同角三角函数的基本关系式

同角三角函数的基本关系式
同角三角函数的基本关系式

同角三角函数的基本关系式

诱导公式

sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotα两角和与差的三角函数公式万能公式

sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2) 1-tan2(α/2) cosα=——————

1+tan2(α/2)

2tan(α/2) tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式三角函数的降幂公式

二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα

3tanα-tan3αtan3α=——————

1-3tan2α

三角函数的和差化积公式三角函数的积化和差公式

α+βα-βsinα+sinβ=2sin—--·cos—-—

2 2

α+βα-βsinα-sinβ=2cos—--·sin—-—sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

2 2

α+β α-β c osα+cosβ=2cos —--·cos —-— 2 2 α+β α-β cosα-cosβ=-2sin —--·sin —-— 2 2

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

直角三角定义

它有六种基本函数(初等基本表示):

三角函数数值表

(斜边为r ,对边为y ,邻边为x 。)

在平面直角坐标系xOy 中,从点O 引出一条射线OP ,设旋转角为θ,设OP=r ,P 点的坐标为(x ,y )有

正弦函数 sin θ=y/r 正弦(sin ):角α的对边 比 斜边 余弦函数 cos θ=x/r 余弦(cos ):角α的邻边 比 斜边 正切函数 tan θ=y/x 正切(tan ):角α的对边 比 邻边 余切函数 cot θ=x/y 余切(cot ):角α的邻边 比 对边 正割函数 sec θ=r/x 正割(sec ):角α的斜边 比 邻边 余割函数 csc θ=r/y 余割(csc ):角α的斜边 比 对边 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versin θ =1-cosθ

余矢函数 coversθ =1-sinθ

sinα、cosα、tanα的定义域:

sinα定义域无穷,值域【-1,+1】

cosα定义域无穷,值域【-1,+1】

t anα的定义域(-π/2+kπ,π/2+kπ),k属于整数,值域无穷

单位圆定义

六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0 和π/2 弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:

x^2+y^2 = 1

图像中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点

的x和y坐标分别等于cos θ和sin θ。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有sin θ = y/1 和cos θ =x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于1的一种查看无限个三角形的方式。

对于大于2π 或小于?2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为2π的周期函数:

对于任何角度θ和任何整数 k。

周期函数的最小正周期叫做这个函数的―基本周期‖(primitive period)。正弦、余弦、正割或余割的基本周期是全圆,也就是2π 弧度或360 度;正切或余切的基本周期是半圆,也就是π 弧度或180 度。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数可以定义为:

在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角(k+ 1/2)π 的时候变化迅速。正切函数的图像在θ = (k+ 1/2)π 有垂直渐近线。这是因为在θ 从左侧接进(k+ 1/2)π 的时候函数接近正无穷,而从右侧接近(k+ 1/2)π 的时候函数接近负无穷。

另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别

是,对于这个圆的弦 AB,这里的θ 是对向角的一半,sin(θ) 是 AC(半弦),这是印度的Aryabhata(AD 476–550)介入的定义。cos(θ) 是水平距离OC,versin(θ)= 1 ? cos(θ) 是CD。tan(θ) 是通过A的切线的线段AE的长度,所以这个函数才叫正切。cot(θ) 是另一个切线段AF。sec(θ) =OE和csc(θ) =OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着A 的切线分别向水平和垂直轴的投影。DE是exsec(θ)= sec(θ) ? 1(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在θ 接近π/2(90 度)的时候发散,而余割和余切在θ 接近零的时候发散。

同角三角函数关系式

·平方关系:

sin^2(α)+cos^2(α)=1

cos^2(a)=(1+cos2a)/2

tan^2(α)+1=sec^2(α)

sin^2(a)=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

·商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·对称性

180度-α的终边和α的终边关于y轴对称。

-α的终边和α的终边关于x轴对称。

180度+α的终边和α的终边关于原点对称。

180度-α的终边关于y=x对称。

·诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(kπ+α)=tanα

cot(kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k?Z)

补充:6×9=54种诱导公式的表格以及推导方法(定名法则和定号法则)

f(β)→

f (β)=↘

β↓

sin

β

cos

β

tan

β

cot

β

sec

β

csc

β

360k+αsinαcosαtanαcotαsecαcscα90°-αcosαsinαcotαtanαcscαsecα90°+αcosα-sinα-cotα-tanα-cscαsecα180°-αsinα-cosα-tanα-cotα-secαcscα180°+α-sinα-cosαtanαcotα-secα-cscα270°-α-cosα-sinαcotαtanα-cscα-secα270°+α-cosαsinα-cotα-tanαcscα-secα360°-α-sinαcosα-tanα-cotαsecα-cscα

﹣α-sinαcosα-tanα-cotαsecα-cscα

定名法则

90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是―奇余偶同,奇变偶不变‖定号法则

将α看做锐角(注意是―看做‖),按所得的角的象限,取三角函数的符号。也就是―象限定号,符号看象限‖.(或为―奇变偶不变,符号看象限‖

2在Kπ/中如果K为奇数时函数名不变,若为偶数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全二正弦,三切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切为正,第四象限余弦为正。)比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~

还有一个口诀―纵变横不变,符号看象限‖,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα

·两角和与差的三角函数

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

·三倍角公式:

sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·辅助角公式:

Asinα+Bcosα=√(A^2+B^2)sin(α+arctan(B/A)),其中

sint=B/√(A^2+B^2)

cost=A/√(A^2+B^2)

tant=B/A

Asinα-Bcosα=√(A^2+B^2)cos(α-t),tant=A/B

·万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

·降幂公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1+cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan^2;(α/2)]

cosα=[1-tan^2;(α/2)]/[1+tan^2;(α/2)]

tanα=2tan(α/2)/[1-tan^2;(α/2)]

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a) sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=[sin(α/2)+cos(α/2)]^2

·其他[及证明]:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0

以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos^2a-1)cosa-2(1-cos^2a)cosa

=4cos^3a-3cosa

sin3a=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)^2-sin^2a]

=4sina(sin^260°-sin^2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cos^2a-cos^230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,https://www.360docs.net/doc/429769550.html,...及a都是常数, 这种级数称为幂级数.

泰勒展开式(幂级数展开法):

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

实用幂级数:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)

sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞

cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞

arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)

arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞

cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞

arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)

arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

三角形与三角函数

1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即

a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)

2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC

3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA

4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)

5、三角形中的恒等式:

对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

证明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

类似地,我们同样也可以求证:当α+β+γ=nπ(n?Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

三角函数图像

三角函数图像:

定义域和值域

sin(x),cos(x)的定义域为R,值域为〔-1,1〕

tan(x)的定义域为x不等于π/2+kπ,值域为R

cot(x)的定义域为x不等于kπ,值域为R

初等三角函数导数

y=sinx---y'=cosx

y=cosx---y'=-sinx

y=tanx---y'=1/cos^2x =sec^2x

y=cotx---y'= -1/sin^2x = - csc^2x

y=secx---y'=secxtanx

y=cscx---y'=-cscxcotx

y=arcsinx---y'=1/√(1-x^2)

y=arccosx---y'= -1/√(1-x^2)

y=arctanx---y'=1/(1+x^2)

y=arccotx---y'= -1/(1+x^2)

倍半角规律

如果角a的余弦值为1/2,那么a/2的余弦值为√3/2

反三角函数

三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).

反三角函数主要是三个:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;

y=arccos(x),定义域[-1,1],值域[0,π],图象用兰色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】

证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代如上式即可得

为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).

(1)正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsin x表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。

(2)余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。arccos x表示一个余弦值为x的角,该角的范围在[0,π]区间内。

(3)正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。arctan x表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。

反三角函数主要是三个:

y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;

y=arccos(x),定义域[-1,1] ,值域[0,π],图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sin(arcsin x)=x,定义域[-1,1],值域[-1,1] arcsin(-x)=-arcsinx

证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得

其他几个用类似方法可得

cos(arccos x)=x, arccos(-x)=π-arccos x

tan(arctan x)=x, arctan(-x)=-arctanx

反三角函数其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

当x?[—π/2,π/2]时,有arcsin(sinx)=x

当x?[0,π],arccos(cosx)=x

x?(—π/2,π/2),arctan(tanx)=x

x?(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx类似

若(arctanx+arctany)?(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

同角三角函数关系式

平方关系:sin^2(α)+cos^2(α)=1cos^2(a)=(1+cos2a)/2

tan^2(α)+1=sec^2(α)sin^2(a)=(1-cos2a)/2 cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secα

cotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα

·倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1

·商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

三角函数和差公式练习题

第12课时 三角函数和差公式及辅助角公式 1.函数y=sin (2x+6π)+cos (2x+3 π)的最小正周期和最大值分别为( ) A π,1 B π,2 C 2π,1 D 2π,2 2、)4sin(2cos παα -=-22,则cos α+sin α的值为( ) 3.函数y=sin (x+3π)sin (x+2 π)的最小正周期T 是( ) 4、函数的最小正周期是________ . 5.函数的最大值为 _________________-。 6.已知函数()cos(2)2sin()sin()344 f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域 7.已知函数f (x )=)0,0)(cos()sin(3><<+-+ω??ω?ωπx x 本小题满分12分)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为 .2π (Ⅰ)美洲f (8 π)的值; (Ⅱ)将函数y =f (x )的图象向右平移 6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 8.已知函数。 (Ⅰ)求 的最小正周期: (Ⅱ)求在区间上的最大值和最小值。 2()sin(2)4f x x x π =--sin()cos()26y x x ππ=+-()4cos sin()16f x x x π=+-()f x ()f x ,64ππ??-????

9.已知函数 (1)求 的值; (2)设求的值. 10、已知函数 (1)求的最小正周期和最小值; 11.已知函数f (x )=2cos (x+ 4π)cos (x-4 π)+3sin2x ,求它的值域和最小正周期 12.已知cos ? ???α- π4=14,则sin2α的值为 ( ) A.78 B .-78 C.34 D .-34 13.已知sin ????α-π3=13,则cos ????π6+α的值为 ( ) A.13 B .-13 C.233 D .-233 14.函数f (x )=sin ? ???2x -π4-22sin 2x 的最小正周期是________. 15.y =sin(2x -π3 )-sin2x 的一个单调递增区间是( ) A .[-π6,π3]B .[π12,712π]C .[512π,1312 π] D .[π3,5π6 ] 16.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期; (2)写出函数f (x )的单调递增区间. 18.已知函数 ()cos cos()3f x x x π=?-. (1)求2()3f π的值; (2) 求对称轴和对称中心; (3) 求使1()4f x <成立的x 的取值集合. 1()2sin(),.36f x x x R π=-∈5()4f π106,0,,(3),(32),22135f a f ππαββπ??∈+=+=???? cos()αβ+73()sin()cos(),44f x x x x R ππ=++-∈()f x

1.2.2同角的三角函数的基本关系 教案

1. 2.2同角的三角函数的基本关系 一、教学目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 二、教学重、难点 重点:公式1cos sin 2 2=+αα及 αα α tan cos sin =的推导及运用: (1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 2 2 =+αα及 αα α tan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由2 2 1MP OM +=, 因此2 2 1x y +=,即22 sin cos 1αα+=. 根据三角函数的定义,当()2a k k Z π π≠+ ∈时,有 sin tan cos α αα =. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 解:原式 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简

同角三角函数关系

1.2.2同角三角函数关系 教学目标: 1、掌握同角三角函数关系式; 2、能利用同角三角函数的基本关系进行简单的求值、化简和证明。 教学重点: 公式αα αααtan cos sin ,1cos sin 22==+的推导及其应用 教学难点: 由一个三角函数值求其它三角函数;选择适当的推理途径证明恒等式 教学过程: 活动一 ①由特殊角引入平方关系、商数关系; ②同角三角函数的基本关系: ▼平方关系:1cos sin 22=+αα ▼商数关系:)2 (,cos sin tan ππαααα+≠=k ③用定义证明上述二个公式。 活动二:能利用同角三角函数的基本关系进行简单的求值、化简和证明。 问题一:利用同角三角函数的关系求某个角的三角函数值。 例1:已知54sin = α,且α是第二象限角,求ααtan ,cos 的值。 例2:已知,5 12tan = α求ααcos ,sin 的值。

例3:已知,2tan =α求(1) ααααcos 9sin 4cos 3sin 2-- (2)αα22cos 3sin 2- 例4:已知2cos sin =+αα, 求(1)ααcos sin ,(2)αα22cos sin -。 问题二:利用同角三角函数的关系进行简单的化简。 例5、化简(1),1sin 1tan 2-α α其中α是第二象限角。 (2),cos 1cos 1cos 1cos 1α ααα-+++-其中α是第四象限角。 注:化简实际上也是一种恒等变形,通常要求化简的结果中,涉及的三角函数名称较少, 表达形式比较简单,特殊角的三角函数应求出它们的值 问题三:利用同角三角函数的关系进行简单的证明。 例6:求证: α αααsin cos 1cos 1sin -=+

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

同角三角函数与诱导公式

同角三角函数基本关系 1,平方关系:sin 2α+cos 2α=1; 2,商数关系:tan α=α αcos sin 3,同角三角函数的关系式的基本用途: 根据一个角的某一个三角函数值,求出该角的其他三角函数值;化简同角三角函数式;证明同角的三角恒等式. 题型一,同角间的计算 利用基本关系计算,开方时注意正负 1,若sin α=45 ,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2,化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3,若cos α=-817 ,则sin α=________,tan α=________ 4,若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 5,若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 6,计算1-2sin40°·cos40°sin40°-1-sin 240° =________。 7,已知8 1cos sin =?αα,则ααsin cos -的值等于( ) A .±34 B .±23 C .23 D .-2 3

8,已知 2cos sin cos sin =-+θθθθ,求θθcos sin ?的值。 9,已知sin α·cos α= 81,且24παπ<<,则cos α-sin α的值是多少? 10,已知sin θ +cos θ=51,θ∈(0,π),求值: (1)tan θ; (2)sin θ-cos θ;(3)sin 3θ+cos 3θ。 11,求证: ()x x x x x x x x cos sin 1sin cos 2cos 1sin sin 1cos ++-=+-+。

三角函数的定义与同角三角函数关系

三角函数的定义与同角三角函数关系 一.知识内容: 1.在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 2.三角函数定义: 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于 点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin_α,即sin α=y ;(2)x 叫做α的余弦,记作cos_α,即cos α=x ; (3)y x 叫做α的正切,记作tan_α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三 角函数. 思考:使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合, 在终边上任取一点P ,PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .问角α的正弦、余弦、正切分别等于什么? 4.(1)三角函数的定义域,值域分别是: (2)正弦、余弦、正切函数值在各象限的符号: 5.由定义观察同角三角函数之间的关系: 二.知识应用: 例1.利用定义求下列角的三角函数值:(1) 32π (2)67π (3)3 10π- 练:(1)若750°角的终边上有一点(4,a ),则a =________. (2)求下列各式的值.①cos 25π3+tan(-15π4 );②sin 810°+tan 765°-cos 360°.

例2.已知θ终边上一点P(x,3)(x≠0),且cos θ= 10 10x,求sin θ,tan θ. 练1已知角α的终边在直线y=-3x上,求10sin α+ 3 cos α的值. 例3.(1)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5. (2)若α是第二象限角,则点P(sin α,cos α)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 练2(1)点P(tan α,cos α)在第三象限,则α是第________象限角. (2)若三角形的两内角A,B,满足sin A cos B<0,则此三角形必为() A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上三种情况都有可能 例3.(1)已知cos α=-8 17,求sin α,tan α的值.(2).已知tan α=4 3且α为第三象限角, 求sin α,cos α的值. 练3(1)若sinα=-4 5,且α是第三象限角,求cosα,tanα的值;(2)若cosα= 3 3,求 sinα,tanα的值; (3)若tanα=- 2 2,求sinα,cosα的值.

三角函数公式及记忆方法

三角函数公式 诱导公式的本质 所谓三角函数诱导公式,就是将角απ ±?)2 (n 的三角函数转化为角α的三角函数。 常用的诱导公式Z k ∈ 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: ααπs i n )2s i n (=+k ααπcos )2cos(=+k ααπt a n )2t a n (=+k ααπcot )2cot(=+k ααπs e c )2s e c (=+k ααπcsc )2csc(=+k 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: ααπs i n )s i n (-=+ ααπcos )cos(-=+ ααπt a n )t a n (=+ ααπcot )cot(=+ ααπs e c )s e c (-=+ ααπcsc )csc(-=+ 公式三: 任意角α与 -α的三角函数值之间的关系: ααs i n )s i n (-=- ααcos )cos(=- ααt a n )t a n (-=- ααcot )cot(-=- ααs e c )s e c (=- ααcsc )csc(-=- 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: ααπs i n )s i n (=- ααπcos )cos(-=- ααπt a n )t a n (-=- ααπcot )cot(-=- ααπs e c )s e c (-=- ααπcsc )csc( =- 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: ααπs i n )2 s i n (-=- ααπcos )2cos(=- ααπt a n )2 t a n (-=- ααπcot )2cot(-=- ααπs e c )2s e c (=- ααπcsc )2csc(-=-

同角三角函数公式的转化

同角三角函数公式的转化 同角三角函数的基本关系式十分重要,主要运用于三角函数的求值和恒等变形中各函数间的相互转化.在解答时,若能根据函数式的结构特点,适时灵活地选用公式,往往能获得简捷、迅速的解答. 一、“1”的代换 例1 证明:66441sin cos 31sin cos 2 x x x x --=--. 证明:∵22sin cos 1x x +=, ∴2231(sin cos )x x =+,2221(sin cos )x x =+, ∴662236644222441sin cos (sin cos )sin cos 1sin cos (sin cos )sin cos x x x x x x x x x x x x --+--=--+-- 424222223sin cos 3cos sin 3(sin cos )32sin cos 22 x x x x x x x x ++===··. 评注:本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.同学们要注意掌握和灵活运用“1”的代换. 二、化切为弦 例2 化简:tan (cos sin )sin (tan cot )θ θθθθθ-++··. 解:原式sin sin cos (cos sin )sin cos cos sin θθθθθθθθθ??=-++ ??? ·· 22sin sin sin cos sin cos cos cos θθθθθθθθ =-++=+ 例3 求证:2212sin 2cos21tan 2cos 2sin 21tan 2x x x x x x --=-+. 证明:右边sin 211tan 2cos 2sin 2cos 2sin 21tan 2cos 2sin 2cos 2x x x x x x x x x x - --===++ 2 (cos 2sin 2)(cos 2sin 2)(cos 2sin 2) x x x x x x -=+- 2222cos 2sin 22cos sin cos 2sin 2x x x x x x +-=- 2212sin cos2cos 2sin 2x x x x -==-左边.故原式成立. 评注:三角中的化简及三角恒等式的证明问题常常采用“化切为弦”,即利用商数关系把切函数化为弦函数,以达到统一名称之目的. 三、化弦为切 例3 已知tan 2α=,求下列各式的值: (1)sin 3cos sin cos αααα -+; (2)222sin sin cos cos αααα-+. 解:由已知tan 2α=.

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

三角函数与倍角公式

二倍角公式 sin2A=2sinA?cosA cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina

=(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/ 2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-3 0°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)]

同角三角函数基本关系式与诱导公式

第2节同角三角函数基本关系式与诱导公式 最新考纲 1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sin α cos α =tan α;2.能利用单位圆中的三角函数线推导出π 2± α,π±α的正弦、余弦、正 切的诱导公式. 知识梳理1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1. (2)sin α cos α =tan__α. 2.三角函数的诱导公式 [常用结论与微点提醒] 1.诱导公式的记忆口诀:奇变偶不变,符号看象限. 2.同角三角函数基本关系式的常用变形: (sin α±cos α)2=1±2sin αcos α. 3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 诊断自测 1.思考辨析(在括号内打“√”或“×”)

(1)sin(π+α)=-sin α成立的条件是α为锐角.( ) (2)六组诱导公式中的角α可以是任意角.( ) (3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π 2的奇数倍和偶数倍,变与不变指函数名称的变化.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=1 3.( ) 解析 (1)对于α∈R ,sin(π+α)=-sin α都成立. (4)当k 为奇数时,sin α=1 3, 当k 为偶数时,sin α=-1 3. 答案 (1)× (2)√ (3)√ (4)× 2.(2018·成都诊断)已知α为锐角,且sin α=4 5,则cos (π+α)=( ) A.-35 B.35 C.-45 D.45 解析 因为α为锐角,所以cos α=1-sin 2α=3 5,所以cos(π+α)=-cos α =-3 5,故选A. 答案 A 3.已知sin ? ????5π2+α =1 5,那么cos α=( ) A.-25 B.-15 C.15 D.25 解析 ∵sin ? ????5π2+α=sin ? ???? π2+α=cos α,∴cos α=15.故选C. 答案 C 4.(必修4P22B3改编)已知tan α=2,则 sin α+cos α sin α-cos α 的值为________. 解析 原式=tan α+1tan α-1=2+1 2-1 =3. 答案 3 5.已知sin θ+cos θ=43,θ∈? ? ???0,π4,则sin θ-cos θ的值为________. 解析 ∵sin θ+cos θ=43,∴sin θcos θ=7 18.

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

角函数的概念同角三角函数的基本关系式诱导公式重难点分析与出题角度归纳

Xx 学校学科教师辅导讲义 一)一、定义:角可以看作成平面内一条射线绕着端点从一个位置到另一个位置所称的图形。旋转开始时的射线、终止时 的射线分别叫作_______、_______,射线的端点O 叫做_________.按逆时针方向旋转形成的角叫做_______,顺时针方向旋转形成的角叫做_______,若一条射线没有作任何旋转,称它形成了一个_______。 二、在直角坐标系内讨论角: (1)角的顶点在原点,始边与x 轴的非负半轴重合,角的终边(除端点外)在第几项先,就说这个角是第几象限角(或 者说这个角属于第几象限); 例如:30°、390°、-330°等都是第一象限角;120°、480°、-240°等都是第二象限角;240°、600°、-120°等 都是第三象限角;-30°、-390°、330°等都是第四象限角。 注意:锐角_____第一象限角,但第一象限角_______锐角;钝角______第二象限角,但第二象限角________钝角。(填 “都是”或者“不都是”) (2)若角的终边在坐标轴上,就说这个角不属于任一象限。 例如:直角、周角、平角都不属于任一象限。 三、终边相同的角(重点) 所有与角α终边相同的角,连同角α在内,可构成一个集合S={Z k k ∈?+=?,360/αββ },即任一与角α终 边相同的角都可以表示为角α与整个周角的和。 四、1弧度角的定义:我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。单位符号是 rad,读作弧度。2、弧度 数:在单位圆中,当圆心角为周角时,它所对的弧长为2π,所以周角的弧度数为2π,周角是2πrad 的角. 任意一个0°~360°的角的弧度数必然适合不等式 0≤x<2π. 任一正角的弧度数都是一个正实数;,任一负角的弧度数都是一个负实数; 零角的弧度数是0. 五、弧度制与角度制的换算 360°=2πrad ;180°=πrad ;1°= 180πrad ≈;1rad=π 180 ≈°≈57°18′。

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

同角三角函数的基本关系式_练习题

同角三角函数的基本关系式 练习题 1.若sin α=4 5,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3.若tan α=2,则2sin α-cos α sin α+2cos α的值为( ) A .0 B.34 C .1 D.5 4 4.若cos α=-8 17 ,则sin α=________,tan α=________. 5.若α是第四象限的角,tan α=-5 12 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 6.若α为第三象限角,则cos α1-sin 2α+2sin α 1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 7、已知A 是三角形的一个内角,sin A +cos A = 2 3 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形 8、已知sin αcos α = 1 8 ,则cos α-sin α的值等于 ( ) A .±3 4 B .±23 C .23 D .-2 3 9、已知θ是第三象限角,且9 5 cos sin 4 4 = +θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 10、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( ) A .1- B .2- C .1 D .2 11、若 2cos sin 2cos sin =-+α αα α,则=αtan ( ) A .1 B .- 1 C .43 D .3 4- 12.A 为三角形ABC 的一个内角,若sin A +cos A =12 25 ,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 13.已知tan θ=2,则sin 2 θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C.-34 D.45 14.(tan x +cot x )cos 2x =( )

相关文档
最新文档