振动与波

振动与波
振动与波

振动与波动

一、选择题

1. 弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若0t =时,振子在负的最大位移处,则初相为B

(A) 0.

(B) π.

(C)

2

π. (D) 2

π-

. 2. 一质量为m 的物体和劲度系数为k 的轻弹簧组成的振动系统,若以物体通过-1/2振幅且向负方向运动为计时时刻,该系统的振动方程为A

(A) 2)3

x A π=+

. (B) )3x A π

=+.

(C) cos(2)3

x A π

=+.

(D) 2)3

x A π

=+.

3. 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠

加,则合成的余弦振动的初相为 B

(A)

32π. (B) π. (C) 12

π.

(D) 0.

4. 0t =时,振子在位移为/2A 处,且向负方向运动,则初相的旋转矢量为 A

5. 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2

A

-,且向x 轴正方向运动,代表此简谐运动的旋转矢量为B

6. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为

1cos()x A t ωα=+.当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个

质点正在最大正位移处.则第二个质点的振动方程为 B

(A) 21cos()2x A t ωαπ=++. (B) 21cos()2

x A t ωαπ=+-. (C) 23

cos()2

x A t ωαπ=+-.

(D) 2cos()x A t ωαπ=++.

7. 一物体作简谐振动,振动方程为1cos()4

x A t ωπ=+.在/4t T =(T 为周期)时刻,物体的加速度为 B

(A) 2A ω.

(B)

2ω. (C) 2A ω.

(D)

2A ω. 8. 一物体作简谐振动,振动方程为1cos()4

x A t ωπ=+.在/2t T =(T 为周期)时刻,物体的加速度为 B

(A) 2A ω.

(B)

2ω. (C) 2A ω.

(D)

2A ω.

9. 已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程为D

(A) 222cos ππ33x t ??=-????. (B) 2

22cos ππ33x t ??=+????.

(C) 422cos ππ33x t ??=-????. (D) 4

22cos ππ3

3x t ??=+????.

10. 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大

位移处到最大位移处这段路程所需要的时间为 C

(A) 12T .

(B) 8T . (C) 6T . (D) 4T

. 11. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由

静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 C

(A) π. (B) 2

π

(C) 0. (D) θ. 12. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为1T 和2T .将它们拿到月球上去,相应的周期分别为1'T 和2'T .则有 D

(A) 11'T T >且22'T T >. (B) 11'T T <且22'T T <.

(C) 11'T T =且22'T T =.

(D) 11'T T =且22'T T >.

13. 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 B

(A)

4

T

. (B)

2

T . (C) T . (D) 2T .

14. 一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 D

(A)

1

4

. (B)

12

. (C)

. (D)

34

. 15. 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是B

(A) 4f .

(B) 2f .

(C) f .

(D)

2

f . 16. 在下面几种说法中,正确的说法是: C

(A)波源不动时,波源的振动周期与波动的周期在数值上是不同的.

(B)波源振动的速度与波速相同.

(C)在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计). (D)在波传播方向上的任一质点的振动相位总是比波源的相位超前(按差值不大于π计)

17. 一质点作简谐振动,振动方程为)cos(

φω+=t A x ,当时间/2t T =(T 为周期)时,质点的速度为 B

(A) φωsin A -. (B) φωsin A .

(C) φωcos A -. (D) φωcos A .

18. 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅为2A ,则这两个简谐

运动的相位差为D

(A)

3

π. (B)

2

π. (C) π.

(D) 2π

19. 右图中所画的是两个简谐振动的振动曲线。这两个简谐振动的相位相差为

B

(A) 2π.

(B) π.

(C)

π/2. (D) 0

20. 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为C

(A) 60 .

(B) 90 .

(C) 120 .

(D) 180 .

21. 两个同周期简谐振动曲线如图所示.1x 的相位比2x 的相B

(A) 落后2

π. (B) 超前

2

π. (C) 落后π.

(D) 超前π.

22. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 D

(A) 波的频率为a . (B) 波的传播速度为 b/a . (C) 波长为 π / b .

(D) 波的周期为2π / a .

23. 若一平面简谐波的表达式为)cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则 C

(A) 波速为C . (B) 周期为1/B .

x

y

O u

(C) 波长为 2π /C . (D) 角频率为2π /B . 24. 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻C

(A) A 点相位为π. (B) B 点静止不动.

(C) C 点相位为3/2π.

(D) D 点向上运动.

25. 有一沿 Ox 轴负方向传播的横波,在t 时刻的波形如图所示,则在该时刻: A

(A) 质点A 沿Oy 轴负方向运动.

(B) 质点B 沿Ox 轴正方向运动. (C) 质点C 沿Oy 轴负方向运动. (D) 质点D 沿Oy 轴正方向运动.

26. 在简谐波传播过程中,沿传播方向相距为12

λ(λ为波长)的两点的振动速度必定 A

(A) 大小相同,而方向相反. (B) 大小和方向均相同.. (C) 大小不同,方向相同.

(D) 大小不同,而方向相反.

27. 一平面简谐波表达式为 0.05sin (2)y t x π=-- (SI),则该波的频率ν(Hz), 波速u (m/s)及波线上各点振动的振幅A (m)依次为 C

(A) 0.5, 0.5, -0.05 (B) 0.5, 1, -0.05. (C) 0.5, 0.5, 0.05. (D) 2, 2, 0.05 28. 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则C

(A) 波长为100 m . (B) 波速为10 m/s (C) 周期为1/3 s.

(D) 波沿x 轴正方向传播.

29下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函

数表示沿x 轴负向传播的行波? A

(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=. (C) bt ax A t x f cos cos ),(?=. (D) bt ax A t x f sin sin ),(?=. 30. 图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为 D

(A) 0. (B) π2

1

(C) π. (D) π2

3

31.一平面简谐波的表达式为 cos(/2)y t x πππ=-- m ,则下列选项中关于该平面波描述正确的是:B

(A) 波长λπ=m . (B) 周期2T =s . (C) 频率1ν=Hz . (D) 波速

2

u =m/s.

32.如图(a)表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b)为一质点的振动曲线。

则图(a)中所表示的0x =处质点振动的初相位与图(b)所表示的振动的初相位分别为C

(A) 均为2π (B) 均为2π-. (C) 2π与2

π-.

(D) 2

π

-

与2π

.

33.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为/3π,则此两点相距 C

(A) 2.86 m .

(B) 2.19 m .

(C) 0.5 m .

(D) 0.25 m .

34.一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为 A

(A) }]/)([cos{

00φω+--=u x x t A y . (B) }]/)([cos{

00φω+--=u x x t A y . (C) }]/)[(cos{

00φω+--=u x x t A y . (D) }]/)[(cos{

00φω+-+=u x x t A y . 35.一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4

T

t =时刻的波形如图所示,则该波的表达式为D

(A) cos x y A t u

ωπ??

??

=-+ ????

?

??

.

(B) cos 2x y A t u πω??

??=-- ???????

.

(C) cos 2x y A t u πω??

??=+- ???????

.

(D) cos x y A t u

ωπ??

??=++ ????

?

??

.

36.以下条件中,不属于两列相干波所必须满足的条件.C

(A) 频率相同.

(B) 振动方向相同. (C) 振幅相同.

(D) 相位差恒定.

37.如图所示,两列波长为λ的相干波在P 点相遇.波在1S 点振动的初相是1φ,1S 到P 点的

距离是1r ;波在2S 点的初相是2φ,2S 到P 点的距离是2r ,以k 代表零或正、负整数,则P 点是干涉极大的条件为:

D

(A) λk r r =-12. (B) 212k φφπ-=.

(C) 21212()/2r r k ??πλπ-+-=.

(D) 21122()/2r r k ??πλπ-+-=.

38.在波长为λ的驻波中两个相邻波节之间的距离为C

(A) λ.

(B)

34

λ. (C)

2

λ. (D)

4

λ. 39.在同一媒质中两列相干的平面简谐波的强度之比是12/4I I =,则两列波的振幅之比是 C

(A) 1216A A =. (B) 124A A =. (C) 122A A =. (D) 1214A A =. 40.在驻波中,两个相邻波节间各质点的振动B

A. 振幅相同,相位相同

B. 振幅不同,相位相同

C. 振幅相同,相位不同

D. 振幅不同,相位不同

41.在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是 0c o s 2(/)z E E t x π

νλ=-,则磁场强度波的表达式是:C

(A) 0cos 2(/)y H t x πνλ=-.

(B) 0cos 2(/)z H t x πνλ=-.

(C) 0cos 2(/)y H t x πνλ=-.

(D) 0cos 2(/)y H t x πνλ=+. 42.电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:B

(A) 三者互相垂直,而E 和H 位相相差/2π.

(B) 三者互相垂直,而且, , E H u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与u 垂直.

(D) 三者中E 和H 可以是任意方向的,但都必须与u 垂直 43.电磁波在自由空间传播时,电场强度E 和磁场强度H C

(A) 在垂直于传播方向的同一条直线上. (B) 朝互相垂直的两个方向传播. (C) 互相垂直,且都垂直于传播方向.

(D) 有相位差/2π.

二、判断题

1. 在驻波中,两个相邻波节间各质点的振动振幅相同,相位相同. F

2. 电磁波在自由空间传播时,电场强度E 和磁场强度H 互相垂直,且都垂直于传播方向.

T 3. 波动过程中,介质体积中的能量不随时间变化。F

4. 在驻波中,波节两侧各质点的振动相位相反。 T

5. 横波只能在固体中传播,而纵波可以在气体、液体、固体中传播。 F

6. 机械横波只能在固体中传播。 T

7. 一平面简谐机械波在弹性介质中传播,介质质元在其平衡位置处弹性势能最大。T 8.

在波传播方向上的任一质点振动相位总是比波源的相位滞后T

三、填空题

1. 一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若0t =时, 振子在负的最大位移处,则初相为_____________;振子在平衡位置向正方向运动,则初相为____________;振子在位移为/2A 处,且向负方向运动,则初相为_____.

2. 一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点. 若0t =时质点过0x =处且朝x 轴负方向运动,则振动的初相位=0? ;若0t =时质点处于/2x A =处且向x 轴正方向运动,则振动的初相位=0? .

3. 在简谐波的一条射线上,相距0.2 m 两点的振动相位差为6/π.又知振动周期为0.4 s ,则波速为 。

4. 一简谐振动的表达式为)3cos(φ+=t A x , 已知 0t =时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.

5. 一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为 .

6. 当质点以频率ν作简谐振动时,它的动能和势能的变化频率均为 ,总能量保持不变。

7. 横波的一个波长指的是波线上相邻两同相点之间的距离;一平面简谐横波的波源简谐运动的周期为T ,则2T 内波形向前推进了 个波长。

8. 写出以下各种情况的振动方程:一放置在水平桌面上的弹簧振子,振幅2210 m A -=?,周期0.50 s T =。当0t =时,(1)物体在正方向的端点,振动方程: ;(2)物体在平衡位置向负方向运动,振动方程: ; (3)物体在2110 m A -=?处向负方向运动,振动方程: ;物体(2)状态运动到(3)状态所需时间至少为 。

9. 一简谐波沿B →P 方向传播,它在B 点引起的振动方程为11cos2y A t π=.另一简谐波沿C →P 方向传播,它在C 点引起的振动方程为222cos(

)y A t T

π

π=+.两简谐波为相干波,则方程2y 中T 为 ;已知波速均为0.20u =m/s ,则它们的波长为 ;

如图1所示,P 点与B 点相距0.40 m ,与C 点相距0.5 m ,则两波在P 点的相位差为 ;P 点处振动的振幅为 。

10. 图为沿x 轴负方向传播的平面简谐波在0t =时刻的波形.若

波的表达式以余弦函数表示,则O 点处质点振动的初相为______________。

11. 已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量,此波的波长是_______,波速是______.在波传播方向上相距为d 的两点的振动相位差是________.

12. 频率为500 Hz 的波,其波速为350 m/s ,相位差为2/3π的两点间距离为____ ____.

13. 一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,

波长变成

x

y

O u

y (m)

了0.37 m ,它在该介质中传播速度为__________.

14. 一平面简谐波沿x 轴正方向传播,波速100m/s u =,0t =时刻的波形曲线如图所示.可知波长; 振幅A = ________; 频率.

15. 在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.

16. 两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.

17. 在弦线上有一驻波,其表达式为 2cos(2/)cos(2)y A x t πλπν=, 两个相邻波节之间的距离是_______________.

四、计算题

1. 质量m = 10 g 的小球与轻弹簧组成的振动系统,按10.5cos(8)3

x t ππ=+的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求

(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ;

(4) 当物体的位移的大小为振幅的1/4时,动能、势能各占振动总能量的多少? 2. 证明单摆的小角度摆动为简谐运动,并求单摆的摆动周期。

3. 一质量为0.01kg 的物体作简谐运动,其振幅为0.08m ,周期为4s ,起始时刻物体在0.04m 处,向Ox 轴负方向运动,试求

(1) 1.0s t =时,物体所处的位置和所受的力;

(2) 由起始位置运动到0.04m x =-处所需要的最短时间。 4. 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.

5. 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg ,振动频率υ=1.0 ×1014 Hz ,振幅A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.

6. 质量为0.01kg 的物体,以振幅0.01m 作简谐振动,其最大加速度为24.0/m s -,初始时物体在平衡位置且向正方向运动。求:

(1) 振动方程;

(2) 振动的角频率、周期、振幅和初相; (3) 振动的速度、加速度的数值表达式; (4) 振动的能量E 。

7. 某简谐振动的t x -曲线如题图所示,试写出其振动方程.

8. 一波源作简谐振动,周期为0.01s ,振幅为0.1m ,以波源经平衡位置向正方向运动时作为计时起点. 已知波速1400m s u -=?的速度沿直线传播,以波源处为原点,波传播方向为x 轴正向.

(1) 试写出波函数;

(2) 16m x =处的质点在10.01t s =时的运动状态(位移和振动速度); (3) 此运动状态在哪一刻传至240m x =处 9. 一平面简谐波在传播路径上有A 、B 两点,B 点的振动比A 点落后/6π,已知AB 之间的距离是2cm ,振动周期是2s. 若0t =时刻,A 点正位于0/2y A =-处且向y 正方向运动(0A 为振幅,0A =20cm ), 求:

(1) 波长λ和波速u ;

(2) 若以A 点为坐标原点,写出A 点的振动方程; (3) 若以B 点为坐标原点,写出B 点的振动方程;

(4) 若以B 点为坐标原点,波传播方向为x 轴正向,写出波函数。

10. 波源作简谐运动,其运动方程为34.010cos(240)y t π-=?,式中y 的单位为m ,t 的单位为s ,它所形成的波以30 m/s 的速度沿一直线向右传播,求

(1) 波的周期及波长; (2) 写出波动方程;

(3) 10.5m x =处质点的振动方程;

(4) 0.5s t =时各质点的位移分布。(以上写出表达式即可,不需要画图。

11. 平面简谐波的波动方程为()

()m 24cos 080πx πt y -=..求:(1) t =2.1 s 时波源及

距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差.

12. 一平面简谐波在0t =时刻的波形如图所示,设波的频率为 2.5Hz ν=,且此时图中点P 的运动方向向下,求:

(1) 此波的波函数;

(2) P 的振动方程和位置坐标x 。

13. 波源作简谐运动,周期为0.02s,若该振动以100m·s-1

的速度沿直线传播,设t =0时,

波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.

14. 一列平面余弦波沿x 轴正向传播,波速为15m s

-?,波长为2m ,原点O 处质点的振动曲线如图所示.写出波动方程.

15. 图示一平面余弦波在0t =时刻与2s t =时刻的波形图,求:

(1) 坐标原点处介质质点的振动方程;

(2) 该波的波动方程。

16. 一振源在介质内作简谐运动,如图所示为它

的振动曲线,此振源向x 方向发出一平面简谐波,波速为0.3m/s,请解答以下问题:

(1) 若以振源处为坐标原点,请写出此平面波函数; (2) 写出距振源0.45m 处A 点的振动方程。

17. 一平面简谐波沿O x 轴负向传播,5.1=t s 时刻的波形如图所示,求(1)该波的波动方程;(2)O 点的运动方程;(3)相距为6m 的两质点的相位差。

18. 如图所示为一平面简谐波在 0=t 时刻的波形图,(1)写出振源处的振动方程;(2)写出该波的波动方程;(3)P 处质点的运动方程。

A

19. 一平面简谐波波函数为()cos y A Bt Cx D =-+,式中,,A B C 均为大于零的常数,试确定:

(1) 波的振幅、频率、周期、波长和波速;

(2) 波传播方向上距源点L 处的P 点的振动初相位和振动方程; (3) 任一时刻在波传播方向上相距为d 的两点间的相位差。

20. 一横波沿绳子传播,其波的表达式为0.05cos(1002)y t x ππ=- (SI)

(1) 求此波的振幅、波速、频率和波长; (2) 求10.2m x =处和20.7m x =处二质点振动的相位差。

21. 已知O 点的振动为简谐振动,其振动曲线如图所示,振动方程用余弦表示,振动在空间中均匀传播且无损耗,其传播速度为3m/s ,求:

(1) 振动的振幅A ,周期T ,圆频率ω及初相φ;

(2) 写出O 点的振动方程;

(3) 写出振动沿着x 轴正方向传播形成波的波函数;(以O 点为原点)

(4) 求1 1.0m x =处和2 1.5m x =处二质点振动的相位差。

22.一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求

(1) 原点处质点的振动方程. (2) 在150cm x =处质点的振动方程. (3) 这列波的波动方程。

元素知识点总结知识讲解

元素知识点总结

第四单元 物质构成的奥秘 课题1 原 子 1、原子的构成 (1)原子结构的认识 (2)在原子中由于原子核带正电,带的正电荷数(即核电荷数)与核外电子带的负电荷数(数值上等于核外电子数)相等,电性相反,所以原子不显电性 因此: 核电荷数 = 质子数 = 核外电子数 (3)原子的质量主要集中在原子核上 注意:①原子中质子数不一定等于中子数 ②并不是所有原子的原子核中都有中子。例如:氢原子核中无中子 2 、相对原子质量:⑴ ⑵相对原子质量与原子核内微粒的关系: 相对原子质量 = 质子数 + 中子数 课题2 元 素 一、 元素 1、含义:具有相同质子数(或核电荷数)的一类原子的总称。 注意:元素是一类原子的总称;这类原子的质子数相同 相对原子质

因此:元素的种类由原子的质子数决定,质子数不同,元素种类不同。 2、元素与原子的比较: 3、元素的分类:元素分为金属元素、非金属元素和稀有气体元素三种 4、元素的分布: ①地壳中含量前四位的元素:O、Si、Al、Fe ②生物细胞中含量前四位的元素:O、C、H、N ③空气中前二位的元素:N、O 注意:在化学反应前后元素种类不变 二、元素符号 1、书写原则:第一个字母大写,第二个字母小写。 2、表示的意义;表示某种元素、表示某种元素的一个原子。例如:O:表示氧 元素;表示一个氧原子。 3、原子个数的表示方法:在元素符号前面加系数。因此当元素符号前面有了系 数后,这个符号就只能表示原子的个数。例如:表示2个氢原子:2H; 2H:表示2个氢原子。 4、元素符号前面的数字的含义;表示原子的个数。例如:6.N:6表示6个氮原 子。

振动图像与波的图像

振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象.简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律 图线 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 图线变化随时间推移图延续,但已有形状 不变 随时间推移,图象沿传播方向平 移 一完整曲线占横坐 标距离 表示一个周期表示一个波长

2012届高考二轮复习专题 :振动图像与波的图像及多解问题 【例1】如图6—27所示,甲为某一波动在t=1.0s 时的图象,乙为参与该波动的P 质点的振动图象 (1)说出两图中AA /的意义 (2)说出甲图中OA /B 图线的意义 (3)求该波速v= (4)在甲图中画出再经3.5s 时的波形图 (5)求再经过3.5s 时p 质点的路程S 和位移 解析:(1)甲图中AA /表示A 质点的振幅或1.0s 时A 质点的位移大小为0.2m ,方向为负.乙 图中AA /’表示P 质点的振幅,也是 P 质点在 0.25s 的位移大小为0.2m ,方向为负. (2)甲图中OA /B 段图线表示O 到B 之间所有质点在1.0s 时的位移、方向均为负.由乙图 看出P 质点在1.0s 时向一y 方向振动,由带动法可知甲图中波向左传播,则OA /间各质点 正向远离平衡位置方向振动,A /B 间各质点正向靠近平衡位置方向振动. (3)甲图得波长λ=4 m ,乙图得周期 T =1s 所以波速v= λ/T=4m/s (4)用平移法:Δx =v ·Δt =14 m =(3十?)λ 所以只需将波形向x 轴负向平移?λ=2m 即可,如图所示 (5)求路程:因为n=2 /T t =7,所以路程S=2An=2×0·2×7=2。8m 求位移:由于波动的重复性,经历时间为周期的整数倍时.位移不变·所以只需考查从图示时刻,p 质点经T/2时的位移即可,所以经3.5s 质点P 的位移仍为零. 【例2】如图所示,(1)为某一波在t =0时刻的波形图,(2)为参与该波动的P 点的振动图象,则下列判断正确的是 A . 该列波的波速度为4m /s ; B .若P 点的坐标为x p =2m ,则该列波沿x 轴正方向传播 C 、该列波的频率可能为 2 Hz ; D .若P 点的坐标为x p =4 m ,则该列波沿x 轴负方向传播; 解析:由波动图象和振动图象可知该列波的波长λ=4m ,周期T =1.0s ,所以波速v =λ/T =4m /s . 由P 质点的振动图象说明在t=0后,P 点是沿y 轴的负方向运动:若P 点的坐标为x p =2m ,则说明波是沿x 轴负方向传播的;若P 点的坐标为x p =4 m ,则说明波是沿x 轴的正方向传播的.该列波周期由质点的振动图象被唯一地确定,频率也就唯一地被确定为f = l /t =0Hz .综上所述,只有A 选项正确. 点评:当一列波某一时刻的波动图象已知时,它的波长和振幅就被唯一地确定,当其媒质中某质点的振动图象已知时,这列波的周期也就被唯一地确定,所以本题中的波长λ、周期T 、波速v 均是唯一的.由于质点P 的坐标位置没有唯一地确定,所以由其振动图象可知

大学物理振动与波练习题与答案

第二章 振动与波习题答案 12、一放置在水平桌面上的弹簧振子,振幅2 10 0.2-?=A 米,周期50.0=T 秒,当0 =t 时 (1) 物体在正方向的端点; (2) 物体在负方向的端点; (3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。 求以上各种情况的谐振动方程。 【解】:π=π = ω45 .02 )m () t 4cos(02.0x ?+π=, )s /m ()2 t 4cos(08.0v π+?+ππ= (1) 01)cos(=?=?,, )m () t 4cos(02.0x π= (2) π=?-=?,1)cos(, )m () t 4cos(02.0x π+π= (3) 2 1)2cos(π=?-=π+?, , )m () 2 t 4cos(02.0x π+π= (4) 21)2cos(π-=?=π+?, , )m () 2 t 4cos(02.0x π-π= 13、已知一个谐振动的振幅02.0=A 米,园频率πω 4=弧度/秒, 初相2/π=?。 (1) 写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。 【解】:)m () 2 t 4cos(02.0x π+π= , )(2 12T 秒=ωπ= 15、图中两条曲线表示两个谐振动 (1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。

【解】:振幅相同,频率和初相不同。 虚线: )2 t 2 1cos(03.0x 1π-π= 米 实线: t cos 03.0x 2π= 米 16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为 t 3cos 4x 1= 厘米 )3 2t 3cos(2x 2π+= 厘米 试用旋转矢量法求出合振动方程。 【解】:)cm () 6 t 3cos(32x π+= 17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。 (1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。 【解】: 18、波源作谐振动,其振动方程为(m ))240(1043t cos y π-?=,它所形成的波以30m/s 的速度沿一直线传播。

振动波(学生测试题)

1.两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方 程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π21cos(2++=αωt A x . (B) )π21 cos(2-+=αωt A x . (C) )π2 3 cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ] 2.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: (A) )3232cos(2π+π=t x . (B) )3 232cos(2π-π=t x . (C) )3 234c o s (2π+π=t x . (D) )3 234c o s (2π-π=t x . (E) )4 134cos(2π-π=t x . [ ] 3.当质点以频率ν 作简谐振动时,它的动能的变化频率为 (A) 4 ν. (B) 2 ν . (C) ν. (D) ν2 1 . [ ] 4.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 (A) 波的频率为a . (B) 波的传播速度为 b/a . (C) 波长为 π / b . (D) 波的周期为2π / a . [ ] 5.如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为 (A) ])/(cos[0φω+-=u x t A y . (B) )]/([cos u x t A y +=ω. (C) })]/([cos{0φω+-=u x t A y . (D) })]/([cos{0φω++=u x t A y . [ ] 6.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能. (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加. (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小. [ ]

元素知识点总结范文

第四单元 物质构成的奥秘 课题1 原 子 1、原子的构成 (1)原子结构的认识 (2)在原子中由于原子核带正电,带的正电荷数(即核电荷数)与核外电子带的负电荷数(数值上等于核外电子数)相等,电性相反,所以原子不显电性 因此: 核电荷数 = 质子数 = 核外电子数 (3)原子的质量主要集中在原子核上 注意:①原子中质子数不一定等于中子数 ②并不是所有原子的原子核中都有中子。例如:氢原子核中无中子 2 ⑴ ⑵相对原子质量与原子核内微粒的关系: 相对原子质量 = 质子数 + 中子数 课题2 元 素 一、元素 1、 含义:具有相同质子数(或核电荷数)的一类原子的总称。 注意:元素是一类原子的总称;这类原子的质子数相同 因此:元素的种类由原子的质子数决定,质子数不同,元素种类不同。 4、元素的分布: ①地壳中含量前四位的元素:O 、Si 、Al 、Fe ②生物细胞中含量前四位的元素:O 、C 、H 、N 相对原子质量=

③空气中前二位的元素:N 、O 注意:在化学反应前后元素种类不变 二、元素符号 1、 书写原则:第一个字母大写,第二个字母小写。 2、 表示的意义;表示某种元素、表示某种元素的一个原子。例如:O :表示氧元素;表示 一个氧原子。 3、 原子个数的表示方法:在元素符号前面加系数。因此当元素符号前面有了系数后,这个 符号就只能表示原子的个数。例如:表示2个氢原子:2H ;2H :表示2个氢原子。 4、 元素符号前面的数字的含义;表示原子的个数。例如:6.N :6表示6个氮原子。 三、元素周期表 1、 发现者:俄国科学家门捷列夫 2、 结构:7个周期16个族 3、 元素周期表与原子结构的关系: ①同一周期的元素原子的电子层数相同,电子层数=周期数 ②同一族的元素原子的最外层电子数相同,最外层电子数=主族数 4、 原子序数=质子数=核电荷数=电子数 5、 元素周期表中每一方格提供的信息: 课题3 离子 一、核外电子的排布 1、原子结构图: ①圆圈内的数字:表示原子的质子数 ②+:表示原子核的电性 ③弧线:表示电子层 ④弧线上的数字:表示该电子层上的电子数 1、 核外电子排布的规律: ①第一层最多容纳2个电子; ②第二层最多容纳8个电子; ③最外层最多容纳8个电子(若第一层为最外层时,最多容纳2个电子) 3、元素周期表与原子结构的关系: ①同一周期的元素,原子的电子层数相同,电子层数=周期数 ②同一族的元素,原子的最外层电子数相同,最外层电子数=主族数 4、元素最外层电子数与元素性质的关系 金属元素:最外层电子数<4 易失电子 非金属元素:最外层电子数≥4 易得电子 稀有气体元素:最外层电子数为8(He 为2) 不易得失电子 最外层电子数为8(若第一层为最外层时,电子数为2)的结构叫相对稳定结构 因此元素的化学性质由原子的最外层电子数决定。当两种原子的最外层电子数相同,则这两种元素的化学性质相似。(注意:氦原子与镁原子虽然最外层电子数相同,但是氦原子最外 质子数

振动波教学课件

在均匀介质中,各质点的平衡位置在同一条直线上,振动由质点1开始向右传播。已知质点1开始振动时的方向竖直向上,经时间t ,质点1~13 第一次形成如图所示的波形,则该波的周期为A A.t/2 B.2t/3 C.3t/2 D.9t/13 质点1~13第一次形成如图所示的波形,但并不是传到13质点,涉及到两个时刻的波形图,若刚传到13质点,应和波源振动情况相同。 13的速度应该是竖直向下的,又1的振动形式传播到的位置应该与1的振动形式相同,所以1的振动形式应该已经传播到13右边再加半个波长的位置(题目里提到了第一次形成这个波形),所以,波的振动形式一共传播了两个波长的距离,时间应该是2T=t ,即选A 某质点在坐标原点O 处做简谐运动,其振幅为5.0cm ,振动周期为 0.40s ,振动在介质中沿x 轴正向直线传播,传播速度为1.0m/s 。当它由平衡位置O 向上振动0.20s 后立即停止振动,则停止振动后经过0.20s 的时刻的波形可能是下图中的 为什么是A 而不是C ?注意经历了三个时刻 如图所示,波源S 1在绳的左端发出频率为f 1、振幅为A 1=2A 的半个波形a ,同时另一个波源S 2在绳的右端发出频率为f 2、振幅为A 2=A 的半个波形b ,f 2=2f 1,P 为两个波源连线的中点,则下列说法中正确的有( )ABD A .两列波同时到达P 点 B .两个波源的起振方向相同 C .两列波在P 点叠加时P 点的位移最大可达3A D .两列波相遇时,绳上位移可达3A 的点只有一个,此点在P 点的左侧 一列简谐横波由质点A 向质点B 传播, 已知A 、B 两点相距4m ,这列波的波长大于 2m ,下图是在波的传播过程中A 、B 两质点的 振动图象,求波的传播速度.(40/3、40/7) 易错点:两质点的振动情况隐藏在振动图像中, 如图所示,用折射率 n= 的玻璃做成一个外径为R 的半球形空心 球壳.一束与平行的平行光射向此半球的外表面,若让一个半径为 R 的圆形遮光板的圆心过轴,并且垂直该轴放置.则球壳内部恰好没有光线射入,问: ①临界光线射入球壳时的折射角θ2为多大? ②球壳的内径为多少? 如图所示,要使以任意方向射到圆柱形光导纤维一个端面上 的激光束都能从另一个端面射出,而不会从侧壁“泄漏”出来, 2

振动与波部分习题hw

振动与波部分大作业 选择题: 1. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为 原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2. (C) 2E 1. (D) 4 E 1 . 2. 图A 表示t = 0时的余弦波的波形图,波沿x 轴正向传播;图B 为一余弦振动曲线. 则图A 中所表示的x = 0处振动的初相位与图B 所表示的振动的初相位 (A) 均为零. (B) 均为π21 (C) 均为π-2 1 (D) 依次分别为π21与π-21. (E) 依次分别为π-21与π2 1. 3. 在波长为λ 的驻波中两个相邻波节之间的距离为 (A) λ . (B) 3λ /4. (C) λ /2. (D) λ /4. 4. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间 单位为秒.则此简谐振动的振动方程为: (A ))3232cos(2π+π=t x . (B) )3 232cos(2π-π=t x . (C) )3234c o s (2π+π=t x . (D) )3 234c o s (2π-π=t x . (E) )4 134cos(2π-π=t x . 5. 轻质弹簧下挂一个小盘,小盘作简谐振动,平衡位置为原点,位 移向下为正,并采用余弦表示。小盘处于最低位置时刻有一个小 物体不变盘速地粘在盘上,设新的平衡位置相对原平衡位置向下 移动的距离小于原振幅,且以小物体与盘相碰为计时零点,那么 以新的平衡位置为原点时,新的位移表示式的初相在 (A) 0~π/2之间. (B) π/2~π之间. (C) π~3π/2之间. (D) 3π/2~2π之间. y t y 0图B

振动图像与波的图像及多解问题专题

振动图像与波的图像及多解问题 一、振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象. 简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律 图线 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 图线变化随时间推移图延续,但已有形状不变随时间推移,图象沿传播方向平移 一完整曲线占横坐标距离表示一个周期表示一个波长 例题精选: 例题1:如图6—27所示,甲为某一波动在t=1.0s时的图象,乙为参与该波动的P质点的振动图象 (1)说出两图中AA/的意义? (2)说出甲图中OA/B图线的意义? (3)求该波速v=? (4)在甲图中画出再经3.5s时的波形图 (5)求再经过3.5s时p质点的路程S和位移 解析:(1)甲图中AA/表示A质点的振幅或1.0s时A质点的位移大小为0.2m,方向为负.乙图中AA/’表示P质点的振幅,也是P质点在0.25s的位移大小为0.2m,方向为负. (2)甲图中OA/B段图线表示O 到B之间所有质点在1.0s时的位移、方向均为负.由乙图看出P质点在1.0s时向一y方向振动,由带动法可知甲图中波向左传播,则OA/间各 质点正向远离平衡位置方向振动,A/B间各质点正向靠近平衡位置方向振 动. (3)甲图得波长λ=4 m,乙图得周期T=1s 所以波速v=λ/T=4m/s (4)用平移法:Δx=v·Δt=14 m=(3十?)λ

机械振动和机械波知识点总结

机械振动与机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做得往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置得力即回复力。回复力就是以效果命名得力,它可以就是一个力或一个力得分力,也可以就是几个力得合力。 产生振动得必要条件就是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1、定义:物体在跟位移成正比,并且总就是指向平衡位置得回复力作用下得振动叫简谐振动。简谐振动就是最简单,最基本得振动。研究简谐振动物体得位置,常常建立以中心位置(平衡位置)为原点得坐标系,把物体得位移定义为物体偏离开坐标原点得位移。因此简谐振动也可说就是物体在跟位移大小成正比,方向跟位移相反得回复力作用下得振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2、简谐振动得条件:物体必须受到大小跟离开平衡位置得位移成正比,方向跟位移方向相反得回复力作用。 3、简谐振动就是一种机械运动,有关机械运动得概念与规律都适用,简谐振动得特点在于它就是一种周期性运动,它得位移、回复力、速度、加速度以及动能与势能(重力势能与弹性势能)都随时间做周期性变化。 (三)描述振动得物理量,简谐振动就是一种周期性运动,描述系统得整体得振动情况常引入下面几个物理量。

1、振幅:振幅就是振动物体离开平衡位置得最大距离,常用字母“A”表示,它就是标量,为正值,振幅就是表示振动强弱得物理量,振幅得大小表示了振动系统总机械能得大小,简谐振动在振动过程中,动能与势能相互转化而总机械能守恒。 2、周期与频率,周期就是振子完成一次全振动得时间,频率就是一秒钟内振子完成全振动得次数。振动得周期T跟频率f之间就是倒数关系,即T=1/f。振动得周期与频率都就是描述振动快慢得物理量,简谐振动得周期与频率就是由振动物体本身性质决定得,与振幅无关,所以又叫固有周期与固有频率。 (四)单摆:摆角小于5°得单摆就是典型得简谐振动。 细线得一端固定在悬点,另一端拴一个小球,忽略线得伸缩与质量,球得直径远小于悬线长度得装置叫单摆。单摆做简谐振动得条件就是:最大摆角小于5°,单摆得回复力F就是重力在圆弧切线方向得分力。单摆得周期公式就是T=。由公式可知单摆做简谐振动得固有周期与振幅,摆球质量无关,只与L与g有关,其中L就是摆长,就是悬点到摆球球心得距离。g就是单摆所在处得重力加速度,在有加速度得系统中(如悬挂在升降机中得单摆)其g应为等效加速度。 (五)振动图象。 简谐振动得图象就是振子振动得位移随时间变化得函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象就是正弦或余弦函数图象,它直观地反映出简谐振动得位移随时间作周期性变化得规律。要把质点得振动过程与振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等得变化情况。 (六) 机械振动得应用——受迫振动与共振现象得分析 (1)物体在周期性得外力(策动力)作用下得振动叫做受迫振动,受迫振动得频率在振动稳定后总就是等于外界策动力得频率,与物体得固有频率无关。 (2)在受迫振动中,策动力得频率与物体得固有频率相等时,振幅最大,这种现象叫共振,声音得共振现象叫做共鸣。 2机械波中得应用问题 1、理解机械波得形成及其概念。 (1)机械波产生得必要条件就是:<1>有振动得波源;<2>有传播振动得媒质。 (2)机械波得特点:后一质点重复前一质点得运动,各质点得周期、频率及起振方向都与波源相同。 (3)机械波运动得特点:机械波就是一种运动形式得传播,振动得能量被传递,但参与振动得质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波得物理量关系: 注:各质点得振动与波源相同,波得频率与周期就就是振源得频率与周期,与传播波得介质无关,波速取决于质点被带动得“难易”,由媒质得性质决定。

第五讲机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度m K m F a -== 回,因此作简谐振 动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x处时,有 mg x x k mg F F -+=-=)(0回 式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0 ,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作 圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t,参考圆上的质点与O 的连线跟x 的夹角就成为0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(?ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 图 5-1-1 图5-1-2

长春工业大学物理标准答案光振动波115

练习十一 机械振动(一) 1.质量为0.01千克的小球与轻弹簧组成的系统的振动规律为米,)3 1(2cos 1.0+=t x πt 以秒记。则该振动的周期为 1s 初周相为 2/3π,t=2秒时的周相为14/3π周相为32π/3对应的时刻t= 5s 。 2.一质点沿X 轴作谐振动,振动方程 ),)(3 1 2cos(1042SI t x ππ+ ?=-从t=0时刻起,到质点位置在x=-2cm 处,且向X 轴正方向运动的最短时间间隔为 0.5s 。 3.( 2 )设质点沿X 轴作谐振动,用余弦函数表示,振幅A ,t=0时,质点过x A 02 =-处且向正向运动,则其初周相为:

(1)π 4 ;(2) 5 4 π ;(3)- 5 4 π ;(4)。 3 π - 4.( 4 )下列几种运动哪种是谐振动: (1)小球在地面上作完全弹性的上下跳动; (2)活塞的往复运动; (3)细线悬一小球在水平面内作圆周运动; (4)浮于水面的匀质长方体木块受扰后作无阻尼上下浮动。 5.谐振动振动的周期为1秒,振动曲线如图11-5所示。求:

(1)谐振动的余弦表达式; 解:A =0.04m ,ω=2πT =2π,φ0=-π/3 所以 y =0.04cos(2πt -π/3) (2)a 、b 、c 各点的周相?及这些状态所对应的时刻。 Φa =0,Φb =π/3,Φc =π 6.质量为0.04千克的质点作谐振动,其运动方程为x t =-0452.sin()π米,式中t 以秒计。求: (1)初始位置、初始速度; 解:x=0.4cos(5t -π)

v=dx/dt=-2sin(5t-π) a=dv/dt=-10cos(5t-π) 当t=0时,x0=-0.4m,v0=0 (2)t=4π/3时的位移、速度、加速度; 当t=4π/3时,5t-π=17/3π=6π-π/3 v=m/s,a=-5m/s2 x=0.2m,3 (3)质点在最大位移一半处且向X轴正向运动的时刻的速度、加速度和所受的力。当x=±A/2,v>0时, φ=4π/3 或者φ=-π/3 v=m/s v=m/s 3 3 a=5m/s2a=-5m/s2 F=0.2N F=-0.2N

振动与波

考试要求 1、弹簧振子,简谐振动.简谐振动的振幅、周期和频率,简称振动的振动图象.B 2、单摆,在小振幅条件下单摆作简谐振动,周期公式.B 3、振动中的能量转化.简谐振动中机械能守恒.A 4、受迫振动,受迫振动的振动频率.共振及其常见的应用.A 5、振动在介质中的传播——波.横波和纵波.横波的图象.波长、频率和波速的关系.B 6、波的叠加.波的干涉.衍射现象.A 7、声波.A 说明: 1、不要求会推导单摆的周期公式. 2、对于振动图象和波的图象,只要求理解它们的物理意义,并能识别它们. 3、波的衍射和干涉,只要求定性了解. 知识结构

方法指导 ——洪安生 机械振动和机械波是力学部分的最后一章,也可以说是力学知识的总结和应用.振动是一种复杂的运动,它的速度、加速度、动能、势能等都随时间变化,其中简谐运动是其中最简单的一种,它是一种周期性的运动.振动在介质中的传播就形成机械波,波动的更复杂的运动形式,首先它研究的不再是某一个质点,而是连续的弹性介质,对于波动过程中的每个质点,它的位移是

时间的周期性函数,而对于沿波传播方向上的各质点,它们的位移又是空间位置的周期性函数.两个周期(时间周期和空间周期)是这一部分重要的内容. 这部分的内容还比较多,如阻尼振动与无阻尼振动、受迫振动和共振、波的叠加、干涉和衍射等,这些内容不算重点内容,要求都不高,但也要知道它们的意义及简单应用等. 下面几个问题是本章的重点和难点: 1、振动、波动的联系和区别 (1)联系:振动在介质中的传播就形成波,可以说没有振动就没有波.在波动传播过程中,每一个质点都在振动,众多质点的振动形成波. (2)区别:对于单个质点而言,运动形式是振动.对于连续介质中的众多质点而言,就是波.对于单个质点,它的运动是周期性运动,即时间周期;而对于众多质点,还有个空间周期,即波长. 振动图像的纵坐标是位移,横坐标是时间,它表示的是某个质点的位移随时间变化的规律;波动图像的纵坐标是位移,横坐标是沿波传播方向上的位置,它表示的是沿波传播方向上各质点的位移随位置变化的规律. 有波,一定有振动,因为其中的每个质点都在振动;而有振动,却不一定有波,因为波要靠弹性介质传播,如果没有传播波的介质,即使振源在振动,也不会形成波. 2、简谐运动的规律 简谐运动是振动中最简单的一种,它是周期性的振动. 简谐运动的动力学条件是:受到的回复力跟位移成正比,方向跟位移方向相反,即. 简谐运动的运动学规律是随时间按正弦或余弦规律, 如:,,等等. 简谐运动的图像是正弦或余弦函数图像. 我们重点讲了两种简谐运动的模型,一个是弹簧振子,另一个是单摆.前者是真正的简谐运动,后者则只有在小振幅的条件下,可以近似看作简谐运动. 对于弹簧振子,要知道它是周期性运动,虽然不要求掌握弹簧振子的周期公式,但应知道弹簧振子的周期与振幅大小无关,而是决定于弹簧振子的本身结构,即决定于振子的质量和弹簧的劲度系数.还要掌握振子在每1/4个周期时间内的位移、速度、加速度、动能、势能等等是如何随时间的变化而变化的. 对于单摆,要知道它只有在小角度振动的情况下,才可以近似认为是简谐运动.单摆也具有等时性,要记住它的周期公式T=2π,式中是摆长(从悬点到摆球中心的距离)、是

振动图像与波的图像及多解问题专题

振动图像与波的图像及多解问题专题

振动图像与波的图像及多解问题 一、振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象. 简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时 间的变化规律 某时刻所有质点 的空间分布规律 图线 物理意义表示一质点在各时 刻的位移 表示某时刻各质 点的位移 图线变化随时间推移图延 续,但已有形状不 变 随时间推移,图象 沿传播方向平移 一完整曲线占 横坐标距离 表示一个周期表示一个波长例题精选:

例题1:如图6—27所示,甲为某一波动在t=1.0s时的图象,乙为参与该波动的P质点的振动图象 (1)说出两图中AA/的意 义? (2)说出甲图中OA/B图线 的意义? (3)求该波速v=? (4)在甲图中画出再经3.5s时的波形图 (5)求再经过3.5s时p质点的路程S和位移 解析:(1)甲图中AA/表示A质点的振幅或1.0s时A 质点的位移大小为0.2m,方向为负.乙图中AA/’表示P质点的振幅,也是P质点在0.25s的位移大小为0.2m,方向为负. (2)甲图中OA/B段图线表示O 到B之间所有质点在1.0s时的位移、方向均为负.由乙图 看出P质点在1.0s时向一y方向振动, 由带动法可知甲图中波向左传播,则 OA/间各质点正向远离平衡位置方向振动,A/B间各质点正向靠近平衡位置方向振动. (3)甲图得波长λ=4 m,乙图得周期T=1s 所以波速v=λ/T=4m/s (4)用平移法:Δx=v·Δt=14 m=(3十?)λ

机械振动和机械波知识点总结

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。(二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中

“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g 是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析

高中化学选修三知识点总结资料讲解

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理

现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。比如,p3的轨道式为 或,而不是。 洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He为1s2外,其余为ns2np6。He核外只有2个电子,只有1个s轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ↑↓↑ ↓↓↓ ↑↑↑

1振动波

一、选择题 1、一物体作简谐振动,振动方程为)4/cos(πω+=t A x 。在t=T/4(T 为周期)时刻,物体的加速度为 (A) 2221ωA - (B) 222 1ωA (C) 2321ωA - (D) 2321ωA [ ] 2、对一个作简谐振动的物体,下面哪种说法是正确的? (A) 物体位于平衡位置且向负方向运动时,速度和加速度为零。 (B) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零。 (C) 物体处在运动负方向的端点时,速度和加速度都达到最大值。 (D) 物体处在正方向的端点时,速度最大,加速度为零。 [ ] 3、弹簧振子在光滑水平面上作谐振动时,振动频率为v 。今将弹簧分割为等长的两半,原物体挂在分割后的一支弹簧上,这一系统作谐振动时,振动频率为 (A) v (B) v 2 (C) 2v (D) 0.5v [ ] 4、一质点沿x 轴作简谐振动,振动方程为))(316cos(1042 SI t x ππ+?=-。 从t=0时刻起,到质点位置在x =-2cm 处,且向x 轴正方向运动的最短时间间隔为 (A) 1/8s (B) 1/4s (C) 1/2s (D) 1/3s (E) 1/6s [ ] 5、一质点作简谐振动,周期为T 。当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为 (A) T/4 (B) T/12 (C) T/6 (D) T/8 [ ] 6、一弹簧振子在光滑水平面上作谐振动,弹簧的倔强系数为k ,物体的质量为m ,振动的角频率为ω=(k/m )1/2,振幅为A ,当振子的动能和势能相等的瞬时,物体的速度为 (A) A ω2 (B) 2/A ω (C) A ω2 1 (D) A ω [ ] 7、 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大。 (B) 动能为零,势能为零。 (C) 动能最大,势能最大。 (D) 动能最大,势能为零。 [ ] 8、 在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,位相相同。 (B) 振幅不同,位相相同。 (C) 振幅相同,位相不同。 (D) 振幅不同,位相不同。 [ ] 9、一质点同时参与了三个简谐振动,它们的振动方程分别为 )2/cos(1πω+=t A x )6/7c o s (2πω+=t A x )6/c o s (3πω-=t A x 其合成运动方程为

2019届二轮复习振动和波作业(全国通用)

《振动和波、光学》 一、选择题(五个选项中,有三个是正确的)。 1.关于电磁波,下列说法正确的是。 A.电磁波在真空中的传播速度与电磁波的频率无关 B.周期性变化的电场和磁场可以相互激发,形成电磁波 C.电磁波在真空中自由传播时,其传播方向与电场强度、磁感应强度均垂直 D.利用电磁波传递信号可以实现无线通信,但电磁波不能通过电缆、光缆传输 E.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,则空间的电磁波随即消失 解析?电磁波在真空中的传播速度为光速,与频率无关,A项正确。根据电磁波的产生条件可知B项正确。电磁波为横波,传播方向与电场强度、磁感应强度均垂直,C项正确。电磁波可以在真空中传播,也可以在介质中传播,因此也能通过电缆、光缆传输,D项错误。电磁波是一种能量传播方式,若波源的电磁振荡停止,则不再产生新的电磁波,但空间的电磁波仍将继续传播下去,E项错误。 答案?ABC 2.在双缝干涉实验中,用绿色激光照射在双缝上,在缝后的屏幕上显示出干涉图样。若要增大干涉图样中两相邻亮条纹的间距,可选用的方法是。 A.改用红色激光 B.改用蓝色激光 C.减小双缝间距 D.将屏幕向远离双缝的位置移动 E.将光源向远离双缝的位置移动 解析?在双缝干涉实验中相邻亮条纹的间距Δx=λ,因此要增大干涉图样中两相邻亮条纹的间距可减小 双缝间的距离,增大屏幕与双缝的距离,换用波长更长或频率更小的光作光源。故A、C、D三项正确。 答案?ACD 3.如图所示,一列向左传播的横波t时刻的波形用实线表示,经Δt=0.2 s时刻的波形用虚线表示,已知该波的波长λ=2 m,下列说法正确的是。 A.该波周期的最大值为2 s B.该波周期的最大值为 s C.该波波速的最小值为1 m/s D.该波波速的最小值为9 m/s E.该波遇到直径r=2 m的障碍物时会发生明显的衍射现象 解析?该波向左传播,则传播的距离Δx=[nλ+(λ-0.2)] m=(2n+1.8) m(n=0,1,2,…),又因为Δt=0.2 s, 所以波的传播速度v== m/s(n=0,1,2,…),故周期T== s(n=0,1,2,…),当n=0时,该波的周期

氧族元素知识点总结

2H 2O 2===2H 2O+O 2 ↑ MnO 2 氧族元素 1.复习重点 1.氧族元素的物理性质和化学性质的递变规律; 2.硫单质、臭氧、过氧化氢、硫化氢的物理性质与化学性质; 3.重点是硫的化学性质及氧族元素性质递变规律。 2.难点聚焦 (一)、氧族元素的原子结构及性质的递变规律 元素 氧(O ) 硫(S ) 硒(Se ) 碲(Te ) 核电荷数 8 16 34 52 最外层电子数 6 6 6 6 电子层数 2 3 4 5 化合价 -2 -2,+4,+6 -2,+4,+6 -2,+4,+6 原子半径 逐渐增大 密度 逐渐增大 与H 2化合难 易 点燃剧烈反应 加热时化合 较高温度时化合 不直接化合 氢化物稳定性 逐渐减弱 氧化物化学式 —— SO 2 SO 3 SeO 2 SeO 3 TeO 2 TeO 3 氧化物对应水化物化学式 —— H 2SO 3 H 2SO 4 H 2SeO 3 H 2SeO 4 H 2TeO 3 H 2TeO 4 最高价氧化物水化物酸性 逐渐减弱 元素非金属性 逐渐减弱 2.1臭氧和过氧化氢 臭氧和氧气是氧的同素异形体,大气中臭氧层是人类的保护伞 过氧化氢不稳定分解,可作氧化剂、漂白剂。 归纳知识体系。 2.1.1.与氧气有关的反应 (1)有氧气参加的反应方程式 ① 与绝大多数金属单质作用 4Na+O 2=2Na 2O

②与绝大多数非金属单质作用 ③与非还原性化合物作用 2NO+O2=2NO2 4FeS2+11O22Fe2O2+8SO2 ④与有机物作用 ⑤在空气中易被氧化而变质的物质 a.氢硫酸或可溶性硫化物:2H2S+O2=2S↓+2H2O b.亚硫酸及其可溶性盐2H2SO3+O2=2H2SO4,2Na2SO3+O2=2Na2SO4 c.亚铁盐、氢氧化亚铁4Fe(OH)2+O2+2H2O=4Fe(OH)3 d.苯酚 e.氢碘酸及其可溶性碘化物4HI+O2=2H2O+2I2 ⑥吸氧腐蚀(如:铁生锈) 负极:2Fe—4e—=2Fe2+正极:O2+4e—+2H2O=4OH—Fe2++2OH—=Fe(OH)2 4Fe(OH)2+O2+2H2O=4Fe(OH)32Fe(OH)3=Fe2O3+3H2O (2)生成氧气的反应方程式

相关文档
最新文档