模拟内存管理设计与实现

模拟内存管理设计与实现
模拟内存管理设计与实现

简单校园网的设计与实现

****课程设计说明书 学院名称:计算机及信息工程学院班级名称:网工131 学生姓名:***** 学号:2013211509 题目:简单校园网的设计及实现指导教师 姓名:****** 起止日期:2015.06.23-2015.06.25

计算机网络课程设计任务书

正文部分 1.选题背景 随着现代化教学活动的开展和及国内外教学机构交往的增多,对通过Internet网络进行信息交流的需求越来越迫切,为促进教学、方便管理和进一步发挥学生的创造力,校园网络建设成为现代教育机构的必然选择。 本校园网是学校发展的重要基础设施,是提高学校教学和科研水平不可缺少的支撑环境。校园网一方面它为学校提供各种本地网络应用,另一方面它是沟通学校校园网内外部网络的桥梁。 通过实践和结合有关学校网络的实际情况进行了系统分析,我们就校园网的建设构建比较切实可行的设计方案。根据小组的实地调查,我校现占地1500余亩,现有在校生14000多名,教职员工800多名。学校主要建筑分布如下图1-1所示。 图1-1学校主要建筑分布图 2.方案论证 本校园网将采用三层交换技术,三层交换机技术及传统的路由技术不同,

传统的路由技术是通过一定的路由算法来选择到达各个子网的最佳路径,实现路由选择和网络的互连;而三层交换机技术是利用第三层(网络层)中的IP数据的包头信息来加强二层交换,以便解决路由技术中转发效率较低的技术“瓶颈”。本校园网的组建中,中心(核心)交换机选择支持三层交换技术的交换机,同一VLAN之间的数据包传输直接由内网普通交换机来实现,不需要经过核心交换机,不同VLAN之间的数据包传输则经过三层交换机实现交换技术,可以减轻核心交换机的负担,提高网络利用效率。 在搭建网络环境时,使用了服务器连接核心交换机,三层交换机也可通过路由器连接外网进行通信,在局域网内二层交换机使用六个普通交换机分给不同的建筑,每个建筑内使用一台主机代表一个部门,同一个部门划分为一个独立的子网,一个子网使用一个vlan,交换机之间采用交叉线通过trunk 链路进行网内、网间数据传输,交换机及主机之间采用直通线相连。 3.过程论述 3.1校园网IP地址规划 根据互联网络技术发展的趋势,结合学校网络目前真实IP地址的现实情况,将IP地址规划遵循如下原则来设计: (1)服务器区采用私IP地址,NAT后供人员远程访问; (2)及internet 互联设备IP地址采用真实IP地址; (3)部分内部互连采用私有IP地址。 3.2校园网络拓扑图 参考上述设计方案,通过Tracket Packer仿真软件实现方案的具体规划,使用相应的网络配置命令,模拟真实的校园网网络环境,使用了一个三层交换机,一个服务器,六个普通交换机,十二台主机,交换机及主机之间使用直通线相连,交换机及交换机之间使用交叉线相连。具体的校园网模拟环境如下图3-2所示。

操作系统课程设计--连续动态分区内存管理模拟实现

(操作系统课程设计) 连续动态分区内存 管理模拟实现

目录 《操作系统》课程设计 (1) 引言 (3) 课程设计目的和内容 (3) 需求分析 (3) 概要设计 (3) 开发环境 (4) 系统分析设计 (4) 有关了解内存管理的相关理论 (4) 内存管理概念 (4) 内存管理的必要性 (4) 内存的物理组织 (4) 什么是虚拟内存 (5) 连续动态分区内存管理方式 (5) 单一连续分配(单个分区) (5) 固定分区存储管理 (5) 可变分区存储管理(动态分区) (5) 可重定位分区存储管理 (5) 问题描述和分析 (6) 程序流程图 (6) 数据结构体分析 (8) 主要程序代码分析 (9) 分析并实现四种内存分配算法 (11) 最先适应算 (11) 下次适应分配算法 (13) 最优适应算法 (16)

最坏适应算法......................................................... (18) 回收内存算法 (20) 调试与操作说明 (22) 初始界面 (22) 模拟内存分配 (23) 已分配分区说明表面 (24) 空闲区说明表界面 (24) 回收内存界面 (25) 重新申请内存界面..........................................................26. 总结与体会 (28) 参考文献 (28) 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 课程设计目的和内容: 理解内存管理的相关理论,掌握连续动态分区内存管理的理论;通过对实际问题的编程实现,获得实际应用和编程能力。

内存管理模型的设计与实现

操作系统课程实验报告 学生姓名:尹朋 班学号:111131 指导教师:袁国斌 中国地质大学信息工程学院 2015年1月4日

实习题目:内存管理模型的设计与实现 【需求规格说明】 对内存的可变分区申请采用链表法管理进行模拟实现。要求: 1.对于给定的一个存储空间自己设计数据结构进行管理,可以使用单个链 表,也可以使用多个链表,自己负责存储空间的所有管理组织,要求采用分页方式(指定单元大小为页,如4K,2K,进程申请以页为单位)来组织基本内容; 2.当进程对内存进行空间申请操作时,模型采用一定的策略(如:首先利用 可用的内存进行分配,如果空间不够时,进行内存紧缩或其他方案进行处理)对进程给予指定的内存分配; 3.从系统开始启动到多个进程参与申请和运行时,进程最少要有3个以上, 每个执行申请的时候都要能够对系统当前的内存情况进行查看的接口; 4.对内存的申请进行内存分配,对使用过的空间进行回收,对给定的某种页 面调度进行合理的页面分配。 5.利用不同的颜色代表不同的进程对内存的占用情况,动态更新这些信息。 【算法设计】 (1)设计思想: 通过建立一个链表,来描述已分配和空闲的内存分区。对于每一个分区,它可能存放了某个进程,也可能是两个进程间的空闲区。链表中的每一个结点,分别描述了一个内存分区,包括它的起始地址、长度、指向下一个结点的指针以及分区的当前状态。 在基于链表的存储管理中,当一个新的进程到来时,需要为它分配内存空间,即为它寻找某个空闲分区,该分区的大小必须大于或等于进程的大小. 最先匹配法:假设新进程的大小为M,那么从链表的首节点开始,将每一个空闲节点的大小与M相比较,直到找到合适的节点.这种算法查找的节点很少,因而速度很快. 最佳匹配算法:搜索整个链表,将能够装得下该进程的最小空闲区分配出去. 最坏匹配法:在每次分配的时候,总是将最大的那个空闲区切去一部分,分配给请求者.它的依据是当一个很大的空闲区被切割成一部分后,可能仍然是一个比较大的空闲区,从而避免了空闲区越分越小的问题. (2)设计表示: 分区结点设计: template class ChainNode { friend Chain; public:

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

校园网的设计与实现(论文)

JIU JIANG UNIVERSITY 毕业论文(设计) 题目校园网的设计与实现 英文题目 design and implementation of the campus network 院系电子工程系 专业通信工程 姓名姚凯 年级电子 A0721班 指导教师胡日新 二零壹壹年五月

通过对中学校园网络的组建,可以形成校园内部的网络系统(Intranet),将学校内部的各种不同信息资源有序高效地组织起来并实现校园网与Internet的连接,为学校中的各类人员提供充分的网络信息服务。在此基础上满足学校日常教学、科研、管理等工作的用网需求,实现学校内外的资源共享及信息交流。 校园网属于局域网,它是局域网技术的综合应用,本校园网在组建过程中,选择以太网(Ethernet)作为主干技术,以太网是当今网络的主流技术,应用非常广泛。在校园网拓扑结构设计上选用树状结构,它是星状结构的拓展,具有灵活的可扩展性、较高的可靠性、且安装方便、易管理、投资小。各楼宇之间的传输介质选用多模光纤,楼宇内部选用五类UTP或六类UTP,大大提高内部网络的实用性。布线技术采用结构化布线系统,有良好的可扩展性、很高的灵活性和可靠性。楼宇内部交换机采用了三层交换技术,可提高网络的运行速度和效率。考虑到网络的安全因素,组网过程还用到ACL、VLAN等技术,在一定程度上增强了系统的安全性。 本设计论文以人杰高中为例,全面地介绍了中学校园网设计与实现的组网背景及目的意义,重点描述了在组网过程中对局域网技术的一些应用,包括网络拓扑结构的设计、技术选型、设备选购等方面,结合学校的实际情况及组网需求,对本校园网的设计与实现中的各个环节都进行了综合的阐述和详细的分析。 关键词:局域网;拓扑结构;以太网;VLAN;结构化布线系统

存储管理---------常用页面置换算法模拟实验

实验七存储管理---------常用页面置换算法模拟实验 实验目的 通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。 实验内容 设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。 1、最佳淘汰算法(OPT) 2、先进先出的算法(FIFO) 3、最近最久未使用算法(LRU) 4、最不经常使用算法(LFU) 5、最近未使用算法(NUR) 命中率=1-页面失效次数/页地址流长度 实验准备 本实验的程序设计基本上按照实验内容进行。即首先用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。(1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: A:50%的指令是顺序执行的 B:25%的指令是均匀分布在前地址部分 C:25%的指令是均匀分布在后地址部分 具体的实施方法是: A:在[0,319]的指令地址之间随机选取一起点m B:顺序执行一条指令,即执行地址为m+1的指令 C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’ D:顺序执行一条指令,其地址为m’+1 E:在后地址[m’+2,319]中随机选取一条指令并执行 F:重复步骤A-E,直到320次指令 (2)将指令序列变换为页地址流 设:页面大小为1K; 用户内存容量4页到32页; 用户虚存容量为32K。 在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0 条-第9 条指令为第0页(对应虚存地址为[0,9]) 第10条-第19条指令为第1页(对应虚存地址为[10,19]) ……………………………… 第310条-第319条指令为第31页(对应虚存地址为[310,319]) 按以上方式,用户指令可组成32页。 实验指导 一、虚拟存储系统 UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以

基于可重定位分区分配算法的内存管理的设计与实现

组号成绩 计算机操作系统 课程设计报告 题目基于可重定位分区分配算法的内存管理的设计与实现 专业:计算机科学与技术 班级: 学号+: 指导教师: 2016年12月23 日

一.设计目的 掌握内存的连续分配方式的各种分配算法 二.设计内容 基于可重定位分区分配算法的内存管理的设计与实现。本系统模拟操作系统内存分配算法的实现,实现可重定位分区分配算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程内存起始地址和进程状态。内存分区表采用空闲分区表的形式来模拟实现。要求定义与算法相关的数据结构,如PCB、空闲分区;在使用可重定位分区分配算法时必须实现紧凑。 三.设计原理 可重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑功能。通常,该算法不能找到一个足够大的空闲分区以满足用户需求时,如果所有的小的空闲分区的容量总和大于用户的要求,这是便须对内存进行“紧凑”,将经过“紧凑”后所得到的大空闲分区分配给用户。如果所有的小空闲分区的容量总和仍小于用户的要求,则返回分配失败信息 四.详细设计及编码 1.模块分析 (1)分配模块 这里采用首次适应(FF)算法。设用户请求的分区大小为u.size,内存中空闲分区大小为m.size,规定的不再切割的剩余空间大小为size。空闲分区按地址递增的顺序排列;在分配内存时,从空闲分区表第一个表目开始顺序查找,如果m.size≥u.size且m.size-u.size≤size,说明多余部分太小,不再分割,将整个分区分配给请求者;如果m.size≥u.size且 m.size-u.size>size,就从该空闲分区中按请求的大小划分出一块内存空间分配给用户,剩余的部分仍留在空闲分区表中;如果m.size

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

校园网网络构建方案设计与实现

一、实验目的: (1)计算机网络是一门实践性较强的技术,课堂教学应该和实践环节紧密结合。应该通过计算机网络实验培养学生具有独立进行计算机网络架构和设计能力,提高学生的网络设备使用水平,以及将理论与实践相结合的能力。 (2)培养学生一定的自学能力和独立分析问题、解决问题的能力。包括学会自己分析解决问题的方法,对设计中遇到的问题,能通过独立思考、查阅工具书、参考文献,寻找解决方案。 (3)初步掌握计算机网络分析和设计的基本方法。通过分析具体设计任务,确定方案,画出具体的网络拓扑结构图,并写出具体配置步骤情况,提交正式课程设计总结报告打印及电子稿一份; (4)培养学生分析、解决问题的能力; (5)提高学生的软件文档写作能力。 二、实验器材: 路由器若干,交换机若干,PC机若干,线缆若干。 三、实验任务及要求: (1)校园网或园区网方案设计; (2)要求有拓扑图和路由器或交换机配置; (3)要用到VLAN,NAT; (4)结合实验室条件,完成需求分析; (5)列出实验所需设备,完成网络拓扑结构图; (6)利用Cisco packet tracer软件仿真,模拟实验环境下完成设备的具体配置; (7)调试验证 四、需求分析: 随着计算机多媒体和网络技术的不断发展与普及,校园网信息系统的建设,是非常必要的,也是可行的。主要表现在: (1)当前校园网信息系统已经发展到了与校际互联、国际互联、静态资源共享、动态信息发布、远程教学和协作工作的阶段,发展对学校教育现代化的建设提出了越来越高的要求。 (2)教育信息量的不断增多,使各级各类学校、家庭和教育管理部门对教育信息计算机管理和教育信息服务的要求越来越强烈。个人是否具有获得信息和处理信息的能力对于能否成功进入职业界和融入社会及文化环境都是个决定性的因素,因此学校应该培养所有学生具有驾驭和掌握这种技术的能力。另一方面,信息技术在作为青少年教育工具的同时也向青少年提供了前所未有的机会。新技术提供的机会以及它们在教学方面具有的优势都是很多的,特别是计算机和多媒体系统的使用有助于个人化的道路,每个学生在个人的学习道路上都可以按照自己的速度发展。 (3)我国各级教育研究部门、软件开发单位、教学设备供应商和各级学校不断开发提供了各种在网络上运行的软件及多媒体系统,并且越来越形象化、实用化,迫切需要网络环境。 (4)现代教育改革的需要。在校园网中将计算机引入教学各个环节,从而引起了教学方法,教学手段,教学工具的重大革新。对提高教学质量,推动我国教育现代化的发展起着不可估量的作用。网络又为学校的管理者和老师提供了获取资源、协同工作的有效途径。毫无疑问,校园网是学校提高管理水平、工作效率、改善教学质量的有力手段,是解决信息时代教育问

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

实验六 分页内存管理算法模拟

实验七分页内存管理算法模拟 姓名:黄中圣 学号:20140288 班级:14级计科三班 一、实验目的 1、熟悉基本分页存储管理。 2、建立描述分页内存管理中的页目录表、页表结构。 3、实现进行虚拟内存到物理内存的映射算法。 二、实验理论基础及教材对应关系 1、操作系统中内存管理。 2、基本分页内存、分段内存管理。 3、页目录表、页表的作用,以及虚拟地址到物理地址的映射关系。 三、实验内容与步骤 题目:分页存储管理的设计与实现。 某系统采用了两级页表机制,可使页表所占用内存尽量少,分页地址变换机构如下图所示:

分页地址变换机构 页目录表共1024项,每个页表1024项,每页的大小是4K个字节。地址转换时,先由分段部件生成线性地址,再由上面所述的分页部件,根据线性地址中的页目录索引在页目录表中找相应的项,该项值为所需页表在内存的块号,找到该页表后,然后按第21-12位的页表索引找到所需页的物理内存起始地址,把它与12位偏移直接相加得到32位的物理地址。 设系统有如表1中所示的10个段,已知:1-8段从内存的200000H处开始由低地址到高地址连续存放,映射到3G+4M开始的线性地址空间;9段(缓冲区)放在400000H开始的内存,映射的线性地址同物理地址;显存从B8000H 开始,映射到3G开始的线性地址空间。 表1

(1)、请设计并填写页目录表和页表(需说明每张表的内存地址)内存的物理地址200000H(=0010 0000 0000 [0000 0000 0000])映射到的线性地址为3G+4M(=[1100 0000 01] [00 0000 0000] [0000 0000 0000]), 内存的物理地址400000H(= 0100 0000 0000 [0000 0000 0000])映射到的线性地址为400000H(=[0000 0000 01] [00 0000 0000] [0000 0000 0000]), 内存的物理地址B8000H(=1011 1000 [0000 0000 0000])映射到的线性地址为3G(=[1100 0000 00] [00 0000 0000] [0000 0000 0000]), 页目录表#0索引为0000 0000 01,该项值为所需页表在内存的块号,找到该页表后,00 0000 0000为页表索引,该值找到所需页的物理内存起始地址,又12位偏移值为0000 0000 0000,所以物理内存起始地址为:400000H 页目录表#1索引为1100 0000 00,该项值为所需页表在内存的块号,找到该页表后,00 0000 0000为页表索引,该值找到所需页的物理内存起始地址,又12位偏移值为0000 0000 0000,所以物理内存起始地址为:B8000H 页目录表#1索引为1100 0000 01,该项值为所需页表在内存的块号,找到该页表后,00 0000 0000为页表索引,该值找到所需页的物理内存起始地址,又12位偏移值为0000 0000 0000,所以物理内存起始地址为:200000H 所以设置页目录表1张,内存地址为...., 页表3张内存起始地址分别为0000 0000 01,1100 0000 00,1100 0000 01 (2)、线性地址为:C0401010H、C0404010H、C0414010H,则物理地址是多少,所在段的段名是什么?(需写出计算的详细步骤) C0401010=(1100 0000 01)(00 0000 0001) (0000 0001 0000)物理地址为: 0010 0000 0001 (0000 0001 0000)=201010H在第2段 C0404010=(1100 0000 01)(00 0000 0100) (0000 0100 0000)物理地址为: 0010 0000 0100 (0000 0100 0000)=204040H在第5段 C0414010=(1100 0000 01)(00 0001 0100) (0000 0001 0000)物理地址为: 0010 0001 0100 (0000 0001 0000)=214010H在第6段 实验步骤: 1、定义页目录表、页表的数据结构,以及必要的数据。 #define Page_Size 4096 // 页面大小

实验五动态页式存储管理实现过程的模拟

实验五动态页式存储管理实现过程的模拟 一、实验目的与要求 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验帮助学生理解在分页式存储管理中怎样实现虚拟存储器;掌握物理内存和虚拟内存的基本概念;掌握重定位的基本概念及其要点,理解逻辑地址与绝对地址;掌握动态页式存储管理的基本原理、地址变换和缺页中断、主存空间的分配及分配算法;掌握常用淘汰算法。 二、实验环境 VC++6.0集成开发环境或java程序开发环境。 三、实验内容 模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。 四、实验原理 1、地址转换 (1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式如图10所示: 图10 页表格式 其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。 主存块号----用来表示已经装入主存的页所占的块号。

在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。 (2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式: 绝对地址=块号×块长+单元号 计算出欲访问的主存单元地址。如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。 (3)设计一个“地址转换”程序来模拟硬件的地址转换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断。该模拟程序的算法如图11。 图11 地址转换模拟算法 2、用先进先出(FIFO)页面调度算法处理缺页中断。

基于Packet tracer模拟校园网设计

基于Packet tracer模拟设计校园网 1.引言 计算机网络是计算机和通信技术相结合的必然产物,它对计算机系统的组织和工作方式产生了深远的影响。脱离了网络的计算机已经不是一台完整的计算机了,难怪Sun公司提出“网络就是计算机”。 根据网络覆盖范围的大小,把网络分成局域网(LAN,Local Area Network)、城域网(MAN,Metropolitan Area Network)和广域网(WAN,Wide Area Network)。校园网(Campus Network)介于局域网和城域网之间,一般覆盖几公里的范围。校园网系统=布线系统+网络设备+计算机硬件设备+系统软件+应用软件 校园网必须具备教学、管理和通讯三大功能。教师可以方便地浏览和查询网上资源,进行教学和科研工作;学生可以方便地浏览和查询网上资源实现远程学习;通过网上学习学会信息处理能力。学校的管理人员可方便地对教务、行政事务、学生学籍、财务、资产等进行综合管理,同时可以实现各级管理层之间的信息数据交换,实现网上信息采集和处理的自动化,实现信息和设备资源的共享,因此,校园网的建设必须有明确的建设目标。校园网的总体设计原则是:开放性采用开放性的网络体系,以方便网络的升级、扩展和互联;同时在选择服务器、网络产品时,强调产品支持的网络协议的国际标准化。 2.论文要求 (1)利用Cisco Packet Tracer软件构建一个新疆大学的网络模型,并能实现简单的协议通信。 (2)新疆大学DNS服务器IP地址为202.201.252.1; 新疆大学主页IP地址为:202.201.252.2,DNS域名为https://www.360docs.net/doc/bd1460501.html,;新疆大学FTP服务器IP地址为:202.201.252.3,DNS域名为https://www.360docs.net/doc/bd1460501.html,;网关为202.201.252.254。 (3)假设新疆大学申请到的IP地址范围为130.130.0.0/16,请设计合理的IP 地址分配方案。 (4)模拟信息学院(2#、3#、11#楼)、数学院、物理学院、化工学院划分VLAN,同一个学院划分到相同的VLAN中,并且要能实现VLAN内和VLAN 间通信。 (5)配置静态路由和动态路由协议(RIP或OSPF)。 (6)在主干网络和学校服务器之间的交换机上配置STP,提供网络冗余备份。 (7)在学生宿舍楼采用NAT模式接入校园网. 3.原理介绍 3.1网络设备概述 (1)交换机 交换机是一种存储转发设备。以太网交换机采用存储转发

请求页式存储管理中常用页面置换算法模拟

信息工程学院实验报告 课程名称:操作系统Array实验项目名称:请求页式存储管理中常用页面置换算法模拟实验时间: 班级姓名:学号: 一、实验目的: 1.了解内存分页管理策略 2.掌握调页策略 3.掌握一般常用的调度算法 4.学会各种存储分配算法的实现方法。 5.了解页面大小和内存实际容量对命中率的影响。 二、实验环境: PC机、windows2000 操作系统、VC++ 三、实验要求: 本实验要求4学时完成。 1.采用页式分配存储方案,通过分别计算不同算法的命中率来比较算法的优劣,同时也考虑页面大 小及内存实际容量对命中率的影响; 2.实现OPT 算法 (最优置换算法) 、LRU 算法 (Least Recently) 、 FIFO 算法 (First IN First Out)的模拟; 3.会使用某种编程语言。 实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告,按时上交。 四、实验内容和步骤: 1.编写程序,实现请求页式存储管理中常用页面置换算法LRU算法的模拟。要求屏幕显示LRU算法 的性能分析表、缺页中断次数以及缺页率。 2.在上机环境中输入程序,调试,编译。 3.设计输入数据,写出程序的执行结果。 4.根据具体实验要求,填写好实验报告。 五、实验结果及分析: 实验结果截图如下:

利用一个特殊的栈来保存当前使用的各个页面的页面号。当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,栈底是最近最久未被使用的页面号。当访问第5个数据“5”时发生了缺页,此时1是最近最久未被访问的页,应将它置换出去。同理可得,调入队列为:1 2 3 4 5 6 7 1 3 2 0 5,缺页次数为12次,缺页率为80%。 六、实验心得: 本次实验实现了对请求页式存储管理中常用页面置换算法LRU算法的模拟。通过实验,我对内存分页管理策略有了更多的了解。 最近最久未使用(LRU)置换算法的替换规则:是根据页面调入内存后的使用情况来进行决策的。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。 最佳置换算法的替换规则:其所选择的被淘汰页面,将是以后永不使用的或许是在最长(未来)时间内不再被访问的页面。 先进先出(FIFO)页面置换算法的替换规则:该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。 三种替换算法的命中率由高到底排列OPT>LRU>FIFO。 本次的程序是在网上查找的相关代码然后自己进行修改,先自己仔细地研读了这段代码,在这过程中我对C++代码编写有了更深的了解。总之,本次实验使我明白要学会把课堂上的理论应用到实际操作中。我需要在今后熟练掌握课堂上的理论基础,只有坚实的基础,才能在实际操作中更得心应手。 附录: #include "" #include <> const int DataMax=100; const int BlockNum = 10;

操作系统内存管理原理

内存分段和请求式分页 在深入i386架构的技术细节之前,让我们先返回1978年,那一年Intel 发布了PC处理器之母:8086。我想将讨论限制到这个有重大意义的里程碑上。如果你打算知道更多,阅读Robert L.的80486程序员参考(Hummel 1992)将是一个很棒的开始。现在看来这有些过时了,因为它没有涵盖Pentium处理器家族的新特性;不过,该参考手册中仍保留了大量i386架构的基本信息。尽管8086能够访问1MB RAM的地址空间,但应用程序还是无法“看到”整个的物理地址空间,这是因为CPU寄存器的地址仅有16位。这就意味着应用程序可访问的连续线性地址空间仅有64KB,但是通过16位段寄存器的帮助,这个64KB大小的内存窗口就可以在整个物理空间中上下移动,64KB逻辑空间中的线性地址作为偏移量和基地址(由16位的段寄存器给处)相加,从而构成有效的20位地址。这种古老的内存模型仍然被最新的Pentium CPU支持,它被称为:实地址模式,通常叫做:实模式。 80286 CPU引入了另一种模式,称为:受保护的虚拟地址模式,或者简单的称之为:保护模式。该模式提供的内存模型中使用的物理地址不再是简单的将线性地址和段基址相加。为了保持与8086和80186的向后兼容,80286仍然使用段寄存器,但是在切换到保护模式后,它们将不再包含物理段的地址。替代的是,它们提供了一个选择器(selector),该选择器由一个描述符表的索引构成。描述符表中的每一项都定义了一个24位的物理基址,允许访问16MB RAM,在当时这是一个很不可思议的数量。不过,80286仍然是16位CPU,因此线性地址空间仍然被限制在64KB。 1985年的80386 CPU突破了这一限制。该芯片最终砍断了16位寻址的锁链,将线性地址空间推到了4GB,并在引入32位线性地址的同时保留了基本的选择器/描述符架构。幸运的是,80286的描述符结构中还有一些剩余的位可以拿来使用。从16位迁移到32位地址后,CPU的数据寄存器的大小也相应的增加了两倍,并同时增加了一个新的强大的寻址模型。真正的32位的数据和地址为程序员带了实际的便利。事实上,在微软的Windows平台真正完全支持32位模型是在好几年之后。Windows NT的第一个版本在1993年7月26日发布,实现了真正意义上的Win32 API。但是Windows 3.x程序员仍然要处理由独立的代码和数据段构成的64KB内存片,Windows NT提供了平坦的4GB地址空间,在那儿可以使用简单的32位指针来寻址所有的代码和数据,而不需要分段。在内部,当然,分段仍然在起作用,就像我在前面提及的那样。不过管理段的所有责任都被移给了操作系统。

实验四 内存管理模拟实验

实验四内存管理模拟实验 模拟实现一个简单的固定(可变)分区存储管理系统 1.实验目的 通过本次课程设计,掌握了如何进行内存的分区管理,强化了对首次适应分配算法和分区回收算法的理解。 2.实验内容 (1)建立相关的数据结构,作业控制块、已分配分区及未分配分区 (2)实现一个分区分配算法,如最先适应算法、最优或最坏适应分配算法 (3)实现一个分区回收算法 (4)给定一个作业/进程,选择一个分配或回收算法,实现分区存储的模拟管理 图1.流程图

3.实验步骤 首先,初始化函数initial()将分区表初始化并创建空闲分区列表,空闲区第一块的长度是30,以后的每个块长度比前一个的长度长20。 frees[0].length=30 第二块的长度比第一块长20,第三块比第二块长20,以此类推。 frees[i].length=frees[i-1].length+20; 下一块空闲区的首地址是上一块空闲区的首地址与上一块空闲区长度的和。frees[i].front=frees[i-1].front+frees[i-1].length; 分配区的首地址和长度都初始化为零occupys[i].front=0;occupys[i].length=0; 显示函数show()是显示当前的空闲分区表和当前的已分配表的具体类容,分区的有起始地址、长度以及状态,利用for语句循环输出。有一定的格式,使得输出比较美观好看。 assign()函数是运用首次适应分配算法进行分区,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止;然后再按照作业的大小,从该分区中划出一块内存空间分配给请求者,余下的空闲分区仍留在空闲链中。若从链首直至链尾都不能找到一个能满足要求的分区,则此次内存分配失败,返回。这个算法倾向于优先利用内存中低址部分被的空闲分区,从而保留了高址部分的的大空闲区。着给为以后到达的大作业分配大的内存空间创造了条件。它的缺点是低地址部分不断被划分,会留下很多难以利用的、很小的空闲分区,而每次查找又都是从低址部分开始,这样无疑会增加查找可用空闲分区的开销。 分配内存,从空闲的分区表中找到所需大小的分区。设请求的分区的大小为job_length,表中每个空闲分区的大小可表示为free[i].length。如果frees[i].length>=job_length,即空闲空间I的长度大于等于作业的长度将空闲标志位设置为1,如果不满足这个条件则输出:“对不起,当前没有满足你申请长度的空闲内存,请稍后再试!”。如果frees[i].length>=job_length空闲区空间I的长度不大于作业长度,I的值加1判断下一个空闲区空间是否大于作业的长度。把未用的空闲空间的首地址付给已用空间的首地址,已用空间的长度为作业的长度,已用空间数量加1。如果(frees[i].length>job_length),空间的长度大于作业的长度,frees[i].front+=job_length; 空闲空间的起始首地址=原空闲区间的起始长度加作业长度frees[i].length-=job_length;空闲区间的长度=原空闲区间的长度-作业的长度。如果空间的长度与作业的长度相等,空闲区向前移一位,空闲区的数量也减一。这样判断所有情况并相应分配之后,内存空间分配成功。 第二个操作为:撤消相应作业。在这个操作中,进行了以下步骤: (1)按照系统提示输入将要撤消的作业名; (2)判断该作业是否存在 若不存在:输出“没有这个作业名,请重新输入作业名”; 若存在:则先分别用flag,start,len保存该作业在分配区表的位置i,内存空间的首地址以及长度。接着根据回收区的首地址,即该作业的首地址,从空闲区表中找到相应的插入点,将其加入空闲表,此时可能出现以下三种情况之一: 1 .回收区只与插入点前一个空闲分区F1相邻接即(frees[i].front+frees[i].length)==start),此时判断其是否与后一个空闲分区F2相邻接,又分两种情况: 若相邻接,则将三个分区合并,修改新的空闲分区的首地址和长度。新的首地址为F1的首地址,长度为三个分区长度之和,相应的代码为:

相关文档
最新文档