风电并网仿真

风电并网仿真
风电并网仿真

风电并网课程作业

用digsilent软件仿真分析

含风电场的单机无穷大系统

的潮流与动态过程

班级:研电1105

姓名:郭威(1112201057)

李彦宾(1112201063)

0 仿真系统参数如下

双馈电机参数: 变压器参数:

额定容量S N =1.5MVA 额定容量S N =63MVA 额定电压U N =0.69kV 额定电压U N =242kV/10.5kV 正常转速n =1490.565rpm 短路损耗404kW 级对数 p=2 空载损耗93kW 惯性时间常数(集中参数)T J =5s 短路电压14.45% 定子电阻R s =0.00598989pu 空载电流2.41% 转子电抗x s =0.125pu 直流电容参数:

同步速时 C =48137.6μF E =1.15kV 转子电阻R r =0.00619137pu 系统参数:

转子电抗x r =0.105368pu 无限大系统: f =50Hz 静止时 负荷参数:

转子电阻R r =0.02623123pu P=35MW ,cos Φ=0.9 输电线路:LGJ400,200km, r1=0.08 Ω/km,x1=0.04 Ω/km.

变压器参数计算:选择电力变压器型号为SSPL-63000/220,额定容量为63000kVA ,额定电压242±2?2.5%kV ,低压10.5kV ,短路损耗404kW ,空载损耗93kW ,短路电压14.45%,空载电流2.41%,经过计算:

Ω=??==96.5631000242404100022

2N N K T S U P R Ω=??==33.1346310024245.14100%22

N N k T S U U X

S U P G N

T 6

22010588.12421000931000-?=?=?=

S U S I B N

N T 52201059.22421006341.2100%-?=??==

搭建的单机无穷大系统潮流图,该系统中无穷大系统由内阻为0、电压标么值为1的50Hz 交流电压源进行等值。发电机采用经典二阶模型。设Xd ’后暂态电势E ’恒定、机械功率Pm 恒定,D 为定常阻尼系数,忽略线路损耗及分布电容,则对于单机无穷大系统有如下运动方程:

(1)1m e d M P P D dt d dt ω

ωδω?=---???

?=-??

下图中是digsilent潮流计算之后的潮流图(单线图),图中记录了母线电压、相角以及标幺值,而变压器与线路都显示了有功、无功及负载率。

图0-1 单机无穷大系统拓扑图

加入由10台同型号,容量为1.5MW的DFIG构成的风电场之后,含风电场的完整系统拓扑图为:

图0-2 风机并网后的拓扑图

上图中,我们将风电场直接并入220kV的单机无穷大的系统内,其中风电场的风机是双馈风机,采用一个三绕组变压器(220kV/0.69kV/0.69kV)将控制回路(背靠背系统)与发电机的定子输出相分离,从而使风电厂的可靠性增强。

1 含风电场的单机无穷大系统潮流图

图0-3 风机并网后的潮流计算图

在digsilent中,由上图看出双馈电机的转子直接接到了一个直流母线上缺少了转子侧变流器的逆变作用,而不是我们所学习的转子通入三相交流电源,实际上在digsilent中原理上仍然是转子通入三相交流电,只是我们通过搭建模块将转子变流器以及其控制策略集成在控

制模块中,所以在拓扑结构图中没有显示出来。

2 双馈机的基本原理

双馈机的等值电路如图2-1所示。

图2-1双馈机等值电路

其中jX m 为激磁电抗,R s +jX s 为定子阻抗,R r 为转子电阻,X r 为转子漏抗,r

U 为转子电压,以上所有转子量均为折算到定子侧的数值。

忽略定子电阻,从定子侧输入的电磁功率可表示为

]Re[112r r r r s I U s

R I s P -=

(1)

其中前面一项对应一般异步电机的电磁功率,该值完全取决于异步电机的滑差,滑差为正时吸收电磁功率,运行于电动机状态;滑差为负时发出电磁功率,运行于发电机状态。双馈机则可以通过控制后面一项,使得电机的滑差为正时也能实现发电;实际中,双馈发电机的转速变化范围可达同步速的±30%。式(1)也表明,双馈机的定子功率控制是通过调节转子回路的励磁电压或电流实现的,具体调节过程通过矢量控制技术实现。

从双馈机转子输出到电网的电磁功率为

2]Re[r r s r r r R I sP I U P -=-= (2)

忽略转子损耗,则有

s r sP P = (3)

即在忽略双馈电机定子和转子损耗的条件下,通过转子回路馈入电网的功率为通过电网流入定子回路功率的s 倍。据图2-1所示的参考方向,有

r m s P P P += (4)

由式(3)和(4),可以得到

s m P s P )1(-= (5)

式(3)和(5)即构成了双馈机的功率关系方程。

当0<s <1时,双馈机运行于亚同步状态;当s >1时,双馈机运行于超同步状态,

不同运行状态下双馈机的实际功率流向如图12所示。

(a) 亚同步发电 (b) 亚同步电动

(c) 超同步发电 (d) 超同步电动

图2-2 不同运行状态下双馈机功率流向

由图2-2可知,不论是发电机状态还是电动机状态,亚同步运行时双馈机的定子功率和转子功率流向相反;超同步运行时双馈机的定子功率和转子功率流向相同。实际上,双馈机在滑差为0的情况下也可实现发电,这时转子回路电流频率为0,即为直流电,而转子回路馈入电网的有功功率为0,双馈机的运行状态等同于同步发电机;由于其特殊性,一般不将其列为一种独立的运行状态。

从第一部分的潮流图可知,转子功率和定子功率都往电网流,可见DFIG 处于超同步状态,转子转速大于同步速。

双馈机的dq 电压、磁链方程如下:

rq

r rd rq rq rd r rq rd rd sq s sd sq sq sd s sq sd sd i R s p u i R s p u i R p u i R p u ++=+-=++=+-=ψωψψωψψωψψωψ1111 (6)

sq

m rd r rq sd m rd r rd rq m sq s sq rd m sd s sd i L i L i L i L i L i L i L i L +=+=+=+=ψψψψ

由于双馈机的定子接在频率恒定的大电网上,定子电阻比电抗小很多,可以忽略不计,

这时定子磁链与定子电压矢量近似互相垂直。把dq 坐标系的d 轴定向在定子磁链上时,定子磁链的q 轴分量为0;这时d 向定子电压为0,而q 向定子电压为常数,即

1

1

00

u u u sq sd sq sd ====ψψψ (7)

将式(7)代入磁链方程,可以得到

s

rq m sq s rd

m sd L i L i L i L i -

=-=

1ψ (8)

在同步旋转坐标系下,有定子功率

)

(23

)(23

sd sq sq sd s sq sq sd sd s i u i u Q i u i u P +=+=

(9)

将(7)、(8)代入(9),可以得到

)

(2323111rd m s

s rq

s

m

s i L L u

Q i L L u P -=-

=ψ (10)

式(10)即构成了双馈机转子变流器矢量控制的数学模型。由式可见,在定子磁链或定子电压保持恒定时,定子有功功率与i rq 成正比,而定子无功功率则完全由i rd 决定;转子变流器矢量控制实现了定子有功功率和无功功率控制的解耦,或者说实现了电磁转矩与转子励磁控制的解耦,这就是转子变流器的矢量控制。

转子变流器的控制策略是功率、电流双闭环系统。在功率闭环中,有功功率P*的参考值可以根据风力机和双馈电机的特性按捕获最大风能的原则给出,无功Q*的参考值可以根据电网要求的最大功率因数需求设定,也可从发电机功率框图消耗的角度求得。反馈功率P ,Q 则是通过对发电机定子输出电压、电流检测和坐标旋转变换后计算求得;P*、Q*的参考值与反馈值先进行比较、差值再经过PI 型功率调节器运算,输出定子电流有功分量及无功分量的参考值,通过计算又可得出转子电流的有功分量和无功分量的参考值和,将它们与转子电流反馈值进行电流控制(PI 调节),可以得到相应的有功无功的改变值,然后通过坐标变换,得到控制PWM 的调制信号,从而使得通过调节电流

就能调节发电机发出有功功率和无功功率。

图2-3 基于定子磁链定向的DFIG 的P 、Q 解耦矢量控制策略

利用该原理我们得到digsilent 中转子变流器的控制策略框图:

图2-4 digsilent 中转子变流器矢量控制模块

网侧PWM 变换器的主要功能是保持直流母线的电压稳定、输入电流正弦和控制输入功率因数。这直接取决于直流侧和交流侧有功功率是否平衡。如果能控制交流侧输入的有功功率,就能保持直流母线电压的稳定。由于电网电压基本上是恒定,所以对交流侧有功功率的控制

实际上就是对输入电流有功分量的控制。输入功率因数的控制就是对输入电流无功分量的控制。

通过PARK 变换我们可以实现解耦控制,从而控制id 与iq 可分别控制有功和无功功率,从而控制直流环节电压和交流侧功率因数。

网侧变换器机侧变换器

N

图2-5 基于定子电压定向矢量控制策略

在digsilent 中相对应的网侧变流器的控制模块为:

图2-6digsilent 中网侧变流器的控制模块

3 动态仿真

故障前双馈机运行于超同步发电状态ωr =1.2p.u.,为了便于分析假设风速保持恒定不变。双馈机并网处发生三相金属瞬时性短路,故障发生时刻为25s,持续200ms后故障消失,仿真结果如图0-图10所示。

图0 风速数据

图1 转子转速

图2 电磁转矩

图3 定子电压

图4 定子有功

图5 定子无功

图6 转子d轴电流

图7 转子q轴电流

图8 转子电流

图9 定子电流

图10 直流电压

3.1 仿真结果分析

故障后双馈机的电磁转矩急剧下降,而此时风速保持恒定,可认为输入机械转矩保持不变,发电机转子转速将迅速上升到一个较大的值。定子输出有功功率取决于机端电压,两者的变化轨迹趋近于一致,都是先降后恢复。定子电流和转子电流均出现过电流,与此同时变流器中的直流电容出现过电压。

3.1.1 定子功率分析

首先分析定子有功功率:

)

(2323111rd m s

s rq

s

m

s i L L u

Q i L L u P -=-

=ψ (10)

可知,定子有功与定子电压(定子磁链)成正比,故障后定子磁链的减小造成定子有功功率数值上减小。

下面来分析定子无功功率。双馈机的运行性能一大优点就是双馈机可以实现无功功率的控制及有功和无功控制的解耦。由上式(10)可知,双馈机定子既可以从电网吸收无功功率,也可以向电网送出无功功率,而且其大小可以调节。当定子无功功率为0时,双馈机定子与电网间没有无功功率交换,这时应满足

m

s

rd L i ψ=

(11)

而定子回路发出和吸收无功功率的条件为

???

?

???<>,吸收无功功率,发出无功功率m s

rd m s rd L i L i ψψ (12) 系统故障时,定子磁链下降,由上式可知,将有s

rd m

i L ψ>

,此时定子回来将会发出大

量无功。这从图5可以看出。

3.1.2 故障电流分析

故障后双馈机的定子电流和转子电流如图8和图9所示。由于三相对称,只取其中一相分析。

由图8、9可见,故障后定、转子电流都包含有很大的直流分量且衰减很快,而衰减一段时间后又增大的现象则是由控制系统的作用引起的:故障后由于定子无功功率和转子转速的变化,引起i rd 和i rq 的变化,如图6和图7所示;可以看到,故障后i rd 变化不大而i rq 增大。

这就是故障后直流分量衰减一段时间后开始增大的原因。

3.2 小结

本节用Disilent建立了完整的双馈机发电系统模型,对电网发生故障后双馈机的暂态特性进行了详尽的仿真和分析,可得到如下结论:

双馈机的矢量控制系统基于稳态运行状态设计,暂态过程中会出现一些不利于其运行的电磁暂态过程,主要为转子电流器的过电流和直流电容的过电压问题(当网侧输入的功率大于转子侧消耗的功率时,多余的功率会使直流母线电压升高;反之,会使电压降低。只要能快速地控制交流侧输入的有功电流分量,就可以控制有功功率的平衡,从而保持直流母线电压的稳定。)。出于经济和技术方面的考虑,一般双馈机变流器承受过电压和过电流的能力为其额定值的1.5倍;而由上面的仿真结果看出,在机端三相短路的情况下,双馈机转子电流达到了额定值的4倍以上,这显然是双馈机的变流器系统不能承受的。为了达到故障后保护双馈机变流器系统的目的,现在通用的做法是在转子回路装设撬棒保护:故障后撬棒保护动作将转子绕组短路,进而起到保护转子变流器的作用。

3.3 展望

鉴于初学该软件以及时间所限,在完全学懂DFIG控制策略及弄清内部各个变量的作用之后,可以进行如下的一些工作:

(1)完善风速模型,使其能够更好的模拟现实风速。

(2)投入crowbar保护,将得到的转子电流和电容电压与未投入时的转子电流和电容电压进行对比分析。

4 心得

在仿真过程中,改变其中的一个变量,往往就会引起很大的变动,所谓牵一发而动全身。我们在调节风速的模型时,正遇到了这样一个问题。通过一遍遍的排查变量的控制量和被控量,花费了大量时间和经历,同时请教了师兄师姐,最终在大家共同努力下,成功地解决了问题。

通过此次仿真,不仅对双馈风力发电机的基本原理和控制策略有了一个更直观的理解,也深刻体会到风电接入电网后面临的一些技术难题需要我们科研人员去进一步的解决,从而为风电,甚至其他类型的新能源并入电网提供一个强大的技术支撑。

通过这次作业,意识到独立思考和团队合作的重要性,以及如何解决一个问题的方法和途径,所以这些必将对我俩以后的研究生阶段产生巨大影响。

风电并网稳定性开题报告

南京工程学院 毕业设计开题报告 课题名称:风力发电场并网运行稳定性研究 学生姓名:李金鹏 指导教师:陈刚 所在院部:电力工程学院 专业名称:电气工程及其自动化 南京工程学院 2012年3月5日

说明 1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。

毕业设计(论文)开题报告 学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究 毕业设计的内容和意义 内容: 早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。 因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。 意义: 据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。 随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风电并网对电力系统的影响及改善措施标准版本

文件编号:RHD-QB-K4609 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 风电并网对电力系统的影响及改善措施标准版 本

风电并网对电力系统的影响及改善 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的

能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建

风电并网仿真

风电并网课程作业 用digsilent软件仿真分析 含风电场的单机无穷大系统 的潮流与动态过程 班级:研电1105 姓名:郭威(1112201057) 李彦宾(1112201063)

0 仿真系统参数如下 双馈电机参数: 变压器参数: 额定容量S N =1.5MVA 额定容量S N =63MVA 额定电压U N =0.69kV 额定电压U N =242kV/10.5kV 正常转速n =1490.565rpm 短路损耗404kW 级对数 p=2 空载损耗93kW 惯性时间常数(集中参数)T J =5s 短路电压14.45% 定子电阻R s =0.00598989pu 空载电流2.41% 转子电抗x s =0.125pu 直流电容参数: 同步速时 C =48137.6μF E =1.15kV 转子电阻R r =0.00619137pu 系统参数: 转子电抗x r =0.105368pu 无限大系统: f =50Hz 静止时 负荷参数: 转子电阻R r =0.02623123pu P=35MW ,cos Φ=0.9 输电线路:LGJ400,200km, r1=0.08 Ω/km,x1=0.04 Ω/km. 变压器参数计算:选择电力变压器型号为SSPL-63000/220,额定容量为63000kVA ,额定电压242±2?2.5%kV ,低压10.5kV ,短路损耗404kW ,空载损耗93kW ,短路电压14.45%,空载电流2.41%,经过计算: Ω=??==96.5631000242404100022 2N N K T S U P R Ω=??==33.1346310024245.14100%22 N N k T S U U X S U P G N T 6 22010588.12421000931000-?=?=?= S U S I B N N T 52201059.22421006341.2100%-?=??== 搭建的单机无穷大系统潮流图,该系统中无穷大系统由内阻为0、电压标么值为1的50Hz 交流电压源进行等值。发电机采用经典二阶模型。设Xd ’后暂态电势E ’恒定、机械功率Pm 恒定,D 为定常阻尼系数,忽略线路损耗及分布电容,则对于单机无穷大系统有如下运动方程: (1)1m e d M P P D dt d dt ω ωδω?=---??? ?=-??

风力发电与并网技术仿真分析

风力发电与并网技术仿真分析 发表时间:2017-11-15T18:35:50.290Z 来源:《电力设备》2017年第20期作者:石凯1 张帆2 陈默3 [导读] 摘要:作为可再生能源的风电近些年发展迅速,在风电大规模并网的同时也带了许多问题,如对电网稳态运行时的无功功率、有功功率、系统电压的控制和动态稳定性产生不利的影响。 (1北京送变电公司北京市良乡昊天大街 1002401;2 国网冀北电力有限公司经济技术研究院北京市西城区 100045; 3 国家电网公司交流建设分公司北京市西城区 100043) 摘要:作为可再生能源的风电近些年发展迅速,在风电大规模并网的同时也带了许多问题,如对电网稳态运行时的无功功率、有功功率、系统电压的控制和动态稳定性产生不利的影响。文章分析了风力发电系统的基本构造,介绍了风电并网技术中的动态无功补偿及电压调节、低电压穿越技术。采用Matlab/simulink软件对风力机接入系统后的运行情况进行仿真,可知风机接入电网会对电网电能质量造成影响。 关键词:风电;电力系统;低电压穿越;仿真 ABSTRACT:In recent years, wind power as renewable energy development rapid, wind power bring a lot of problems in large-scale grid-connected, such as take adversely affected to reactive power, the active power, system voltage control and dynamic stability in grid steady-state operation. This paper analyzes the basic structure of the wind power generation system, introduced dynamic reactive power compensation and voltage regulation, low voltage ride through technology in wind power grid-connected technology. Using Matlab/simulink software simulate the operation of the wind turbine access system, shows that wind turbine access grid would be take adversely affect to grid power quality. KEYWORD: wind power; power system; LVRT; Simulation 引言 我国风资源分布广泛,可利用量巨大。近年来,风能利用越来越多,风电装机容量不断增加,截至目前,我国风电装机容量已位居世界第一。 但由于风电具有间歇性、随机性、波动性的特点,所以,随着风电规模的不断扩大,风电装机的快速增加,电网安全稳定运行压力越来越大。一方面风力机弃风现象严重,另一方面风电场脱网事故频发,对电网安全运行构成威胁,突出表现为风电并网消纳问题,风电机组运行可靠性问题以及电力电子变流技术。所以,风电机组要具备低电压穿越、有功调节和无功补偿能力,满足电力系统安全运行的需要[1][2]。 风力发电系统是将风能转换为电能的机械、电气及控制设备的组合。典型的风力发电系统主要由叶轮、传动系统、变速器、发电机、调向机构及控制系统和储能装置等几大部分组成[3][4]。 2 仿真实验 仿真内容包括以下两个部分: (1)30MW,10kV同步发电机通过升压变压器进行并网,变压器的出线母线侧接有30MW,功率因数为0.9的负荷。并网经过200km 的LGJ400型双回架空线接到无穷大系统。并网中出现三相故障,持续时间为0.1s。并对负荷进行切除仿真。 (2)接入风力发电机,风力机的功率为15MW,通过升压变压器后,经过100km的LGJ400型架空线与母线连接。对三相故障和切除负荷进行仿真。 2.1 实验原理图 采用Matlab软件中的simulink进行上述仿真实验,观测内容包括同步电机并网后的节点电压和电流,以及支路功率和同步发电机的功角。对风力机接入系统后的运行情况进行了仿真。实验中对软件库中包含的同步电机和风力发电机的仿真实例进行了认真分析和比较,并选出了合理的模型进行搭建,原理图如图1所示。

风电并网对电力系统稳定性的影响

风电并网对电力系统稳定性的影响 【摘要】风电作为一种重要的新能源,若能实现大规模利用对于解决当前全球性的能源危机有着重要意义。风电本身的波动性和间隙性给风电并网带来了很大的难度,本文将深入探究风电并网对电力系统的影响,旨在为同行进一步解决风电的合理并网问题提供一个有益的参考。 【关键词】风电并网;风电特性;电力系统稳定性 引言 保证电力系统的稳定性是电能生产、运输和利用的基本要求。风电作为一种新型能源,可控性较差,其本身的很多特性具有高度的随机性,因此,风电的大规模并网会对电力系统的安全运行产生很大的影响[1],风电并网已经成为制约风电发展的重要因素。 1.风电特性 风电特性是研究风电并网的基础。风电特性主要包括波动性和间歇性。波动性,又称脉动性,是指风电功率在时间尺度上具有沿某条均线不断上下跳变的特性,其特性可以通过波动幅值和波动频率表征。间歇性是指风电功率在时间尺度上具有不连续性。风电的这两个特性具有高度的随机性,从而是风电的可控性较差。风电功率的这些特性是由风力本身决定的,如风速,风向等。 2.风电并网对电力系统的影响 风电并网会使风电场对电力系统的安全稳定运行产生很大的影响。本文认为其主要影响包括以下几个方面: (1)对电压稳定的影响 由于风电功率具有波动性和间歇性,进而会导致电压出现波动和闪变。文献[2]详细研究了风电功率的间歇性对电力系统电压稳定性的影响,指出保证电压稳定性的关键问题是对风力发电机组的速度增量进行有效控制,对电压稳定性影响最大的区域分布在风电场及其附近的节点区域。 (2)对频率稳定的影响 风电的发电功率不稳定,具有间歇性和波动性,从而使其发电量也不稳定,输出功率不是恒定值。风速发生变化时其输出有功功率就会波动,进而导致电网内的有功也发生变化,有功会影响电网的频率。如果一个地区的风电所占份额过大,某一时刻有功频率变动过大将会导致频率崩溃,甚至会使得整个电网瘫痪。

双馈风力发电机并网运行控制及仿真

双馈风力发电机并网运行控制及仿真 结合双馈异步风力发电机的运行特点,将矢量控制技术应用到双馈异步风力发电机并网控制中。构建了风力发电机空载并网与最大追踪控制策略,设计了基于LabVIEW、PXI8840及Compact RIO9035的硬件在环仿真系统。通过PXI能够观测到并网前、后定、转子电流、电压、功率等变化情况,为新型风力发电并网控制策略的研究提供了一个公共平台。 标签:双馈;矢量控制;最大风能追踪;LabVIEW;PXI Abstract:According to the operational characteristics of doubly-fed asynchronous wind turbine,vector control technology is applied to grid-connected control of doubly-fed asynchronous wind turbine. The no-load grid-connected and maximum tracking control strategy of wind turbine is constructed,and the hardware in loop simulation system based on LabVIEW,PXI8840 and Compact RIO9035 is designed. The changes of current,voltage,power and so on before and after the grid connection can be observed by PXI,which provides a common platform for the research on the grid-connected control strategy of new wind power. Keywords:doubly-fed;vector control;maximum wind energy tracking;LabVIEW;PXI 1 概述 風能作为一种可再生能源,具有高效,清洁等特点。风力发电技术在世界范围内也得到迅速发展[1,2]。 双馈异步风力发电机(Doubly-Fed Induction Generator,DFIG)机组,通过控制发电机励磁,实现在发电机转速可调情况下的并网运行。采用矢量控制技术调节励磁,可以有效的调节发电机输出功率,在实现最大风能利用效率的同时,还可以调节电网的功率因数,提高电网的稳定性等[3-6]。 本文分析了DFIG机组运行特性,将定子磁链定向的矢量控制技术运用到机组控制策略中,制定控制策略。建立了基于LabVIEW的仿真系统,验证采用矢量控制技术对DFIG并网控制和最大风能追踪控制的精准性。 2 发电机的运行控制 2.1 发电机空载数学模型 为了准确调节DFIG并网前、后的端电压,本文采用磁场定向的矢量控制。为此,首先建立发电机内磁场定向旋转d-q坐标系的数学模型。

风电并网系统

第30卷第22期中国电机工程学报V ol.30 No.22 Aug.5, 2010 14 2010年8月5日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 22-0014-08 中图分类号:TM 74 文献标志码:A 学科分类号:470·4051 风电并网系统可用输电能力的评估 周明,冉瑞江,李庚银 (电力系统保护与动态安全监控教育部重点实验室(华北电力大学),北京市昌平区 102206) Assessment on Available Transfer Capability of Wind Farm Incorporated System ZHOU Ming, RAN Rui-jiang, LI Geng-yin (Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control (North China Electric Power University), Ministry of Education, Changping District, Beijing 102206, China) ABSTRACT: Available transfer capability (ATC) is used to measure the further reliable power transfer capability between two nodes (or areas) in power system. With the rapid development of wind power generation and gradual maturity of power market, the research on large-scale wind power penetration on ATC has been an urgent need. Under the chronological model of wind speed and wind farm’s power output, ATC incorporated with wind farm is evaluated based on sequential Monte Carlo simulation. ATC determination of every sample state is calculated by key factor constrained AC power flow method. Expectation and variance and corresponding annualized indices are used to evaluate the impacts of wind farm on ATC. Simulation is employed on the modified IEEE-RTS79 system involving wind farm, the results show the proposed algorithm with the merits of fast and accurate calculation. The research could be a valuable reference to power market operations and wind farm planning. KEY WORDS: wind farm; available transfer capability (ATC); probabilistic assessment; sequential Monte Carlo simulation; key constraint 摘要:可用输电能力(available transfer capability,ATC)是衡 量电力系统两点(区域)间可用来进一步可靠传输电能的能力。随着风力发电技术的快速发展和电力市场的逐渐成熟,迫切需要研究大型并网风电场对系统ATC的影响。利用时 间序列模型描述风电场风速和输出功率,进而采用序贯蒙特 卡罗仿真的方法对包含风电场的ATC进行概率评估;每一 抽样状态的ATC采用关键约束下的交流潮流方法来计算; 结合期望值和方差及相应的年度化指标评估风电场对ATC 基金项目:国家自然科学基金项目(50877027);“十一五”国家科 技支撑计划项目(2008BAA14B05)。 Project Supported by National Natural Science Foundation of China (50877027); Project of the National Eleventh-Five Year Research Program of China (2008BAA14B05).的影响。利用包含风电场的改进IEEE-RTS79系统进行仿真和算法验证,表明所提算法能快速而准确地计算ATC,并能有效评估风电场对ATC的影响,研究成果可为电力系统的运行和风电场的规划提供有益的参考。 关键词:风电场;可用输电能力;概率评估;序贯蒙特卡罗仿真;关键约束 0 引言 风力发电是目前世界上增长速度最快、经济效益最好的一种可再生能源发电技术,但是风速的随机性和间歇性会直接影响风电场的输出功率,越来越多的大型风电场的并网对电力系统的运行产生了一定的影响[1-4]。 随着跨区域电网互联的扩大和电力市场改革的不断推进,准确确定电网的输电能力尤其是可用输电能力(available transfer capability,ATC)在保证市场交易的顺利进行和电网的安全稳定运行方面起着重要的作用[5]。当大型风电场并入电网以后,ATC的计算需要综合、准确地考虑风速的特点以及电力系统各种不确定性因素的影响,目前这方面的研究还很少。文献[6]通过加入异步风力发电机模型的含参潮流方法分析了风速概率分布参数对最大输电能力的影响,但没有考虑风速及系统状态变化的时序特性。为了能够更有效和全面地反映大型风电场对ATC的影响,还需要从不同角度对各种影响进行更详细的评估。探索含风电场的有效的ATC 计算和评估方法是一个值得研究的课题。 为了保证速度,ATC的在线计算多采用确定性的方法,常常忽略系统中大量存在的不确定性因素,而概率性的求解方法能够克服确定性方法的上述缺陷,所得结果也更加符合实际情况[7]。由于风

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

基于MATLAB_Simulink风电机组并网运行特性分析毕业设计论文

本科毕业设计论文 题目基于MATLAB/Simulink风电机组并网运行特性分析

摘要 近年来,风能作为一种可再生绿色能源,受到了广泛关注。随着我国风电产业的持续发展,风电场规模不断扩大,风电场并网运行对电网造成的影响也越来越大。因此深入分析风电场并网对电力系统的影响,成为进一步开发风能所迫切需要解决的问题。 本文首先分析了国内外风力发电的发展和现状,阐述了风力发电的基本原理。通过对我国目前应用比较广泛的双馈异步风力发电机和直驱永磁同步电机进行比较,可以看出双馈异步风力发电系统具有明显的优越性。然后,本文建立了双馈型异步风力发电系统的数学模型。通过模型的建立,在MATLAB/Simulink仿真环境下实现了风力发电系统的动态仿真,分析了风电场并网的运行特性,探讨了并网风电场与电网之间的相互影响,特别是对输出功率和电压质量的影响。 关键词:双馈异步风力发电机、MATLAB/Simulink仿真、风速、动态仿真

ABSTRACT Wind power as a kind of renewable green power resources has been received extensive attention in recent years. With the development of wind industry in China and the expansion of the scale of wind farms, the influence brought by large wind farms connected to power systems has become greater and greater. Therefore,the research on the impact of wind farms connected to power systems is an important issue that should be solved urgently. Firstly, the development and recent status of wind power in the world and in China, the characteristics and some technical problems of wind power are analyzed in this paper. The principle of wind power is studied. The operating characteristics of doubly-fed induction motors and direct-drive permanent magnet synchronous motor used in our country are compared in. Through the comparison, we can see that the wind power system with DFIG shows the obvious superiority. Secondly, a series of dynamic mathematics models of wind turbine generator based on the doubly-fed induction wind power system are set. Through Which, the Simulation is developed using MATLAB/Simulink tools by the dynamic mathematics models. The function characteristics of large grid-connected wind farm are analyzed and the interactions of wind power and the grid,especially to the power output and voltage quality,are researched. Key words: Doubly-fed induction wind turbine, MATLAB/Simulink Simulation, Wind speed, Dynamic simulation

风电并网对电力系统的影响

风电并网对电力系统的影响 发表时间:2017-12-11T17:26:36.300Z 来源:《电力设备》2017年第23期作者:崔强谷岩刘志明[导读] 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。 (新疆新能源(集团)有限公司 830011) 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。关键词:风电并网;电力系统;影响;措施 随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。 1 风电并网对电力系统的影响 1.1 风电并网对系统稳定性的影响 一方面,风电并网引起的稳定问题主要是电压稳定问题。风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。 另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。 1.2 风电并网对系统运行成本的影响 风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。但是风力发电的波动性和间歇性使风电场的功率输出具有很强的随机性,目前的预报水平难以满足电力系统实际的运行需要。为了保证风电并网后系统运行的可靠性,需要在原有运行方式基础上,额外安排一定容量的旋转备用,以维持电力系统的功率平衡与稳定。可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本,另一方面又增加了电力系统的可靠性成本。 1.3 风电并网对电网频率的影响 当风速大于切入风速时,风电机组启动挂网运行;当风速低于切入风速时,风电机组停机并与电网解列。当风速大于切出风速时,为保证安全,风电机组必须停机。因此,受风速变化的影响,风电机组的出力也随时变化,一天内可能有多次启动并网和停机解列。风电场不稳定的功率输出会给电网的运行带来许多问题。如果风电容量在电网总装机容量中所占比例很小,风电功率的注入对电网频率影响甚微。但是,当风电场与其他发电方式的电源组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。随着电网中风力发电装机容量所占的比例逐步提高,大量风电功率的波动增大了系统调频的难度,而系统频率的变化又会对风电机组的运行状态产生影响。 1.4 风电并网对电能质量的影响 风能资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压波动和闪变、电压偏差以及谐波等。 电压波动及闪变,源于波动的功率输出。由风速动力特性诱发的有功功率波动取决于当地的风况和湍流强度,频率不定;风电机组输出功率的波动主要由风速快变、塔影效应、风剪切、偏航误差等因素引起,其波动频率与风力机的转速有关。固定转速风电机组引起的闪变问题相对较为严重,某些情况下已经成为制约风电场装机容量的关键因素。风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置可能带来谐波问题;另外一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振。电压偏差问题属于电网的稳态问题。大幅度波动的风速引起风电机组出力波动较大,所以风电功率的波动导致电网内某些节点电压偏差超出国家标准规定的限值。 发电机本身产生的谐波是可以忽略的,谐波电流的真正来源是风电机组中的电力电子元件,谐波干扰的程度取决于变流装置以及滤波系统的结构状况,而且与风速大小相关。对于固定转速风电机组,在持续运行过程中没有电力电子元件的参与,几乎不会产生谐波电流。实际需要考虑谐波十扰的是变速恒频风电机组,就是因为运行过程中变速恒频风电机组的变流器始终处于工作状态。 2 改善风电并网影响的措施 2.1 利用静止无功补偿器和超导储能装置改善系统稳定性 静止无功补偿器可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将静止无功补偿器安装在风电场的出口,根据风电场接入点的电压偏差量来控制静止无功补偿器补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。 具有有功和无功功率综合调节能力的超导储能装置,代表了柔性交流输电系统的新技术方向,将超导储能装置用于风力发电可实现对电压和频率的同时控制。超导储能装置能灵活地调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装超导储能装置装置可充分利用其综合调节能力,降低风电场输出功率的波动,稳定风电场电压。超导储能装置是一种有源的补偿装置,与静止无功补偿器相比,其无功功率补偿量对接入点电压的依赖程度小,在低电压时补偿效果更好。 2.2 利用源滤波器、动态电压恢复器改善电能质量 源滤波器、动态电压恢复器装置的主要功能是抑制电压波动和闪变。

相关文档
最新文档