内存中共有8页。此时主存中还有两个空闲帧。此时按刚才随机顺序进行访问指令工作。前9页因都在主存中可直接调用。第10个随机地址为页号为5的指令,也在主存中,也可直接调用。页号为24,3因不在主存中,需要调用进主存。此时主存已满。然后主存需要进行调用页号为27号的指令,因主存已满,需要执行FIFO算法,将最先进入主存的页号为30的指令调出,将27号放入第1000000帧。以后需要调用的页面按照存在就无需调用,否则按FIFO原则进行调页工作。 六、实验感想 七、实验代码 #include

存储管理---------常用页面置换算法模拟实验

实验七存储管理---------常用页面置换算法模拟实验 实验目的 通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。 实验内容 设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。 1、最佳淘汰算法(OPT) 2、先进先出的算法(FIFO) 3、最近最久未使用算法(LRU) 4、最不经常使用算法(LFU) 5、最近未使用算法(NUR) 命中率=1-页面失效次数/页地址流长度 实验准备 本实验的程序设计基本上按照实验内容进行。即首先用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。(1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: A:50%的指令是顺序执行的 B:25%的指令是均匀分布在前地址部分 C:25%的指令是均匀分布在后地址部分 具体的实施方法是: A:在[0,319]的指令地址之间随机选取一起点m B:顺序执行一条指令,即执行地址为m+1的指令 C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’ D:顺序执行一条指令,其地址为m’+1 E:在后地址[m’+2,319]中随机选取一条指令并执行 F:重复步骤A-E,直到320次指令 (2)将指令序列变换为页地址流 设:页面大小为1K; 用户内存容量4页到32页; 用户虚存容量为32K。 在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0 条-第9 条指令为第0页(对应虚存地址为[0,9]) 第10条-第19条指令为第1页(对应虚存地址为[10,19]) ……………………………… 第310条-第319条指令为第31页(对应虚存地址为[310,319]) 按以上方式,用户指令可组成32页。 实验指导 一、虚拟存储系统 UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以

实验六请求分页存储管理

页眉 实验六:请求分页存储管理 一.实验目的 深入理解请求页式存储管理的基本概念和实现方法,重点认识其中的地址变换、缺页中断、置换算法等实现思想。 二.实验属性 该实验为综合性、设计性实验。 三.实验仪器设备及器材 普通PC386以上微机 四.实验要求 本实验要求2学时完成。 本实验要求完成如下任务: (1)建立相关的数据结构:页表、页表寄存器、存储块表等; (2)指定分配给进程的内存物理块数,设定进程的页面访问顺序; (3)设计页面置换算法,可以选择OPT、FIFO、LRU等,并计算相应的缺页率,以比较它们的优劣; (4)编写地址转换函数,实现通过查找页表完成逻辑地址到物理地址的转换;若发生缺页则 选择某种置换算法(OPT、FIFO、LRU等)完成页面的交换; (5)将整个过程可视化显示出来。 实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。 三、设计过程 3.1算法原理分析 OPT算法是未来最远出现,当当前内存中没有正要访问的页面时,置换出当前页面中在未来的访问页中最远出现的页面或再也不出现的页面。 FIFO算法是先进先出,当当前内存中没有正要访问的页面时,置换出最先进来的页面。 LRU算法是最近最久未使用,当当前内存中没有正要访问的页面时,置换出在当前页面中最近最久没有使用的页面。 3.2数据定义 int length,num_page,count,seed; //length记录访问串的长度,num_page页面数,count 记录缺页次数 页脚 页眉 存储访问,order//result记录结果int result[20][30],order[30],a[10]; 存储当前页面中的值串,a flag1等为标志变量int pos1,flag1,flag2,flag3; //pos1位置变量,//最佳void opt() char result1[30]; //记录缺页数组 void fifo() //先进先出 bool search(int n) //查找当前内存中是否已存在该页 3.3流程图与运行截图 开始

内存管理模型的设计与实现

操作系统课程实验报告 学生姓名:尹朋 班学号:111131 指导教师:袁国斌 中国地质大学信息工程学院 2015年1月4日

实习题目:内存管理模型的设计与实现 【需求规格说明】 对内存的可变分区申请采用链表法管理进行模拟实现。要求: 1.对于给定的一个存储空间自己设计数据结构进行管理,可以使用单个链 表,也可以使用多个链表,自己负责存储空间的所有管理组织,要求采用分页方式(指定单元大小为页,如4K,2K,进程申请以页为单位)来组织基本内容; 2.当进程对内存进行空间申请操作时,模型采用一定的策略(如:首先利用 可用的内存进行分配,如果空间不够时,进行内存紧缩或其他方案进行处理)对进程给予指定的内存分配; 3.从系统开始启动到多个进程参与申请和运行时,进程最少要有3个以上, 每个执行申请的时候都要能够对系统当前的内存情况进行查看的接口; 4.对内存的申请进行内存分配,对使用过的空间进行回收,对给定的某种页 面调度进行合理的页面分配。 5.利用不同的颜色代表不同的进程对内存的占用情况,动态更新这些信息。 【算法设计】 (1)设计思想: 通过建立一个链表,来描述已分配和空闲的内存分区。对于每一个分区,它可能存放了某个进程,也可能是两个进程间的空闲区。链表中的每一个结点,分别描述了一个内存分区,包括它的起始地址、长度、指向下一个结点的指针以及分区的当前状态。 在基于链表的存储管理中,当一个新的进程到来时,需要为它分配内存空间,即为它寻找某个空闲分区,该分区的大小必须大于或等于进程的大小. 最先匹配法:假设新进程的大小为M,那么从链表的首节点开始,将每一个空闲节点的大小与M相比较,直到找到合适的节点.这种算法查找的节点很少,因而速度很快. 最佳匹配算法:搜索整个链表,将能够装得下该进程的最小空闲区分配出去. 最坏匹配法:在每次分配的时候,总是将最大的那个空闲区切去一部分,分配给请求者.它的依据是当一个很大的空闲区被切割成一部分后,可能仍然是一个比较大的空闲区,从而避免了空闲区越分越小的问题. (2)设计表示: 分区结点设计: template class ChainNode { friend Chain; public:

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

操作系统-页式虚拟存储管理程序模拟

操作系统-页式虚拟存储管理程序模拟

FIFO页面置换算法 1在分配内存页面数(AP)小于进程页面数(PP)时,当然是最先运行的AP个页面放入内存。 2这时有需要处理新的页面,则将原来内存中的AP个页面最先进入的调出(是以称为FIFO),然后将新页面放入。 3以后如果再有新页面需要调入,则都按2的规则进行。 算法特点:所使用的内存页面构成一个队列。LRU页面置换算法 1当分配内存页面数(AP)小于进程页面数(PP)时,当然是把最先执行的AP个页面放入内存。2当需要调页面进入内存,而当前分配的内存页面全部不空闲时,选择将其中最长时间没有用到的那个页面调出,以空出内存来放置新调入的页面(称为LRU)。 算法特点:每个页面都有属性来表示有多长时间未被CPU使用的信息。 结果分析

#include #include using namespace std; const int MaxNum=320;//指令数 const int M=5;//内存容量 int PageOrder[MaxNum];//页面请求 int Simulate[MaxNum][M];//页面访问过程 int PageCount[M],LackNum;//PageCount用来记录LRU算法中最久未使用时间,LackNum记录缺页数 float PageRate;//命中率 int PageCount1[32]; bool IsExit(int i)//FIFO算法中判断新的页面请求是否在内存中 { bool f=false; for(int j=0;j

实验六 分页内存管理算法模拟

实验七分页内存管理算法模拟 姓名:黄中圣 学号:20140288 班级:14级计科三班 一、实验目的 1、熟悉基本分页存储管理。 2、建立描述分页内存管理中的页目录表、页表结构。 3、实现进行虚拟内存到物理内存的映射算法。 二、实验理论基础及教材对应关系 1、操作系统中内存管理。 2、基本分页内存、分段内存管理。 3、页目录表、页表的作用,以及虚拟地址到物理地址的映射关系。 三、实验内容与步骤 题目:分页存储管理的设计与实现。 某系统采用了两级页表机制,可使页表所占用内存尽量少,分页地址变换机构如下图所示:

分页地址变换机构 页目录表共1024项,每个页表1024项,每页的大小是4K个字节。地址转换时,先由分段部件生成线性地址,再由上面所述的分页部件,根据线性地址中的页目录索引在页目录表中找相应的项,该项值为所需页表在内存的块号,找到该页表后,然后按第21-12位的页表索引找到所需页的物理内存起始地址,把它与12位偏移直接相加得到32位的物理地址。 设系统有如表1中所示的10个段,已知:1-8段从内存的200000H处开始由低地址到高地址连续存放,映射到3G+4M开始的线性地址空间;9段(缓冲区)放在400000H开始的内存,映射的线性地址同物理地址;显存从B8000H 开始,映射到3G开始的线性地址空间。 表1

(1)、请设计并填写页目录表和页表(需说明每张表的内存地址)内存的物理地址200000H(=0010 0000 0000 [0000 0000 0000])映射到的线性地址为3G+4M(=[1100 0000 01] [00 0000 0000] [0000 0000 0000]), 内存的物理地址400000H(= 0100 0000 0000 [0000 0000 0000])映射到的线性地址为400000H(=[0000 0000 01] [00 0000 0000] [0000 0000 0000]), 内存的物理地址B8000H(=1011 1000 [0000 0000 0000])映射到的线性地址为3G(=[1100 0000 00] [00 0000 0000] [0000 0000 0000]), 页目录表#0索引为0000 0000 01,该项值为所需页表在内存的块号,找到该页表后,00 0000 0000为页表索引,该值找到所需页的物理内存起始地址,又12位偏移值为0000 0000 0000,所以物理内存起始地址为:400000H 页目录表#1索引为1100 0000 00,该项值为所需页表在内存的块号,找到该页表后,00 0000 0000为页表索引,该值找到所需页的物理内存起始地址,又12位偏移值为0000 0000 0000,所以物理内存起始地址为:B8000H 页目录表#1索引为1100 0000 01,该项值为所需页表在内存的块号,找到该页表后,00 0000 0000为页表索引,该值找到所需页的物理内存起始地址,又12位偏移值为0000 0000 0000,所以物理内存起始地址为:200000H 所以设置页目录表1张,内存地址为...., 页表3张内存起始地址分别为0000 0000 01,1100 0000 00,1100 0000 01 (2)、线性地址为:C0401010H、C0404010H、C0414010H,则物理地址是多少,所在段的段名是什么?(需写出计算的详细步骤) C0401010=(1100 0000 01)(00 0000 0001) (0000 0001 0000)物理地址为: 0010 0000 0001 (0000 0001 0000)=201010H在第2段 C0404010=(1100 0000 01)(00 0000 0100) (0000 0100 0000)物理地址为: 0010 0000 0100 (0000 0100 0000)=204040H在第5段 C0414010=(1100 0000 01)(00 0001 0100) (0000 0001 0000)物理地址为: 0010 0001 0100 (0000 0001 0000)=214010H在第6段 实验步骤: 1、定义页目录表、页表的数据结构,以及必要的数据。 #define Page_Size 4096 // 页面大小

实验五动态页式存储管理实现过程的模拟

实验五动态页式存储管理实现过程的模拟 一、实验目的与要求 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验帮助学生理解在分页式存储管理中怎样实现虚拟存储器;掌握物理内存和虚拟内存的基本概念;掌握重定位的基本概念及其要点,理解逻辑地址与绝对地址;掌握动态页式存储管理的基本原理、地址变换和缺页中断、主存空间的分配及分配算法;掌握常用淘汰算法。 二、实验环境 VC++6.0集成开发环境或java程序开发环境。 三、实验内容 模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。 四、实验原理 1、地址转换 (1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式如图10所示: 图10 页表格式 其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。 主存块号----用来表示已经装入主存的页所占的块号。

在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。 (2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式: 绝对地址=块号×块长+单元号 计算出欲访问的主存单元地址。如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。 (3)设计一个“地址转换”程序来模拟硬件的地址转换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断。该模拟程序的算法如图11。 图11 地址转换模拟算法 2、用先进先出(FIFO)页面调度算法处理缺页中断。

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

请求页式存储管理中常用页面置换算法模拟

信息工程学院实验报告 课程名称:操作系统Array实验项目名称:请求页式存储管理中常用页面置换算法模拟实验时间: 班级姓名:学号: 一、实验目的: 1.了解内存分页管理策略 2.掌握调页策略 3.掌握一般常用的调度算法 4.学会各种存储分配算法的实现方法。 5.了解页面大小和内存实际容量对命中率的影响。 二、实验环境: PC机、windows2000 操作系统、VC++ 三、实验要求: 本实验要求4学时完成。 1.采用页式分配存储方案,通过分别计算不同算法的命中率来比较算法的优劣,同时也考虑页面大 小及内存实际容量对命中率的影响; 2.实现OPT 算法 (最优置换算法) 、LRU 算法 (Least Recently) 、 FIFO 算法 (First IN First Out)的模拟; 3.会使用某种编程语言。 实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告,按时上交。 四、实验内容和步骤: 1.编写程序,实现请求页式存储管理中常用页面置换算法LRU算法的模拟。要求屏幕显示LRU算法 的性能分析表、缺页中断次数以及缺页率。 2.在上机环境中输入程序,调试,编译。 3.设计输入数据,写出程序的执行结果。 4.根据具体实验要求,填写好实验报告。 五、实验结果及分析: 实验结果截图如下:

利用一个特殊的栈来保存当前使用的各个页面的页面号。当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,栈底是最近最久未被使用的页面号。当访问第5个数据“5”时发生了缺页,此时1是最近最久未被访问的页,应将它置换出去。同理可得,调入队列为:1 2 3 4 5 6 7 1 3 2 0 5,缺页次数为12次,缺页率为80%。 六、实验心得: 本次实验实现了对请求页式存储管理中常用页面置换算法LRU算法的模拟。通过实验,我对内存分页管理策略有了更多的了解。 最近最久未使用(LRU)置换算法的替换规则:是根据页面调入内存后的使用情况来进行决策的。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。 最佳置换算法的替换规则:其所选择的被淘汰页面,将是以后永不使用的或许是在最长(未来)时间内不再被访问的页面。 先进先出(FIFO)页面置换算法的替换规则:该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。 三种替换算法的命中率由高到底排列OPT>LRU>FIFO。 本次的程序是在网上查找的相关代码然后自己进行修改,先自己仔细地研读了这段代码,在这过程中我对C++代码编写有了更深的了解。总之,本次实验使我明白要学会把课堂上的理论应用到实际操作中。我需要在今后熟练掌握课堂上的理论基础,只有坚实的基础,才能在实际操作中更得心应手。 附录: #include "" #include <> const int DataMax=100; const int BlockNum = 10;

基本分页存储管理的模拟实现

基本分页存储管理的模拟实现 学院 专业 学号 学生姓名 指导教师姓名 2014年03月18日 目录

一、设计目的与内容 二、各个功能模块 三、主要功能模块流程图 四、系统测试 五、结论 六、源程序及系统文件使用说明 一、设计目的与内容 设计的目的: 操作系统课程设计是计算机专业重要的教学环节, 它为学生提供了一个既动手又动脑, 将课本上的理论知识和实际有机的结合起来, 独立分析和解决实际问题的机会。 1. 进一步巩固和复习操作系统的基础知识。 2. 培养学生结构化程序、模块化程序设计的方法和能力。 3. 提高学生调试程序的技巧和软件设计的能力。 4. 提高学生分析问题、解决问题以及综合利用C 语言进行程序设计的能力。 设计内容: 根据设计要求实现对基本分页存储管理的模拟 设计要求:

1. 2. 进程名, 进程所需页数, 也 可从文件读出。 3. 况。 所采用的数据结构: typedef struct LNode{ int f; //进程号 char name[8]; //进程名 int size; //进程大小 int n; //进程页数 int ye[100]; //页表,下标表示页号, 内容表示进程各页所在物理块 struct LNode *next; }LNode,*LinkList; 二、各个功能模块 主要功能模块流程图

四、系统测试 主界面: (显示程序的各个功能块)1、选择1, 运行界面如下:

(选择1, 输入进程名, 显示内存物理块分配情况) 2、选择2, 运行界面如下: (显示2回收进程, 若进程名输入错误, 则显示进程不存在, )3、选择3, 运行界面如下:

基本分页存储管理

《操作系统》课程实验报告实验名称:基本分页储存管理

实验五基本分页存储管理 实验目的:熟悉并掌握基本分页存储管理的思想。 熟悉并掌握基本分页存储管理的分配和回收方式,并能够模拟实现。 实验内容:用高级语言模拟实现基本分页存储管理,要求: 1、内存空间的初始化——可以由用户输入初始内存空间各个物理 块情况。(用二维矩阵的方式按物理块号,逐行给出每个物理块的 状态,1——表示已分配,0——表示未分配,并能够将行标、列标 转换为对应的物理块号,以查看或修改每一个块的状态,要求:初 始时部分物理块已分配) 2、基本分页的分配过程:由用户输入作业号和作业的大小(这里的 大小是逻辑页面数),实现分配过程:空间充足,分配,修改状态 矩阵的相应位置的值(值由0转变为1),并用专门的数据记录下 该作业占用的物理块的块号,以备删除作业时回收空间。 3、作业空间的的回收:用户输入作业号,实现分区回收(通过相应 的数据结构找到该作业占有的物理块号,将块号转变成对应的行标、 列标,将对应位置的值由1转变成0就完成了回收) 4、分区的显示:任何时刻,可以查看当前内存的情况(显示记录内 存情况的矩阵的值) 要求考虑:(1)内存空间不足的情况,要有相应的显示; (2)作业不能同名,但是删除后可以再用这个名字; (3)作业空间回收是输入作业名,回收相应的空间,如果这个作业名不存在,也要有相应的提示。 三、实验代码 <> <> N 100 共有100个内存块 [N][1]; 存放每个进程的页表 [N]; 内存块状态标志数组,0:空闲,1:使用 ; 记录当前内存剩余空间 ; 记录当前进程数 = ; (); (); (); (); () {

实验四 内存管理模拟实验

实验四内存管理模拟实验 模拟实现一个简单的固定(可变)分区存储管理系统 1.实验目的 通过本次课程设计,掌握了如何进行内存的分区管理,强化了对首次适应分配算法和分区回收算法的理解。 2.实验内容 (1)建立相关的数据结构,作业控制块、已分配分区及未分配分区 (2)实现一个分区分配算法,如最先适应算法、最优或最坏适应分配算法 (3)实现一个分区回收算法 (4)给定一个作业/进程,选择一个分配或回收算法,实现分区存储的模拟管理 图1.流程图

3.实验步骤 首先,初始化函数initial()将分区表初始化并创建空闲分区列表,空闲区第一块的长度是30,以后的每个块长度比前一个的长度长20。 frees[0].length=30 第二块的长度比第一块长20,第三块比第二块长20,以此类推。 frees[i].length=frees[i-1].length+20; 下一块空闲区的首地址是上一块空闲区的首地址与上一块空闲区长度的和。frees[i].front=frees[i-1].front+frees[i-1].length; 分配区的首地址和长度都初始化为零occupys[i].front=0;occupys[i].length=0; 显示函数show()是显示当前的空闲分区表和当前的已分配表的具体类容,分区的有起始地址、长度以及状态,利用for语句循环输出。有一定的格式,使得输出比较美观好看。 assign()函数是运用首次适应分配算法进行分区,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止;然后再按照作业的大小,从该分区中划出一块内存空间分配给请求者,余下的空闲分区仍留在空闲链中。若从链首直至链尾都不能找到一个能满足要求的分区,则此次内存分配失败,返回。这个算法倾向于优先利用内存中低址部分被的空闲分区,从而保留了高址部分的的大空闲区。着给为以后到达的大作业分配大的内存空间创造了条件。它的缺点是低地址部分不断被划分,会留下很多难以利用的、很小的空闲分区,而每次查找又都是从低址部分开始,这样无疑会增加查找可用空闲分区的开销。 分配内存,从空闲的分区表中找到所需大小的分区。设请求的分区的大小为job_length,表中每个空闲分区的大小可表示为free[i].length。如果frees[i].length>=job_length,即空闲空间I的长度大于等于作业的长度将空闲标志位设置为1,如果不满足这个条件则输出:“对不起,当前没有满足你申请长度的空闲内存,请稍后再试!”。如果frees[i].length>=job_length空闲区空间I的长度不大于作业长度,I的值加1判断下一个空闲区空间是否大于作业的长度。把未用的空闲空间的首地址付给已用空间的首地址,已用空间的长度为作业的长度,已用空间数量加1。如果(frees[i].length>job_length),空间的长度大于作业的长度,frees[i].front+=job_length; 空闲空间的起始首地址=原空闲区间的起始长度加作业长度frees[i].length-=job_length;空闲区间的长度=原空闲区间的长度-作业的长度。如果空间的长度与作业的长度相等,空闲区向前移一位,空闲区的数量也减一。这样判断所有情况并相应分配之后,内存空间分配成功。 第二个操作为:撤消相应作业。在这个操作中,进行了以下步骤: (1)按照系统提示输入将要撤消的作业名; (2)判断该作业是否存在 若不存在:输出“没有这个作业名,请重新输入作业名”; 若存在:则先分别用flag,start,len保存该作业在分配区表的位置i,内存空间的首地址以及长度。接着根据回收区的首地址,即该作业的首地址,从空闲区表中找到相应的插入点,将其加入空闲表,此时可能出现以下三种情况之一: 1 .回收区只与插入点前一个空闲分区F1相邻接即(frees[i].front+frees[i].length)==start),此时判断其是否与后一个空闲分区F2相邻接,又分两种情况: 若相邻接,则将三个分区合并,修改新的空闲分区的首地址和长度。新的首地址为F1的首地址,长度为三个分区长度之和,相应的代码为:

实验七请求页式存储管理中常用页面置换算法模拟

实验七请求页式存储管理中常用页面置换算法模拟实验七请求页式存储管理中常用页面置换算法模拟实验学时:4 实验类型:设计 实验要求:必修 一、实验目的 (1)了解内存分页管理策略 (2)掌握调页策略 (3)掌握一般常用的调度算法 (4)学会各种存储分配算法的实现方法。 (5)了解页面大小和内存实际容量对命中率的影响。 二、实验内容 (1)采用页式分配存储方案,通过分别计算不同算法的命中率来比较算法的优劣,同时也考虑页面大小及内存实际容量对命中率的影响; (2)实现OPT 算法 (最优置换算法) 、LRU 算法 (Least Recently) 、 FIFO 算法 (First IN First Out)的模拟; (3)会使用某种编程语言。 三、实验原理 分页存储管理将一个进程的逻辑地址空间分成若干大小相等的片,称为页面或页。 在进程运行过程中,若其所要访问的页面不在内存而需把它们调入内存,但内存已无空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据,送磁盘的对换区中。但应将哪个页面调出,须根据一定的算法来确定。

通常,把选择换出页面的算法称为页面置换算法(Page_Replacement Algorithms)。 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面换出,或将那些在较长时间内不会再访问的页面调出。 1、最佳置换算法OPT(Optimal) 它是由Belady于1966年提出的一种理论上的算法。其所选择的被淘汰页面,将是以后永不使用的或许是在最长(未来)时间内不再被访问的页面。采用最佳置换算法,通常可保证获得最低的缺页率。但由于人目前还无法预知一个进程在内存的若干个页面中,哪一个页面是未来最长时间内不再被访问的,因而该算法是无法实现的,便可以利用此算法来评价其它算法。 2、先进先出(FIFO)页面置换算法 这是最早出现的置换算法。该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。 3、最近最久未使用置换算法 (1)LRU(Least Recently Used)置换算法的描述 FIFO置换算法性能之所以较差,是因为它所依据的条件是各个页面调入内存的时间,而页面调入的先后并不能反映页面的使用情况。最近最久未使用(LRU)置换算法,是根据页面调入内存后的使用情况进行决策的。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t,,当须淘汰一个页面时,选择现有页面中其t值最大的,即最近最久未使用的页面予以淘汰。 (2)LRU置换算法的硬件支持

模拟基本分页式存储管理的地址转换

/* 设块长为64 该进程只有10页,且已经全部进入主存 */ #include #include #define N 10 int base=0;//页表在主存中的起始地址设为0 int l=1;//页表项的长度设为1 struct Page{ int pno;//页号 int cno;//块号 }p[N]; void Init_Page(Page p[]) { int i; int t[10]={0,2,4,5,11,16,18,30,31,39}; for(i=0;i<10;++i) { p[i].pno=i; p[i].cno=t[i]+i; } return; } void change_Addr(Page p[],int log_Addr) { int m=log_Addr/64;//当前逻辑地址所对应的页号 int n=log_Addr%64;//偏移量 int addr;//当前逻辑地址所对应的物理地址 m=base+m*l;//访问页表, int flag=0,i; if(m>=N) { printf("所访问地址超过进程的地址空间,申请中断\n\n");//越界中断} else { for(i=0;i<10;++i)

{ if(m==p[i].pno) { addr=p[i].cno*64+n;//访问物理地址,物理地址=内存块号*块大小+页内偏移量 printf("物理地址为:%d\n",addr); printf("详细信息:\t页面号:%d\t块号:%d\t偏移量:%d\n\n",p[i].pno,p[i].cno,n); } } } return; } void menu() { printf(" -------------------------------- \n"); printf("| 1.地址转换|\n"); printf("| 2.结束转换|\n"); printf(" -------------------------------- \n"); } int main() { menu(); int log_Addr,select; Init_Page(p); do{ printf("输入你的选择(1还是2):"); scanf("%d",&select); switch(select) { case 1: printf("输入指令的逻辑地址:"); scanf("%d",&log_Addr); change_Addr(p,log_Addr); break; case 2: printf("谢谢使用,不足之处请多多指教!\n"); exit(0); default: printf("选择错误,请重输\n"); }

动态分区存储管理的模拟实现

计算机科学与工程学院学生实验报告 专业计算机科学与技术班级 学号姓名 课程名称操作系统课程类型专业必修课 实验名称动态分区存储管理的模拟实现 实验目的: 1.熟悉动态分区存储管理方式下,主存空间的分配和回收算法。 2.提高C语言编程能力。 实验内容: 假设主存当前状态如右表所示: 系统采用最佳适应分配算法为作业分配主存空间, 而且具有紧凑技术。请编程完成以下操作: (1). 输出此时的已分配区表和未分配区表; (2). 装入 Job3(15K),输出主存分配后的已分配 区表和未分配区表; (3). 回收 Job2所占用的主存空间,输出主存回收 后的已分配区表和未分配区表; (4).装入 Job4(130K),输出主存分配后的已分配 区表和未分配区表。 实验要求 1.数据结构参考定义如下,也可根据需要进行改进: (1)已分配区表: #define n 10 /*假定系统允许的最大作业数量为n,n值为10*/ struct {int number; /*序号*/ int address; /*已分配分区起始地址,单位为KB */ int length; /*已分配分区长度,单位KB*/ float flag; /*已分配区表登记栏标志,0:空表项,否则为作业名;*/

}used_table[n]; /*已分配区表*/ (2)未分配区表: #define m 10 /*假定系统允许的空闲区表最大为m,m值为10*/ struct {int number; /*序号*/ int address; /*空闲区起始地址,单位为KB */ int length; /*空闲区长度,单位为KB*/ int flag; /*空闲区表登记栏标志,0:空表项;1:空闲区*/ }free_table[m]; /*空闲区表*/ 2.以allocate命名主存分配所用的过程或函数(算法参考课件),要将各种情况考虑周全。 3.以reclaim命名主存回收所用的过程或函数(算法参考课件),要将各种情况考虑周全。 4.画出算法实现的N-S流程图。 5.程序调试、运行成功后,请老师检查。 实验步骤: 1.分配内存,结果如下图:

相关文档
最新文档