增材制造 D打印 国内外发展状况

增材制造 D打印 国内外发展状况
增材制造 D打印 国内外发展状况

增材制造(3D打印)技术国内外发展状况

--西安交通大学先进制造技术研究所 2013-07-09一、概述

增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。

美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。

增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设

计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显着。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显着的作用。

美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活方式。美国奥巴马总统在2012年3月9日提出发展美国振兴制造业计划,向美国国会提出“制造创新国家网络” (NNMI),计划投资10亿美元重振美国制造业计划。其目的在夺回制造业霸主地位,要以一半的时间和费用完成产品开发,实现在美国设计在美国制造,使更多美国人返回工作岗位,构建持续发展的美国经济。为此,奥巴马政府启动首个项目“增材制造”,初期政府投资3000万美元,企业配套4000万元,由国防部牵头,制造企业、大学院校以及非赢利组织参

加,研发新的增材制造技术与产品,使美国成为全球优秀的增材制造的中心,架起“基础研究与产品研发”之间纽带。美国政府已经将增材制造技术作为国家制造业发展的首要战略任务给予支持。

美国专门从事增材制造技术技术咨询服务的Wohlers协会在2012年度报告中,对各行业的应用情况进行了分析。2011年全球直接产值亿美元,2011年增长率%,其中,设备材料:亿美元,增长%,服务产值:亿美元,增长%,其发展特点是服务与设备对半。在应用方面消费商品和电子领域仍占主导地位,但是比例从 %降低到 %;机动车领域从 %降低到 %;研究机构为 %;医学和牙科领域从 %增加到 %;工业设备领域为 %;航空航天领从%增加到 %。在过去的几年中,航空器制造和医学应用是增长最快的应用领域。世界上各许多国家与地区都在开发或应用增材制造技术。增材制造系统的数量一定程度上表现了国家的经济活力与创新能力。自1988~2011年,美国、日本、德国、中国成为主要的设备拥有国,其中,美国占全球总设备量的%,中国占%。预计2012年将增长25%至亿美元,2019年将达到60亿美元。

增材制造发展有诱人的发展前景,也存在巨大的挑战。目前最大的难题是材料的物理与化学性能制约了实现技术。例如,在成形材料上,目前主要是有机高分子材料,金属材料直接成形是近十多年的研究热点,正在逐渐向工业应用,难点在于如何提高精度和效率。新的研究方向是用增材制造技术直接把软组织材料(生物基质材料和细胞)堆积起来,形成类生

命体,经过体外培养和体内培养去制造复杂组织器官。

二、增材制造分类

自上世纪80年代美国出现第一台商用光固化成形机后,在至今近三十年时间内得到了快速发展。较成熟的技术主要有以下四种方法:光固化成形(Stereolithography,SL)、叠层实体制造(Laminated Object Manufacturing,LOM)、选择性激光烧结(Selective Laser Melting,SLS)、熔丝沉积成形(Fused Deposition Modeling,FDM)。叠层实体制造设备逐渐消落。其他几种方法逐渐向低成本、高精度、多材料方面发展。

工艺的过程:树脂槽中盛满液态光固化树脂,紫外激光器按照各层截面信息进行逐点扫描,被扫描的区域固化形成零件的一个薄层。当一层固化后,工作台下移一个层厚,在固化好的树脂表面浇注一层新的液态树脂,并利用刮板将树脂刮平,然后进行新一层的扫描和固化,如此重复,直至原型构造完成。SL工艺的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑,加工环境气味重等问题。

的层面信息通过每一层的轮廓来表示,激光扫描器的动作由这些轮廓信息控制,它采用的材料是具有厚度信息的片材。这种加工方法只需加工轮廓信息,所以可以达到很高的加工速度,但材料的范围很窄,每层厚

度不可调整是最大缺点。

工艺利用高能量激光束在粉末层表面按照截面扫描,粉末被烧结相互连接,形成一定形状的截面。当一层截面烧结完后,工作台下降一层厚度,铺上一层新的粉末,继续新一层的烧结。通过层层叠加,去除未烧结粉末,即可得到最终三维实体。SLS 的特点是成形材料广泛,理论上只要将材料制成粉末即可成形。另外,SLS成形过程中,粉床充当自然支撑,可成形悬臂、内空等其他工艺难成形结构。但是,SLS技术需要价格较为昂贵的激光器和光路系统,成本较其他方法高,一定程度上限制了该技术的应用范围。

是将电能转换为热能,使丝状塑料挤出喷头前达到熔融状态。由计算机控制喷头移动,根据截面轮廓信息,使熔融塑料成形一定形状的二维截面。通过层层叠加,形成塑料三维实体。FDM无需价格昂贵的激光器和光路系统,成本较低,易于推广。但是,该方法成形材料限制较大,并且成形精度相对较低,是限制该技术发展的主要问题。

随着增材制造技术工艺和设备的成熟,新材料、新工艺的出现,该技术由快速原型阶段进入快速制造和普及化新阶段,最显着地体现在金属零件直接快速制造以及桌面型3D打印设备。

目前,真正直接制造金属零件的增材制造技术有基于同轴送粉的激光近形制造(Laser Engineering Net Shaping, LENS)技术和基于粉末床

的选择性激光熔化(Selective Laser Melting, SLM)及电子束熔化技术(Electron Beam Melting, EBM)技术。LENS技术能直接制造出大尺寸的金属零件毛坯;SLM和EBM可制造复杂精细金属零件。

LENS 技术在惰性气体保护之下,通过激光束熔化喷嘴输送的粉末流,使其逐层堆积,最终形成复杂形状的零件或模具。该方法得到的制件组织致密,具有明显的快速熔凝特征,力学性能很高,并可实现非均质和梯度材料制件的制造。目前,应用该工艺已制造出铝合金、钛合金、钨合金等半精化的毛坯,性能达到甚至超过锻件,在航天、航空、造船、国防等领域具有极大的应用前景。但该工艺成形难以成形复杂和精细结构,主要用于毛坯成形,且粉末材料利用率偏低。

SLM技术利用高能束激光熔化预先铺在粉床上薄层粉末,逐层熔化堆积成形。为了保证金属粉末材料的快速熔化,SLM材料较高功率密度的激光器,光斑聚焦到几十μm到几百μm。SLM制造的金属零件接近全致密,强度达锻件水平,精度可达0.1mm/100mm。该工艺的主要缺陷有金属球化、翘曲变形及裂纹等,还面临成形效率低、可重复性及可靠性有待优化等问题。

EBM与SLM系统的主要差别在于热源不同,成形原理基本相似。EBM技术成形室必须为高真空,才能保证设备正常工作,这使得EBM 整机复杂度增大。电子束为热源,金属材料对其几乎没有反射,能量吸收率大幅提高。

在真空环境下,材料熔化后的润湿性也大大增强,增加了熔池之间、层与层之间的冶金结合强度。但是,EBM技术还存在如下问题:真空抽气过程中粉末容易被气流带走,造成系统污染;在电子束作用下粉末容易溃散,因此需预热到800℃以上,使粉末预先烧结固化。采取预热后制造效率高,零件变形小,无需支撑,微观组织致密;但预热温度对系统整体结构要求高,加工结束后零件需要在真空室中冷却相当长一段时间,降低了零件的成形效率。

由于系统成本较高、材料特殊以及操作复杂,在目前阶段增材制造技术主要应用于科研以及工业应用。随着桌面型3D打印技术

(Three-dimensional printing, 3DP)的产生和应用,增材制造技术的应用范围得到了极大扩展。

3DP的工作方式类似于桌面打印机。核心部分为若干细小喷嘴组成的打印系统。材料主要包括两大类:其一,类似于SLA工艺用的液态光敏树脂材料;其二,类似于SLS用的粉末材料。如果采用液态树脂材料,则成形原理类似于SLA,但实现方式有所不同。先由喷嘴喷出具有特定形状的一薄层树脂截面,利用面紫外光照射使其固化;然后再由喷嘴喷出下一层截面,进而固化并与上一层粘结在一起;如此反复,直至实体制件成形完毕为止。当成形材料为粉末时,其成形过程类似于SLS工艺,但原理不尽相同。先铺一层粉,由喷嘴按照截面形状喷一层粘结剂,使成形制件截面内的粉末粘结成一体;工作台下降一个层厚,铺上一层新粉,并由喷嘴按

照该层制件截面形状喷出一层粘结剂,使该层截面内的粉末发生粘结,同时与上一层制件实体粘结为一体;如此反复,直至制件成形完毕为止。该种工艺无需激光器、扫描系统及其他复杂的传动系统,结构紧凑,体积小,可用作桌面系统,特别适合于快速制作三维模型、复制复杂工艺品等应用场合。但是,该技术成形零件大多需要进行后处理,以增加零件强度,工序较为复杂,难以成形高性能功能零件,如金属零件等。

三、增材制造技术发展历史

1 国外发展历史

第一阶段,思想萌芽

增材制造技术的核心制造思想最早起源于美国。早在1892年,Blanther在其专利中,曾建议用分层制造法构成地形图。1902年,Carlo Baese 在一项专利中提出了用光敏聚合物制造塑料件的原理。1940年,Perera提出了切割硬纸板并逐层粘结成三维地形图的方法。直到20世纪80年代末,3D打印制造技术开始了根本性发展,出现的专利更多,仅在1986-1998年间注册的美国专利就达24多项。

第二阶段,技术诞生

其标志性成果就是五种常规增材制造技术的提出。1986年美国的Hull

发明了光固化技术,简称SLA;1988年Feygin发明了分层实体制造技术,简称LOM;1989年Deckard发明了粉末激光烧结技术,简称SLS;1992年Crump 发明了熔融沉积制造技术,简称FDM;1993年麻省理工大学的Sachs发明了喷头打印技术,简称3DP。

第三阶段,装备推出

1988年美国的3D Systems公司根据Hull的专利,生产出了第一台增材制造装备SLA250,开创了增材制造技术发展的新纪元。在此后的十年中,增材制造技术蓬勃发展,涌现出了十余种新工艺和相应的增材制造装备。1991年,美国Stratasys的FDM装备、Cubital的实体平面固化(SGC,Solid Ground Curing)装备和Helisys的LOM装备都实现了商业化。1992年,美国DTM公司(现属于3D Systems公司)SLS装备研发成功。1994年,德国EOS 公司推出了EOSINT型SLS装备。1996年,3D Systems使用喷墨打印技术,制造出其第一台3DP装备Actua2100。同年,美国Zcorp公司也发布了Z402型3DP装备。总体上,美国在装备研制、生产销售方面占全球的主导地位,其发展水平及趋势基本代表了世界增材制造技术的发展历程。欧洲和日本也不甘落后,纷纷进行相关技术研究和装备研发。香港和台湾比内地起步早,台湾大学研制了LOM装备,台湾各单位及军方安装多台进口SLA装备,香港生产力促进局和香港科技大学、香港理工大学、香港城市大学等机构拥有增材制造装备,重点进行技术研究与应用推广。国内自上世纪90年代初开始增材制造技术研发。以西安交通大学、华中科技大学、清华大学为

代表的研究机构开始自主研制增材制造装备并在国内开展广泛应用。其中,以西安交通大学的SLA装备、华中科技大学研制的LOM和SLS装备以及清华大学的FDM装备最具代表性。

第四阶段,大范围应用

随着工艺、材料和装备的日益成熟,增材制造技术的应用范围由模型和原型制造进入产品快速制造阶段。早期增材制造技术受限于材料种类少及工艺水平低的限制,主要应用于模型和原型制造,如制造新型手机外壳模型等,因而统称为快速原型技术(Rapid Prototyping, RP)。目前,“3D打印”这一更加亲民的概念被越来越多的人熟知。如今由于诸多快速原型和快速制造装备均以3D打印机示人,最早的3D打印已可被称为“经典3D打印技术”。“新兴3D打印技术”可以直接制造为人所用的功能部件及零件和传统工艺使用的工具,包括电子产品绝缘外壳,金属结构件,高强度塑料零件,劳动工具,橡胶缓震制件,汽车及航空应用的高温陶瓷部件及各类金属模具等。金属零件的直接制造是标志增材制造技术由“快速原型”向“快速制造”的重要标志之一。2002年,德国成功研制了选择性激光熔化增材制造装备(SLM),可成形接近全致密的精细金属零件和模具,其性能可达到同质锻件水平。同时,电子束熔化(EBM)、激光工程净成形(LENS)等一系列新技术与装备涌现出来。这些技术面向航天航空、武器装备、汽车/模具及生物医疗等高端制造领域,直接成形复杂和高性能的金属零部件,解决一些传统制造工艺面临的难加工甚至是无法加工等制

造难题。

2 国内的发展历史

我国增材制造技术自上世纪九十年代初开始发展,在西安交通大学、清华大学、华中科技大学、北京隆源公司等在典型的成形设备、软件、材料等方面研究和产业化方面获得了重大进展,接近国外产品水平。随后国内许多高校和研究机构也开展了相关研究,重点在金属成形方面开展研究,如西北工业大学、北京航空航天大学、南京航空航天大学、上海交通大学、大连理工大学、中北大学、中国工程物理研究院等单位都在做探索性的研究和应用工作。其中西安交通大学开展料光固化快速成形、金属熔敷制造、生物组织制造、陶瓷光固化成形研究,建立了快速制造国家工程研究中心;华中科技大学开展了叠层制造、激光选取烧结、金属烧结等技术研究;清华大学开展了多功能快速成形设备、熔融沉积制造设备、电子束制造设备、生物打印技术研究;北京隆源公司开展了激光选取烧结设备研究;北京航空航天大学和西北工业大学开展了金属熔敷成形技术研究,中航625所开展了电子束成形制造研究,华南理工大学开展了激光金属烧结技术研究。国内的高校和企业通过科研开发和设备产业化改变了该类设备早期仰赖进口的局面,通过二十多年的应用技术研发与推广,在全国建立了20多个服务中心,设备用户遍布医疗、航空航天、汽车、军工、模具、电子电器、造船等行业。推动了我国制造技术的发展。作为一项正在发展

中的制造技术,其成熟度还远不能同金属切削、铸、锻、焊、粉末冶金等制造技术相比,还有大量研究工作需要进行,包括激光成形专用合金体系、零件的组织与性能控制、应力变形控制、缺陷的检测与控制、先进装备的研发等,涉及到从科学基础、工程化应用到产业化生产的质量保证各个层次的研究工作。

3 近年的国外最新进展

2012年的增材制造设备市场延续近年的发展好形势,销售数目和收入的增加让销售商从中获益,进一步推动了美国股票价格的增长。2012年,增材制造技术通过主要出版物、电视节目,甚至电影的方式涌入公众的视野。2012年4月,在Materialise公司(比利时)的世界大会上,举办了一场时装秀,展出了快速成型制造的帽子和饰品。

据调查,价格低于2000美元的设备多用于科学研究或个人,对行业产值影响不大。行业发展主要依赖于专业化设备性能的提高。目前,专业化设备主要销往美国市场。由于经济不景气隐藏的潜在客户被挖掘,并随着设计与制造的快速增长,快速成型制造行业也得以发展。在美国明尼苏达州明尼阿波利斯市举行的年度快速成型会议上,Materialise公司(比利时)的创始人兼首席执行官Wilfried Vancraen因其对快速成型行业的广泛贡献被授予行业成就奖。

产业不断壮大:在快速成型企业中正在进行公司间的合并,兼并的对象主要是设备供应商、服务供应商以及其他的相关公司。其中最引人注目的是Z Corp.公司被3D System 公司收购,还有Stratasys 公司与 Objet 公司合并。Delcam公司(英国)收购了快速成型软件公司——Fabbify Software公司(德国)的一部分。据预计,Fabbify Software会在Delcam 公司的设计及制造软件里增添快速成型应用项。3D Systems公司购买了参数化计算机辅助设计(CAD)软件公司Alibre公司,以实现对计算机辅助设计(CAD)和3D打印的捆绑。2011年11月,EOS公司(德国)宣布该公司已经安装超过1000台的激光烧结成型机。11月初,3D system公司在宣布收购Huntsman公司(德州,林地)与光敏聚合物及数字快速成型机相关的资产;随后又宣布兼并3D打印机制造商Z Corp(马萨诸塞州,伯灵顿市),这次兼并花费了亿美元。

新材料新器件不断出现:Objet公司发布了一种类ABS的数字材料以及一种名为VeroClear的清晰透明材料。3D Systems公司也发布了一种名为Accura CastPro新材料,该种材料可用于制作熔模铸造模型。同期,Solidscape公司(梅里马克,新罕布什尔州)也发布了一种可使蜡模铸造铸模更耐用的新型材料——plusCAST。2011年8月,Kelyniam Global (新不列颠,康涅狄格州)宣布它们正在制作聚醚醚酮(PEEK)颅骨植入物。利用CT或MRI数据制作的光固化头骨模型可以协助医生进行术前规划,在制作规划的同时,加工PEEK材料植入物。据估计,这种方法会将手术

时间降低85%。2011年6月,Optomec公司(新墨西哥州,阿尔伯克基)发布了一种可用于3D打印及保形电子的新型大面积气溶胶喷射打印头。Optomec公司虽以生产透镜设备而为快速成型行业所熟知,但它的气溶胶喷射打印却隶属于美国国防部高级研究计划局的介观综合保形电子(MICE)计划,该计划的研究成果主要应用在3D打印、太阳能电池以及显示设备领域。

新产品不断涌现:2011年7月,Objet公司发布了一种新型打印机——Objet260 Connex,该种打印机可以构建更小体积的多材料模型。2011年7月,Stratasys公司发布了一种复合型快速成型机——Fortus250mc,该成型机可以将ABSplus材料与一种可溶性支撑材料的进行复合。Stratasys公司还发布了一种适用于Fortus400mc及900mc的新型静态损耗材料——ABS-ESD7。2011年9月,Bulidatron Systems公司(纽约,纽约)宣布推出基于RepRap的Buildaron1 3D打印机。这种单一材料打印机既可以作为一种工具箱使用(售价1,200美元),也作为组装系统使用(售价2,000美元)。Objet公司引入了一种新型生物相容性材料——MED610,这种材料适用于所有的PolyJet系统。刚性材料主要面向医疗及牙科市场。3D System公司发布了一种基于覆膜传输成像的打印机——PROJET1500,同时也发布了一种从二进制信息到字节的3D触摸产品。2012年1月,MakerBot(布鲁克林,纽约)推出了售价1759美元的新机器MakerBot Replicator,与它的前身相比。该机器可以打印更大体积的

模型,并且第二个塑料挤出机的喷头可以更换,从而挤出更多颜色的ABS 或PLA。3D Systems公司推出了一种名Cube的单材料、消费者导向型3D 打印机,其售价低于$1,300。该机器装有无线连接装置,从而具有了从 3D 数字化设计库中下载3D模型的功能。国防部与Stratasys公司签订了100万美元的uPrint3D打印机订单,以支持国防部的DoD’s STARBASE计划,该计划的目的是吸引青少年对科学、技术、工程、数学以及先进制造技术中快速成型制造的兴趣。2012年2月,EasyClad 公司(法国)发布了MAGIC LF600大框架快速成型机,该成型机可构建大体积模型,并具有两个独立的5轴控制沉积头,从而可具有图案压印、修复及功能梯度材料沉积的功能。3D Systems公司推出了一种可用于计算机辅助制造程序,如Solidworks,Pro / Engineer的插件——Print3D。通过3D Systems’ ProParts服务机构,这种插件可对零件及装配体进行动态的零件成本计算。2012年3月,BumpyPhoto公司 (俄勒冈州,波兰市)正式推出了一款彩色3D打印的照片浮雕。先输入数字照片,再在24位色打印机ZPrinter 上打印,就能形成3D照片浮雕。价格也从最初79美元的3D照片变为89美元的3D刻印图样。Stratasys 公司和 Optomec公司展出了带有保形电子电路(利用的是Optomec’s Aerosol Jet公司的技术)的熔化沉积打印的机翼结构

新标准不断更新: 2011年7月,同期,美国试验材料学会(ASTM)的快速成型制造技术国际委员会F42发布了一种专门的快速成型制造文件

(AMF)格式,新格式包含了材质,功能梯度材料,颜色,曲边三角形及其他的STL文件格式不支持的信息。十月份,美国试验材料学会国际(ASTM)与国际标准化组织(ISO)宣布,ASTM 国际委员会F42与ISO技术委员会261将在快速成型制造领域进行合作,该合作将降低重复劳动量。此外,ASTM F42还发布了关于坐标系统与测试方法的标准术语。

四、增材制造技术发展趋势

(1)向日常消费品制造方向发展。三维打印是国外近年来的发展热点。该设备称为三维打印机,将其作为计算机一个外部输出设备而应用。它可以直接将计算机中的三维图形输出为三维的彩色物体。在科学教育、工业造型、产品创意、工艺美术等有着广泛的应用前景和巨大的商业价值。其发展方向是提高精度、降低成本、高性能材料发展。

(2)向功能零件制造发展。采用激光或电子束直接熔化金属粉,逐层堆积金属,形成金属直接成形技术。该技术可以直接制造复杂结构金属功能零件,制件力学性能可以达到锻件性能指标。进一步的发展方向是进一步提高精度和性能,同时向陶瓷零件的增材制造技术和复合材料的增材制造技术发展。

(3)向智能化装备发展:目前增材制造设备在软件功能和后处理方面还有许多问题需要优化。例如,成形过程中需要加支撑,软件智能化和自动

化需要进一步提高;制造过程,工艺参数与材料的匹配性需要智能化;加工完成后的粉料或支撑的需要去除等问题。这些问题直接影响设备的使用和推广,设备智能化是走向普及的保证。

(4)向组织与结构一体化制造发展。实现从微观组织到宏观结构的可控制造。例如在制造复合材料时,将复合材料组织设计制造与外形结构设计制造同步完成,在微观到宏观尺度上实现同步制造,实现结构体的“设计-材料-制造”一体化。支撑生物组织制造、复合材料等复杂结构零件的制造,给制造技术带来革命性发展。

增材制造技术代表制造技术发展的趋势,产品从大规模制造向定制化制造发展,满足社会多样化需求,目前增材直接年直接产值亿美元,仅占全球制造业市场%,但是其间接作用和未来前景难以估量。增材制造优势在于制造周期短、适合单件个性化需求、大型薄壁件制造、钛合金等难加工易热成形零件制造、结构复杂零件制造,在航空航天、医疗等领域,产品开发阶段,计算机外设发展和创新教育上具有广阔发展空间。

增材制造技术的应用,为许多新产业和新技术的发展提供了快速响应制造技术。例如,在生物假体与组织工程上的应用,为人工定制化假体制造、三维组织支架制造提供了有效的技术手段。在汽车车型快速开发和飞机外形设计提供了快速制造技术,加快了产品设计速度。国外增材制造技术在航空领域超过12%的应用量,而我国的应用量则非常低。增材制造技

术尤其适合于航空航天产品中的零部件单件小批量的制造,具有成本低和效率高的优点,在航空发动机的空心涡轮叶片、风洞模型制造和复杂精密结构件制造方面具有巨大的应用潜力。因此,增材制造技术是实现创新性国家的锐利工具。

增材制造技术还存在许多问题,目前主要应用于产品研发,还存在使用成本高(10-100元/g),制造效率低,例如金属材料成形为100g-3000g/h,制造精度尚不能令人满意。其工艺与装备研发尚不充分,尚未进入大规模工业应用。应该说目前增材制造技术是传统大批量制造技术的一个补充。任何技术都不是万能,传统技术仍会有强劲生命力,增材制造应该与传统技术优选、集成,会形成新的发展增长点。对于增材制造技术需要加强研发、培育产业、扩大应用。通过形成协同创新的运行机制,积极研发、科学推进,使之从产品研发工具走向批量生产模式,技术引领应用市场发展,改变我们的生活。

增材制造以其制造原理的优势成为具有巨大发展潜力的制造技术。随着材料适用范围增大和制造精度的提高,增材制造技术将给制造技术带来革命性的发展。美国奇点大学(Singularity University)学术与创新中心副主席Vivek Wadhwa在华盛顿邮报上发表文章(2012年1月11日)“为何该轮到中国为制造业担忧?”(Why it’s China’s turn to worry about manufacturing)。他认为“新技术的出现很可能导致中国在未来20年中出现美国在过去20年所经历的空心化”,引领技术之一是以3D打印

为代表的数字化制造。他认为今天简单的3D打印只能制作出相对粗糙的物体,这类设备正在快速发展,成本不断降低,功能不断提高,到2020年代中期,美国人能够在分子级别上制作精确的3D物体。“这样,中国还如何能与我们竞争”。他的观点或许值得我们借鉴,我们想要在未来的竞争中立于不败之地,那么我们今天就要毫不松懈的追赶和创造。

增材制造(3D打印)国内外发展状况报告

增材制造(3D打印)技术国内外发展状况 --西安交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活

金属材料激光增材制造技术

金属材料激光增材制造技术 孙峰、李广生 金属材料增材制造技术是通过对CAD模型进行离散处理,以金属粉末、颗粒、金属丝材等为原材料,采用高功率激光束熔化/快速凝固逐层堆积生长,直接从零件数模完成高性能零件的近终成形制造。 金属材料增材制造技术,可分为以送粉为技术特征的激光沉积制造(Laser Deposition Melting,LDM)技术和以粉床铺粉为技术特征的选区激光熔化(Selective Laser Melting,SLM)技术。 LDM技术是快速成形技术和激光熔覆技术的有机结合,是以金属粉末为原材料,以高能束的激光作为热源,根据成形零件CAD模型分层切片信息规划的扫描路径,将送给的金属粉末进行逐层熔化、快速凝固、逐层沉积,从而实现整个金属零件的直接制造。 LDM系统主要包括:激光器及光路系统、水冷机及冷却系统、数控机床系统、送粉器及送粉系统、惰性气体保护系统、激光熔化沉积腔及工艺监控系统等。 图1LDM激光沉积制造技术 LDM技术集成了快速成形技术和激光熔覆技术的特点,具有以下优点: (1)无需大型设备与模具,零件近净成形,材料利用率高;工艺流程、制造周期短,制造成本低; (2)零件无宏观偏析,组织细小、致密,力学性能达到锻件水平; (3)成形尺寸不受限制,可实现大尺寸零件的制造; (4)激光束能量密度高,可实现难熔、难加工材料的近净成形; (5)可对失效和受损零件实现快速修复,并可实现定向组织的修复与制造。 主要缺点: (1)制造成本较高;

(2)制造效率较低; (3)制造精度较差,悬臂结构需要添加相应的支撑结构。 SLM技术是以快速原型制造技术为基本原理发展起来的先进激光增材制造技术。通过专用软件对零件三维数模进行切片分层,获得各截面的轮廓数据后,利用高能激光束根据轮廓数据逐层选择性地熔化金属粉末,通过逐层铺粉,逐层熔化凝固堆积的方式,实现三维实体金属零件制造。 SLM系统主要由激光器及光路系统、气体净化系统、铺粉系统、控制系统4部分组成。 图2SLM激光选区熔化制造技术 SLM技术具有以下优点: (1)原材料范围广,包括不锈钢、高温合金、钛合金、钴-铬合金及难熔金属等; (2)成形零件精度高,表面稍经打磨、喷砂等简单后处理即可达到使用精度要求; (3)复杂零件制造工艺简单,周期短,材料利用率高; (4)成形零件的力学性能良好,一般力学性能优于铸件,与锻件相当; (5)适合多孔零件的制造,实现零件的轻量化的需求。 主要缺点: (1)层厚和光斑直径很小,导致成形效率很低;

激光增材制造技术及研究现状

在上个世纪,增材制造( Ad di ti ve M a nu fa ct ur in g,A M) 的 概念得到了显著的发展。依据美国试验材料学会(A me ric a n S o ci et y f or Te sti n g a nd Ma te ri als,A ST M) 的定义: 增材制造技术不同于传统的减法加工过程,是基于材料的增量制造,利用3D数据模型,将材料一层一层连接起来制造物体的过程。由于增材制造技术具有设计和制造一体化、加工精度高、制造周期短,产品物理化学性能优异等特点,美国《时代周刊》将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”。 金属材料增材制造技术作为整个增材制造体系中最具前沿和难 度的技术,是先进制造技术的重要发展方向。对于金属材料增材制造技术,按照热源类型的不同主要可分为激光增材制造、电子束增材制造、电弧增材制造等。其中激光增材制造(L ase r A d di ti ve M an uf act u ri ng,LA M) 技术是一种兼顾精确成形和高性能成形需求的一体化制造技术,也是目前金属增材制造最可靠和可行的方法。国内外增材制造的研究也主要集中在激光增材制造技术,本文在总结增材制造的发展历史基础上,重点介绍了激光增材制造的原理、激光选区熔化成形技术和直接沉积技术的发展现状,为激光增材制造在国内各个领域的应用提供支持。一、增材制造的发展历史 1983 年,美国科学家查尔斯·胡尔(Ch ar le s Hu ll) 发明光固化成形技术( st ere o l it ho gr ah y App e ar an ce,SL A) 并制造出全球首个增材制造部件。1986 年,查尔斯·胡尔获得了全球第一项增材制造专利,同年成立3D S ys t em s公司。1987 年,3D S y st em s 发布第一台商业化增材制造设备-快速成型机立体光刻机SL A-1,全球进入增材制造时代。1986年,美国的M i ch ae l F e yg in,首次提出了分层实体制造( L a mi na te d Ob je ct M a nu fa ct ur in g,LO M) 技术。1988年,美国S tr at asy s 公司首次提出熔融沉积成型技术( F us ed D epo s it io n M od el in g,F DM) 。1989 年,美国德克萨斯大学奥斯汀分校的De ck ar d 提出激光 选区烧结( Se le ct i ve L as er S in te r i ng,SL S) 。1995年, 德国Fr au-ho fe r 应用研究促进协会IL T 激光技术研究所的 D r.W il-he lm M ein e rs 等在金属粉末选择性烧结基础上提出激光选区熔化成形技术( S el ec ti ve L as e r M el ti ng,S LM) 。1998 年,美国Sa nd ia 国立实验室将选择性激光烧结工艺SL S 和激光溶覆工艺( La ser Cl ad di ng) 相结合提出激光工程化净成型(L a s e r E n g i n e e r e d N e t S h a p i n g,L E N S)。1990年至现在,增材制造技术实现了金属材料的成型,进入了直接增材制造阶段,相距出现了电子束选区熔化(E BSM)、电子束自由成形制造技术( El ec tr on B eam Fr ee- fo rm Fa br i ca ti on,EB F)、等离子增材制造技术(I on Fu s io n Fo r ma ti on,I F F) 电弧增材制造( Wi r e A r c A dd it iv e Ma nuf a ct ur e,WA AM)等一系列制造工艺。2013年,美国麻省理工大学研发了四维打印技术( Fo ur D i- m ens i on al

增材制造与激光制造重点专项

附件9 “增材制造与激光制造”重点专项 2017年度项目申报指南建议 为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》和《中国制造2025》等提出的任务,国家重点研发计划启动实施“增材制造与激光制造”重点专项。根据本专项实施方案的部署,现提出2017年度项目申报指南建议。 本重点专项总体目标是:突破增材制造与激光制造的基础理论,取得原创性技术成果,超前部署研发下一代技术;攻克增材制造的核心元器件和关键工艺技术,研制相关重点工艺装备;突破激光制造中的关键技术,研发高可靠长寿命激光器核心功能部件、国产先进激光器,研制高端激光制造工艺装备;到2020年,基本形成我国增材制造与激光制造的技术创新体系与产业体系互动发展的良好局面,促进传统制造业转型升级,支撑我国高端制造业发展。 本重点专项按照“围绕产业链,部署创新链”的要求,围绕增材制造与激光制造的基础理论与前沿技术、关键工艺与装备、创新应用与示范部署任务。专项实施周期为5年(2016-2020)。 1.增材制造 1.1面向增材制造的产品创新设计技术(基础前沿类)

研究内容:研究面向金属增材制造的工艺约束建模方法,结合结构功能与承载性能约束,发展复杂整体结构的高性能轻量化拓扑优化方法,实现结构构型、功能组件布局、多材料梯度布局的整体匹配优化设计;制定面向增材制造的整体结构、多材料梯度结构优化设计的标准规范、软件,形成可供工程化应用的增材制造结构优化设计技术体系。 考核指标:建立增材制造工艺约束模型和实现方法、典型零部件结构优化设计方法及其性能评估模型,可处理100万以上变量及2种以上不同类型设计变量的混合优化;整体结构优化设计实现结构件数量减少50%以上、功能和效能提升15%以上;形成相关设计软件平台、设计标准和规范;实现在航空、航天、能源、动力等领域的应用验证。 1.2高效宽幅微滴喷射阵列打印头的研发(重大共性关键技术类) 研究内容:微滴喷射阵列打印头的流体输送特性、微小液滴形成与喷射过程、打印头寿命影响因素,液滴喷射品质的评价方法;微滴喷射阵列打印头流道结构设计、芯片封装过滤系统设计、MEMS制造工艺和CMOS工艺设计优化及集成方法;智能芯片设计及开发,芯片模块集成方法和校准方式;打印头微滴喷射控制技术。 考核指标:模块化设计,微滴喷射阵列打印头喷嘴密度大于1200个/英寸;单位打印头模块≥100mm , 集成打印宽

增材制造试题答案

1.增材制造技术的优点 (1)自由成型制造; (2)制造过程快速; (3)添加式和数字化驱动成型方式; (4)突出的经济效益; (5)广泛的应用领域。 2.增材制造技术国内外发展现状 国外发展现状 1 欧美发达国家纷纷制定了发展和推动增材制造技术的国家战略和规划,增材制造 技术已受到政府、研究机构、企业和媒体的广泛关注。 2 德国建立了直接制造研究中心,法国增材制造的专项协会致力于增材制造技术标 准的研究。西班牙启动了一项发展增材制造技术的专项,研究内容包括增材制造共性技术、材料、技术交流及商业模式等四方面内容。 澳大利亚、日本等国已经开始将其运用到航空领域,制造精密零件。 对于公司而言:以快速成型技术为主的增材制造设备已发展20多年,大量的增材制造装备的知名企业快速发展,其中以3D Systems 公司为代表,发展的SLA、SLS及3DP装备都备受关注。 美国Stratasys公司率先推出FDM装备,推广Dssignjet 3D 和Dssignjet Color 3D 两款产品。 除了以上具有代表性的外,还有LENS装备生产商、SLM装备生产商英国MIT公司等等。 国内: 我国增材制造技术研究已经经历20多年,以华科、西安交大、清华等大学为代表的科研院所开展了多项技术研究,其中涉及航空、汽车、生物、电子等各个行业。 西安交大:从1993年开始发展SLA技术研究,到现在已经有了成套的技术设备 华科:开展LOM技术,以及SLS\SLM技术,并且已经开发出相应的成套设备,且已经投入到市场使用。 清华大学跟西北工大已经研究多系列低成本FDM装备,并投入使用。并已经广泛使用到了航空领域,制造精密的成型技术。经过多年研究,我国增材制造技术得到飞快发展,精度等到极大提高。 3.增材制造技术的发展趋势。 (1)从快速原型与翻模制造向零部件直接制造转变 (2)学科交叉融合,应用领域不断扩大 (3)装备向零部件直接制造和专业化方向发展 (4)增材制造装备从高端型走向普及型 (5)成型材料开发及其系列化、标准化 4.增材制造技术面临的挑战 (1)进度控制技术; (2)高效制造技术; (3)复合材料零件增材制造技术。 5.增材制造技术面临的伦理安全问题。 (1)增材制造技术制造枪支。通过互联网下载枪支设计数据,借助增材成型工艺制造出来; (2)增材成型技术克隆人体器官。

激光增材制造中的过程监控

2015-03-19 00:21:03 在过去的近两年时间里,增材制造(AM)金属零件的技术在工业领域引发了巨大的风暴。根据业内专家Terry Wohlers(Wohlers Associates公司)的介绍,增材制造行业在2013年整体增长了34.9%,其中金属增材制造子行业增长超过75%。Wohlers评论说:“过去十年,金属增材制造行业的发展超过了塑料25年内走过的路。包括汽车、医疗以及航空航天在内的需求推动着金属增材制造工艺的突飞猛进。GE航空发动机(GE Aviation)公司打算用增材制造技术来生产他们的LEAP引擎的燃油喷嘴,同时欧洲航空防务及航天公司(EADS)也对用于空客飞机的增材制造结构零件做出了评估,综上表明,粉末床金属增材制造技术已经开始被行业接受。 尽管如此,问题仍然存在,例如工艺的可靠性和成品零件的材料性能的重复性。Florian Bechmann博士(德国OEM设备制造商Concept Laser公司的研发总监)在最近一次接受采访时指出:“在金属增材制造设备领域,越来越多的客户对过程监控和连续生产的能力提出期许,例如工业级的复现性。”激光选区熔化(SLM)增材制造工艺的在线实时监控承诺可以满足上述需求,但是这一监控技术目前还处于发展的初期阶段。在这篇文章里,我们将回顾增材制造研究与设备开发中这一热门技术的现状。 技术基础 激光增材制造(LAM)设备有两种类型:粉末床和送粉式。近期业内较多的关注集中在后者身上,本文讨论的也主要是后者。 图1显示了通用的粉末床系统的原理示意图,在该系统的整个工作区中使用刮板来进行平整粉末的步骤,以在构建平台上建立粉末床,整个过程是在可以控制内部环境的成形保护室内进行。激光能量传递到粉末床的表面,引起粉末的局部熔化和融合,使得该区域的金属粉末固化。

复合增材制造技术研究进展

复合增材制造技术研究进展 杨智帆1袁张永康1袁2 渊1.广东工业大学机电工程学院袁广东广州510006曰2.广东镭奔激光科技有限公司袁广东佛山528225冤 摘要院在阐述了复合增材制造技术的含义及关键技术特征的基础上袁对基于机加工的复合增材制造尧基于激光辅助的复合增材制造尧基于喷丸的复合增材制造尧基于轧制的复合增材制造四种复合增材制造技术的特点与优势进行了总结袁并介绍了一种全新的激光锻造复合增材制造技术袁其可与多种增材制造复合并能有效细化晶粒尧消除缺陷和重构应力分布袁最后指出了复合增材制造技术在耦合机理尧参数优化及装备研制方面的发展趋势遥 关键词院复合增材制造曰耦合工艺曰激光锻造中图分类号院TG669文献标志码院A 文章编号院1009原279X渊2019冤02原0001-07 Research and Development of Hybrid Additive Manufacturing Technology YANG Zhifan 1袁ZHANG Yongkang 1袁2 渊1.School of Electro-mechanical Engineering袁Guangdong University of Technology袁 Guangzhou 510006袁China曰 2.Guangdong Leiben Laser Technology Co.,Ltd.袁Foshan 528225袁China 冤 Abstract 院Based on expounding the technical meaning and key features of hybrid additive manufacturing (hybrid -AM)袁the features and advantages of hybrid -AM by machining袁by laser processing袁by shot-peering and by rolling are summarized and analyzed.Then袁a new technology named hybrid -AM by laser forging is introduced袁which can be coupled with other AM processes and effectively refine grains袁eliminate defects and reconstruct stress distribution.Finally袁the development trend of hybrid-AM technology in coupling mechanism袁optimization of multi-processes parameters and equipment manufacturing is discussed. Key words 院hybrid additive manufacturing曰coupled processes曰laser forging 收稿日期院2018-12-10 基金项目院国家重点研发计划渊2017YFB1103600冤曰国家自然科学 基金资助项目渊51775117冤 第一作者简介院杨智帆袁男袁1993年生袁硕士研究生遥 与传统去除成形方法相比袁增材制造是一种基于材料增量制造理念的技术[1]袁是一种利用CAD 模型以材料连接方式完成物体制作的过程[2]袁与减材制造相比袁增材制造通常是逐层累加进行的遥增材制造具备柔性尧快速和绿色制造等技术优势袁在航空航天尧国防工业和生物医疗方面具有重要应用前景[3-4]遥 然而袁增材制造技术存在零件成形精度低尧力学性能不足等问题[5]遥针对上述技术瓶颈袁现已出现 了若干种既保持增材制造技术优点又能吸收传统技术优势的复合增材制造新技术袁为解决瓶颈难题 提供了新路径遥 本文重点介绍复合增材制造技术的研究进展袁并根据辅助工艺的不同将复合增材制造技术分成五种不同类别袁分别进行了总结与分析袁并对复合增材制造技术的发展方向进行了展望遥 1复合增材制造技术含义 野复合冶一词广泛应用于制造领域袁国际生产工程科学院渊CIRP冤将野复合制造冶定义为野一种基于若干种工艺/工具/能量源同步工作尧相互作用可控且对工艺/零件性能有显著影响的技术冶[6]遥一般地袁复合增材制造以增材制造为主体工艺袁在零件制造过程中采用一种或多种辅助工艺与增材制造工艺耦合协同工作袁使工艺尧零件性能得以改进遥复合增材制造虽涉及多种工艺尧能量源袁但并不能严格达到 综述专稿 叶电加工与模具曳2019年第2期 1要要

增材制造6大技术盘点

增材制造6大技术盘点 什么是增材制造 一般通俗地称增材制造为3D打印,而事实上3D打印只是增材制造工艺的一种,它不是准确的技术名称。增材制造指通过离散-堆积使材料逐点逐层累积叠加形成三维实体的技术。根据它的特点又称增材制造,快速成形,任意成型等。 增材制造的优势 增材制造通过降低模具成本,减少材料,减少装配,减少研发周期等优势来降低企业制造成本,提高生产效益。具体优势如下: 与传统的大规模生产方式相比,小批量定制产品在经济上具有吸引力; 直接从3D CAD模型生产意味着不需要工具和模具,没有转换成本; 以数字文件的形式进行设计方便共享,方便组件和产品的修改和定制; 该工艺的可加性使材料得以节约,同时还能重复利用未在制造过程中使用的废料(如粉末、树脂)(金属粉末的可回收性估计在95-98%之间); 新颖、复杂的结构,如自由形式的封闭结构和通道,是可以实现的,使得最终部件的孔隙率非常低; 订货减少了库存风险,没有未售出的成品,同时也改善了收入流,因为货物是在生产前支付的; 分销允许本地消费者/客户和生产者之间的直接交互。 增材制造技术盘点 1.光聚合成型技术增材制造 SLA:Stereolithography(立体印刷术)是最早实用化的快速成形技术。具体原理是选择性地用特定波长与强度的激光聚焦到光固化材料(例如液态光敏树脂)表面,使之发生聚合反应,再由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。这样层层叠加构成一个三维实体。 2.以烧结和熔化为基本原理

SLS:Selective Laser Sintering,(选择性激光烧结) 工艺是利用粉末状材料成形的。将材料粉末铺洒在已成形零件的上表面,并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成形的部分粘接;当一层截面烧结完后,铺上新的一层材料粉末,选择地烧结下层截面。SLS工艺最大的优点在于选材较为广泛。 3.以粉末-粘合剂为基本原理 3DP:三维打印技术(Three Dimensional Printing)和平面打印非常相似,连打印头都是直接用平面打印机的。和SLS类似,这个技术的原料也是粉末状的。与SLS不同的是材料粉末不是通过烧结连接起来,而是通过喷头用粘接剂将零件的截面“印刷”在材料粉末上面。

金属零件激光增材制造技术及其应用

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 传统零件制备工艺主要是减材制造。从一块原材料开始,通过切割、钻、铣削等机械工艺方式去除部分材料,从而获得一个三维物体形态,这个过程中材料的利用率较低。而增材制造通过极小单位的原材料的叠加产生三维物体形态,虽然后期也可能通过再加工产生废料,但总体来说对材料的浪费是很少的。这在原型制作以及小批量生产上明显优于传统减材技术。 激光增材制造技术是一种基于离散/ 堆积成形思想的新型制造技术,是集成计算机、数控、激光和新材料等新技术而发展起来的先进产品研究与开发技术。其基本过程是将三维模型沿一定方向离散成一系列有序的二维层片;根据每层轮廓信息,进行工艺规划,选择加工参数,自动生成数控代码;成形机制造一系列层片并自动通过激光熔敷、烧结、沉积等将它们联接起来,得到三维物理实体。这样将一个物理实体的复杂三维加工离散成一系列层片的加工,大大降低了加工难度,且成形过程的难度与待成形的物理实体形状和结构的复杂程度无关。该技术的主要特点有:高柔性,可以制造任意复杂形状的三维实体;CAD模型直接驱动,设计制造高度一体化;成形过程无需专用夹具或工具;无需人员干预或只需较少干预,是一种自动化的成形过程;成形全过程的快速响应,适合现代激烈的产品市场。 尤其是金属零件,其主要采用激光增材制造技术,以高功率或高亮度激光为热源,逐层熔化金属粉末,直接制造出任意复杂形状的零件。其主要方法有: 1、激光直接沉积增材制造技 该技术可追溯到20 世纪70 年代末期的激光多层熔覆研究,但直到20世纪90年代,国内外众多研究机构才开始对同轴送粉激光快速成形技术的原理、成形工艺、熔凝组织、零件的几何形状和力学性能等基础性问题开展大量的研究工作。

增材制造(3D打印)国内外发展状况

增材制造(3D打印)技术国外发展状况 --交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的式,并改变世界的经济格局,进而改变人类的生活式。

3D打印技术应用趋势及发展前景

3D打印技术应用趋势及发展前景 1 3D打印的概述 3D打印是能够有效地将数字化二维模型实体化的一种快速成型技术,它在设计和制造物体方面表现十分高效,又称增材制造。3D打印的工作原理就是将一个三维的几何拆分为若干个二维的平面,依据拆分对象的三維数据对打印对象进行逐层加工,利用成形设备层层材料堆积而形成所需要的立体模型,制造出实体三维模型。通俗一点来说,就像是现今社会上普遍存在的普通打印机,可以打印出纸面(即二维空间)上的任意图画,3D打印就是将三维几何切分成一个个二维平面进行打印,然后将平面进行顺序叠加,最终制造出一个实体立体几何模型。3D打印采用的是增材制造的方式,和采用减材制造的传统工艺有所不同,它在实现原材料的高效利用上具有重要意义,节约能源,是一种更加符合现代化建设的制造方式。目前为止,发展的3D打印技术类型有熔融沉积式(FDM)、分层叠加式(GLOM)、光敏树脂固液化成式(SLA)、选择性粉末激光烧结式(SLS)、激光选区融化式(SLM)等。 自3D打印技术产生以来,就是作为人类社会文明的一次重大突破而存在的。仅仅几十年的时间,3D打印技术就已经广泛应用于各个不同的领域,产生显著影响。同时,随着社会的进步,3D打印技术快速且广泛的被大众所关注、讨论和接受,3D打印机的价格也不断下降,更为其普及程度作出贡献,使更多普通用户能够体验到制造三维立体模型的所带来的新奇感与愉悦感。现如今3D打印技术的普遍应用,不仅仅是因为它更为多样化的材料选择和加工方式更加符合现代化道路的发展,也是因为它是人类文明历史上前所未有的一种生产生活方式和理念。准确来讲,3D打印并非是一种全新的技术,与其称它为新,不如称它是综合性生产方式,毕竟它综合了现代计算机、激光、材料等多种先进技术。可以说3D打印是一种应运而生的综合

“增材制造与激光制造”重点专项2018年度项目申报指南

国科发资〔2017〕294号附件7 ??????????????? 2018???????? 为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》和《中国制造2025》等提出的任务,国家重点研发计划启动实施了“增材制造与激光制造”重点专项。根据本专项实施方案的部署,现发布2018年度项目申报指南。 本重点专项总体目标是:突破增材制造与激光制造的基础理论,取得原创性技术成果,超前部署研发下一代技术;攻克增材制造的核心元器件和关键工艺技术,研制相关重点工艺装备;突破激光制造中的关键技术,研发高可靠长寿命激光器核心功能部件、国产先进激光器,研制高端激光制造工艺装备;并实现产业化应用示范;到2020年,基本形成我国增材制造与激光制造的技术创新体系与产业体系互动发展的良好局面,促进传统制造业转型升级,支撑我国高端制造业发展。 本重点专项按照“围绕产业链、部署创新链”的要求,围绕增材制造与激光制造的基础理论与前沿技术、关键工艺与装备、创新应用与示范部署任务。专项实施周期为5年(2016-2020年)。 2016年本重点专项在2个技术方向已启动12个研究任务的 — 1 —

25个项目,2017年本重点专项在2个技术方向已启动20个研究任务的23个项目。2018年,在2个技术方向启动30个研究任务,拟支持30-60个项目,拟安排国拨经费总概算为7亿元左右。为充分调动社会资源投入,凡企业牵头的项目须自筹配套经费,配套经费总额与国拨经费总额比例不低于1:1。 项目申报统一按指南二级标题(如1.1)的研究方向进行。除特殊说明外,拟支持项目数均为1-2项。项目实施周期不超过3年。申报的项目必须涵盖该二级标题下指南所列的全部研究内容和考核指标。项目下设课题数原则上不超过5个,每个课题参研单位原则上不超过5个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1-2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.增材制造 1.1基于增材制造的智能仿生结构设计技术(基础前沿类) 研究内容:探索形状记忆材料增材制造新原理和新工艺,形成与制造工艺匹配的改性技术和可实现热/光/电/磁等激励响应的专用材料;研究形状记忆材料增材制造结构的智能变形行为,揭—2 —

增材制造技术概述

3.1 增材制造技术概述 增材制造技术诞生于20世纪80年代后期的美国。一开始,增材制造技术的诞生源于模型快速制作的需求,所以经常被称为“快速成型”技术。历经三十年日新月异的技术发展,增材制造已从概念(沟通)模型快速成型发展到了覆盖产品设计、研发和制造的全部环节的一种先进制造技术,已远非当初的快速成型技术可比。 3.1.1概述 1.概念 增材制造(即Additive Manufacturing,简称AM):一种与传统的材料“去除型”加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。 增材制造的概念有“广义”和“狭义”之说,如图3-1所示。 “广义”增材制造则以材料累加为基本特征,以直接制造零件为目标的大范畴技术群。而“狭义”的增材制造是指不同的能量源与CAD/CAM技术结合、分层累加材料的技术体系。 目前,出现了许多令人眼花缭乱的多种称谓:快速成型(Rapid Proto-typing)、直接数字制造(Direct Digital Manufacturing)、增材制造(AdditiveFabrication)、“三维打印(3D—Printing )”、“实体自由制造(Solid Free-form Fabrication) ”、增层制造(Additive Layer Manufacturing)等。2009年美国ASTM专门成立了F42委员会,将各种RP统称为“增量制造“技术,在国际上取得了广泛认可与采纳。 2.原理与分类 实际上在我们的日常生产、生活中类似“增材”的例子很多,例如:机械加工的堆焊、建筑物(楼房、桥梁、水利大坝等)施工中的混凝土浇筑、元宵制法滚汤圆、生日蛋糕与巧克力造型等。 图3-1 增材制造概念 基本原理:首先将三维CAD模型模拟切成一系列二维的薄片状平面层。然后利用相关设

(完整版)增材制造技术较传统工艺的优势与关键技术

增材制造技术较传统工艺的优势与关键技术 一、增材制造技术的简介 增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除一切削加工技术,是一种“自下而上”的制造方法。这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。 增材制造原理与不同的材料和工艺结合形成了许多增材制造设备,目前已有的设备种类达到20多种。该技术一出现就取得了快速发展,在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等多个领域都得到了广泛的应用。其特点是单件或小批量的快速制造,这一技术特点决定了快速成形在产品创新中具有显著的作用。 二、增材制造技术的优势 2.1设计上的自由度——在机加工、铸造或模塑生产当中,复杂设计的代价高昂,其每项细节都必须通过使用额外的刀具或其它步骤进行制造。相比而言,在增材制造当中,部件的复杂度极少需要或根本无需额外考虑。增材制造可以构建出其它制造工艺所不能实现或无法想像的形状,可以从纯粹考虑功能性的方面来设计部件,而无需考虑与制造相关的限制。 2.2小批量生产的经济性——增材制造过程无需生产或装配硬模具,且装夹过程用时较短,因此它不存在那些需要通过大批量生产才能抵消的典型的生产成本。增材工艺允许采用非常低的生产批量,包括单件生产,就能达到经济合理的打印生产目的。 2.3高材料效率——增材制造部件,特别是金属部件,仍然需要进行机加工。增材制造工序经常不能达到关键性部件所要求的最终细节、尺寸和表面光洁度的要求。但是所有近净成形工艺当中,增材制造是净成形水平最高的工艺,其后续机加工所必须切削掉的材料数量是很微量的。

增材制造技术发展前景

中国信息化周报/2013年/7月/22日/第005版 趋势 增材制造技术发展前景广阔 中国工程院院士李培根 增材制造技术将成为产业和社会变革的助推器,将为建设创新型社会,提供强有力的技术支撑。 发展增材制造技术,可以成为我们国家制造业基础创新的有效手段。增材制造大大增加了创新设计空间技术。另外符合绿色制造的发展方向,有利于制造业的可持续发展。它可以促进传统制造业技术水平的提升,尤其是我们把增材制造技术和传统工艺结合起来,可有望培育新兴产业,优化产业结构,促进产业升级。 我国正处于工业转型升级的关键时期,这既是重大的机遇,又有严峻的挑战。在此背景下召开增材制造技术工程国际研讨会及展览会,将为我们全面客观地掌握国内外增材制造技术的发展现状和趋势,研讨制定3D打印技术性发展带来的机遇和挑战,以及我国增材制造业技术创新与产业化发展战略对策部具有非常重要的意义。 用科普图书带动增材制造的激情 当前,全球迎来技术创新与产业变革的新高潮,其基本特征是制造业数字化、智能化,新能源、新材料技术取得突破,这必将引发新一轮的科技革命。增材制造技术是典型的数字技术,利用计算机数据,生产三维实体,将对制造业生重要的影响。 2012年,美国学者杰里米里夫金的《第三次工业革命》一书出版后,在中国引起了很大的反响,人们认为第三次工业革命有可能会改变未来的生产与生活模式。尽管这些观点现在还存在着一些争议,但是我们认为增材制造技术不管怎样都会有很大的发展前景。 我们希望科普图书能够以通俗的语言介绍增材制造技术的概念、现状、案例等等。大家可能会感到奇怪,我们的咨询报告为什么要去关注科普图书? 我认为科普图书对增材制造技术未来在中国的普及具有非常重要的意义。仔细对比一下美国和中国在增材制造技术方面的研究和研发情况,我们可以发现国内目前有好多家机构在做相关的研究,并且有一些已经做得非常好。但是,我们发现有一个很大的差别是,美国的民间对增材制造技术的热情要远远大于中国。如何去激发我们民间对增材制造技术及其运用的热情?我想科普图书可以发挥非常重要的作用。 我们希望通过科普图书吸引更多的人尤其是青少年,去关注增材制造技术,激发青少年的创意。这样,未来增材制造技术在中国才会有发展前景,否则,仅仅是依靠大学和一些科研院所进行研究是远远不够的。 增材制造技术的科普图书是面向所有对该技术感兴趣的人,因此当然要用简明生动的形式去做介绍。我觉得这本3D打印科普书最让人感兴趣的就是它的案例,该书大约搜集了一百多个案例,领域涉及到航空航天、汽车、现代制造业、医学、生物工业技术,以及个人消费品等多个方面。 提升增材制造技术的重大需求 从国外的总体技术情况来讲,3D打印已经从快速原型、工艺辅助等间接制造发展到直接制造,装备产业化、系列化向专业化方向发展,从科研到工业,高端型向办公和个人消费等大众化领域拓展,正在形成一个集装备材料、软件服务为一体的产业链。 3D打印需要标准,现在已经开始制订国际标准。其应用是多学科交叉的融合和发展,存在的问题包括:成形的材料种类仍然很有限,不是所有的材料都可以适用这种方法。此外,成形的精

国内电弧增材制造技术的研究现状与展望

国内电弧增材制造技术的研究现状与展望 摘要:本文简述了电弧(电熔)增材制造技术特点、优势和发展历史,详细分 析了国内在电弧增材制造工艺、质量控制、电弧增材制造材料性能三方面的研究 情况,并基于目前的研究现状,提出了电弧增材制造技术在制造工艺、质量控制 和材料性能三方面研究的建议。 关键词:电弧增材制造,研究现状,展望 1引言 增材制造,是一种新型的金属“降维”制造工艺,通过对三维数字模型进行分 层切片处理,再按照预先规划好的路径将材料逐层累加的制造方式,是一种自下 而上,化零为整的制造方法,在复杂结构零部件制造方面有很大优势。电弧增材 制造(Arc welding additive manufacturing,简称WAAM)技术,也称为电熔增材制造 技术(Electrical additive manufacturing,简称EAM )是采用电弧为热源的增材制 造技术,通过熔化金属丝材或粉末,逐层堆积出金属零部件的制造方法,具有丝 材利用率高、生产效率高,成本底,零件的尺寸不受成形缸或真空室的限制,易 于修复零件等优点。和传统的铸造、锻造技术相比,制造过程无需模具,整体制 造流程短,制造周期短,柔性化程度高,易于实现数字化、智能化,对设计的响 应快,可实现零部件的拓扑优化设计,在小批量、复杂构件的个性化定制方面具 有很大技术和成本优势。 20世纪70年代,德国学者提出了电弧增材制造的概念,并采用该技术制造 了一金属容器。20世纪80年代,美国使用等离子弧焊、熔化极气体保护焊技术 制造出了镍基合金金属构件,20世纪90年代,随着增材制造技术的发展,电弧 增材制造技术也得到了空前的发展,在装备、工艺及材料性能研究方面均取得了 很大突破。 2电弧增材制造技术研究现状 目前国内外用于WAAM制造的电弧种类主要为熔化极气体保护焊(GMAW),钨极惰性气体保护焊(GTAW)、等离子弧焊(PAW)等,尤其是配以冷金属过 度的熔化极气体保护焊,因其热输入小,电弧稳定性好等特点,得到了广泛发展 和应用。今年来,国内各大高校针对电弧增材制造的研究也在不断深入,主要集 中在成形控制、过程监控和成形件性能研究等方面。 2.1工艺与成形研究 电弧增材制造在制造过程中液态熔池较大,电弧的可控性难,故成形控制是 电弧增材制造的发展的主要瓶颈之一。电弧增材制造的在成形设备方面,主要有 两种方式,一种是焊接设备与多功能数控机床复合,另一种是焊接设备与多轴机 械手复合,实现柔性制造。成形控制方面的研究主要集中在工艺优化、过程监控 以及实时反馈等方面,在工艺优化环节主要是通过实验,针对不同的增材方法, 研究合适的工艺参数,例如打印速度,丝径,送丝速度,电流,电压等。沈泳华[[[]沈泳华.电弧增材制造成形系统设计和成形规律研究[D].南京:南京航空航天大学,2017]]研究了以KUKA焊接机器人和Fronius数字化焊机为主要设备的GMAW 冷金属过渡电弧增材制造系统和成形规律,采用“反切削法”实现了电弧增材制造 成形路径规划系统,并研究了不同工艺条件下的表面成形质量。熊俊[[[] 熊俊.多 层单道GMA增材制造成形特性及熔敷尺寸控制[D].哈尔滨:哈尔滨工业大学,2014]]研究了单道熔化极气体保护增材制造的工艺特性和成形质量,表明熔敷电 流是决定成形形貌的决定因素,良好的成形电流区间为100~180A。柳建等人[[[]

脉冲TIG增材制造技术研究进展

第46卷2018年12月 第12期 第10-17页 材料工程 Journal of Materials Engineering Vol.46 Dec.2018 No.12 pp.10-17 脉冲TIG增材制造技术研究进展 Progress in Additive M anufacturing Technique Based on Pulsed T IG 郭龙龙,贺雨田,鞠录岩,吴泽兵,张勇,吕澜涛,王文娟 (西安石油大学机械工程学院,西安710065) GUO Long-long,HE Yu-tian,JU Lu-y an,WU Ze-bing, ZHANG Yong,LYU Lan-tao,WANG Wen-j uan (Mechanical Engineering College,Xi’an Shiyou University,Xi’an710065,China) 摘要:脉冲TIG(p ulsed tungsten inert gas,PTIG)增材制造技术属于电弧增材制造技术的分支,其最显著的优势是成本低、沉积率和材料利用率高,适用于大尺寸结构件的制造。本工作从实验研究和数值模拟的角度,着重介绍了PTIG增材制造成形件成形质量控制、微观组织及性能控制方面的研究成果,总结了当前研究存在的不足。基于对成形件成形质量、微观组织及性能的准确预测和主动控制,提出了PTIG增材制造技术有待深入的研究方向,即:工艺因素对成形质量的影响机理研究、缺陷形成机制及其抑制措施研究、熔池微观组织演变数值模拟研究、成形件内应力和变形的调控机制研究、微观组织与力学性能关系模型的建立。 关键词:脉冲TIG;增材制造;成形质量;微观组织;力学性能 doi:10.11868/j.issn.1001-4381.2018.000267 中图分类号:TG142文献标识码:A文章编号:1001-4381(2018)12-0010-08 Abstract:Additive manufacturing based on PTIG(p ulsed tungsten inert gas,PTIG)is a branch of arc additive manufacturing technique.Its notable advantages are low cost,high deposition rate,high ma-terial utilization ratio,and suitable for manufacturing parts of large size.In this paper,the research results on the control of formation quality,microstructure and properties of the parts deposited by PTIG additive manufacturing were emphasized in view of experimental research and numerical simula-tion.Meanw hile,the shortcomings of current investigations were also summarized.Based on accurate p rediction and accurate control on the formation quality,microstructure and properties,the research directions for further study on PTIG additive manufacturing technique in the future were put forward,including the influence mechanism of process factors on the formation quality,defects forming mecha-nism and the suppression measures,numerical simulation on microstructure evolution in molten pool,formation and regulation mechanisms on internal stress and deformation,and the establishment on q uantitative relationship model between the microstructure and mechanical properties. Keywords:p ulsed TIG;additive manufacturing;formation quality;microstructure;mechanical property 增材制造技术基于“离散-堆积”原理,以粉末或丝材为填充材料,利用数字化技术控制高能束将填充材料熔化,依据三维CAD模型数据制造实体产品[1-3]。与传统的“减材制造”技术相比,增材制造技术能够实现高性能,复杂结构金属件的快速、无模具、致密、近净成形,而且材料利用率高[2]。因此自20世纪80年代以来,增材制造技术始终是国际材料加工工程与先进制造技术学科交叉领域的研究热点,我国政府和相关部门也对增材制造技术高度重视,在“中国制造2025”中将其列为未来大力扶持与重点发展的技术[4-5]。 脉冲TIG(p ulsed tungsten inert gas,PTIG)增材制造属于电弧增材制造技术的重要分支,其以周期性变化的电弧为热源,以氩气等惰性气体作保护,填充焊丝以熔滴的方式逐滴、逐层沉积,从而获得近净成形的制造件[6-7]。与激光增材制造、电子束增材制造等技术相比,PTIG增材制造技术最显著的优势是成本低、沉积率和材料利用率高,适用于大尺寸、复杂结构件的制造[8-9]。因此,PTIG增材制造技术在航空航天、飞机、 万方数据

相关文档
最新文档