增材制造国内外发展状况

增材制造国内外发展状况
增材制造国内外发展状况

增材制造(3D打印)技术国内外发展状况

--西安交通大学先进制造技术研究所2013-07-09

一、概述

增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。

美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。

增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显着。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显着的作用。

美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活

方式。美国奥巴马总统在2012年3月9日提出发展美国振兴制造业计划,向美国国会提出“制造创新国家网络” (NNMI),计划投资10亿美元重振美国制造业计划。其目的在夺回制造业霸主地位,要以一半的时间和费用完成产品开发,实现在美国设计在美国制造,使更多美国人返回工作岗位,构建持续发展的美国经济。为此,奥巴马政府启动首个项目“增材制造”,初期政府投资3000万美元,企业配套4000万元,由国防部牵头,制造企业、大学院校以及非赢利组织参加,研发新的增材制造技术与产品,使美国成为全球优秀的增材制造的中心,架起“基础研究与产品研发”之间纽带。美国政府已经将增材制造技术作为国家制造业发展的首要战略任务给予支持。

美国专门从事增材制造技术技术咨询服务的Wohlers协会在2012年度报告中,对各行业的应用情况进行了分析。2011年全球直接产值亿美元,2011年增长率%,其中,设备材料:亿美元,增长%,服务产值:亿美元,增长%,其发展特点是服务与设备对半。在应用方面消费商品和电子领域仍占主导地位,但是比例从%降低到%;机动车领域从%降低到%;研究机构为%;医学和牙科领域从%增加到%;工业设备领域为%;航空航天领从%增加到%。在过去的几年中,航空器制造和医学应用是增长最快的应用领域。世界上各许多国家与地区都在开发或应用增材制造技术。增材制造系统的数量一定程度上表现了国家的经济活力与创新能力。自1988~2011年,美国、日本、德国、中国成为主要的设备拥有国,其中,美国占全球总设备量的%,中国占%。预计2012年将增长25%至亿美元,2019年将达到60亿美元。

增材制造发展有诱人的发展前景,也存在巨大的挑战。目前最大的难题是材料的物理与化学性能制约了实现技术。例如,在成形材料上,目前主要是有机高分子材料,金属材料直接成形是近十多年的研究热点,正在逐渐向工业应用,难点在于如何提高精度和效率。新的研究方向是用增材制造技术直接把软组织材料(生物基质材料和细胞)堆积起来,形成类生命体,经过体外培养和体内培养去制造复杂组织器官。

二、增材制造分类

自上世纪80年代美国出现第一台商用光固化成形机后,在至今近三十年时间内得到了快速发展。较成熟的技术主要有以下四种方法:光固化成形(Stereolithography,SL)、叠层实体制造(Laminated Object Manufacturing,

LOM)、选择性激光烧结(Selective Laser Melting,SLS)、熔丝沉积成形(Fused Deposition Modeling,FDM)。叠层实体制造设备逐渐消落。其他几种方法逐渐向低成本、高精度、多材料方面发展。

工艺的过程:树脂槽中盛满液态光固化树脂,紫外激光器按照各层截面信息进行逐点扫描,被扫描的区域固化形成零件的一个薄层。当一层固化后,工作台下移一个层厚,在固化好的树脂表面浇注一层新的液态树脂,并利用刮板将树脂刮平,然后进行新一层的扫描和固化,如此重复,直至原型构造完成。SL工艺的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑,加工环境气味重等问题。

的层面信息通过每一层的轮廓来表示,激光扫描器的动作由这些轮廓信息控制,它采用的材料是具有厚度信息的片材。这种加工方法只需加工轮廓信息,所以可以达到很高的加工速度,但材料的范围很窄,每层厚度不可调整是最大缺点。

工艺利用高能量激光束在粉末层表面按照截面扫描,粉末被烧结相互连接,形成一定形状的截面。当一层截面烧结完后,工作台下降一层厚度,铺上一层新的粉末,继续新一层的烧结。通过层层叠加,去除未烧结粉末,即可得到最终三维实体。SLS 的特点是成形材料广泛,理论上只要将材料制成粉末即可成形。另外,SLS成形过程中,粉床充当自然支撑,可成形悬臂、内空等其他工艺难成形结构。但是,SLS技术需要价格较为昂贵的激光器和光路系统,成本较其他方法高,一定程度上限制了该技术的应用范围。

是将电能转换为热能,使丝状塑料挤出喷头前达到熔融状态。由计算机控制喷头移动,根据截面轮廓信息,使熔融塑料成形一定形状的二维截面。通过层层叠加,形成塑料三维实体。FDM无需价格昂贵的激光器和光路系统,成本较低,易于推广。但是,该方法成形材料限制较大,并且成形精度相对较低,是限制该技术发展的主要问题。

随着增材制造技术工艺和设备的成熟,新材料、新工艺的出现,该技术由快速原型阶段进入快速制造和普及化新阶段,最显着地体现在金属零件直接快速制造以及桌面型3D打印设备。

目前,真正直接制造金属零件的增材制造技术有基于同轴送粉的激光近形制造(Laser Engineering Net Shaping, LENS)技术和基于粉末床的选择性激光熔化

(Selective Laser Melting, SLM)及电子束熔化技术(Electron Beam Melting, EBM)技术。LENS技术能直接制造出大尺寸的金属零件毛坯;SLM和EBM可制造复杂精细金属零件。

LENS 技术在惰性气体保护之下,通过激光束熔化喷嘴输送的粉末流,使其逐层堆积,最终形成复杂形状的零件或模具。该方法得到的制件组织致密,具有明显的快速熔凝特征,力学性能很高,并可实现非均质和梯度材料制件的制造。目前,应用该工艺已制造出铝合金、钛合金、钨合金等半精化的毛坯,性能达到甚至超过锻件,在航天、航空、造船、国防等领域具有极大的应用前景。但该工艺成形难以成形复杂和精细结构,主要用于毛坯成形,且粉末材料利用率偏低。

SLM技术利用高能束激光熔化预先铺在粉床上薄层粉末,逐层熔化堆积成形。为了保证金属粉末材料的快速熔化,SLM材料较高功率密度的激光器,光斑聚焦到几十μm到几百μm。SLM制造的金属零件接近全致密,强度达锻件水平,精度可达0.1mm/100mm。该工艺的主要缺陷有金属球化、翘曲变形及裂纹等,还面临成形效率低、可重复性及可靠性有待优化等问题。

EBM与SLM系统的主要差别在于热源不同,成形原理基本相似。EBM技术成形室必须为高真空,才能保证设备正常工作,这使得EBM 整机复杂度增大。电子束为热源,金属材料对其几乎没有反射,能量吸收率大幅提高。在真空环境下,材料熔化后的润湿性也大大增强,增加了熔池之间、层与层之间的冶金结合强度。但是,EBM技术还存在如下问题:真空抽气过程中粉末容易被气流带走,造成系统污染;在电子束作用下粉末容易溃散,因此需预热到800℃以上,使粉末预先烧结固化。采取预热后制造效率高,零件变形小,无需支撑,微观组织致密;但预热温度对系统整体结构要求高,加工结束后零件需要在真空室中冷却相当长一段时间,降低了零件的成形效率。

由于系统成本较高、材料特殊以及操作复杂,在目前阶段增材制造技术主要应用于科研以及工业应用。随着桌面型3D打印技术(Three-dimensional printing, 3DP)的产生和应用,增材制造技术的应用范围得到了极大扩展。

3DP的工作方式类似于桌面打印机。核心部分为若干细小喷嘴组成的打印系统。材料主要包括两大类:其一,类似于SLA工艺用的液态光敏树脂材料;其二,类似于SLS用的粉末材料。如果采用液态树脂材料,则成形原理类似于SLA,但实现方式有所不同。先由喷嘴喷出具有特定形状的一薄层树脂截面,利用面紫外

光照射使其固化;然后再由喷嘴喷出下一层截面,进而固化并与上一层粘结在一起;如此反复,直至实体制件成形完毕为止。当成形材料为粉末时,其成形过程类似于SLS工艺,但原理不尽相同。先铺一层粉,由喷嘴按照截面形状喷一层粘结剂,使成形制件截面内的粉末粘结成一体;工作台下降一个层厚,铺上一层新粉,并由喷嘴按照该层制件截面形状喷出一层粘结剂,使该层截面内的粉末发生粘结,同时与上一层制件实体粘结为一体;如此反复,直至制件成形完毕为止。该种工艺无需激光器、扫描系统及其他复杂的传动系统,结构紧凑,体积小,可用作桌面系统,特别适合于快速制作三维模型、复制复杂工艺品等应用场合。但是,该技术成形零件大多需要进行后处理,以增加零件强度,工序较为复杂,难以成形高性能功能零件,如金属零件等。

三、增材制造技术发展历史

1 国外发展历史

?第一阶段,思想萌芽

增材制造技术的核心制造思想最早起源于美国。早在1892年,Blanther在其专利中,曾建议用分层制造法构成地形图。1902年,Carlo Baese 在一项专利中提出了用光敏聚合物制造塑料件的原理。1940年,Perera提出了切割硬纸板并逐层粘结成三维地形图的方法。直到20世纪80年代末,3D打印制造技术开始了根本性发展,出现的专利更多,仅在1986-1998年间注册的美国专利就达24多项。

?第二阶段,技术诞生

其标志性成果就是五种常规增材制造技术的提出。1986年美国的Hull发明了光固化技术,简称SLA;1988年Feygin发明了分层实体制造技术,简称LOM;1989年Deckard发明了粉末激光烧结技术,简称SLS;1992年Crump发明了熔融沉积制造技术,简称FDM;1993年麻省理工大学的Sachs发明了喷头打印技术,简称3DP。

?第三阶段,装备推出

1988年美国的3D Systems公司根据Hull的专利,生产出了第一台增材制造装备SLA250,开创了增材制造技术发展的新纪元。在此后的十年中,增材制造技术蓬勃发展,涌现出了十余种新工艺和相应的增材制造装备。1991年,美国Stratasys的FDM装备、Cubital的实体平面固化(SGC,Solid Ground Curing)装备和Helisys的LOM装备都实现了商业化。1992年,美国DTM公司(现属于3D

Systems公司)SLS装备研发成功。1994年,德国EOS公司推出了EOSINT型SLS 装备。1996年,3D Systems使用喷墨打印技术,制造出其第一台3DP装备Actua2100。同年,美国Zcorp公司也发布了Z402型3DP装备。总体上,美国在装备研制、生产销售方面占全球的主导地位,其发展水平及趋势基本代表了世界增材制造技术的发展历程。欧洲和日本也不甘落后,纷纷进行相关技术研究和装备研发。香港和台湾比内地起步早,台湾大学研制了LOM装备,台湾各单位及军方安装多台进口SLA装备,香港生产力促进局和香港科技大学、香港理工大学、香港城市大学等机构拥有增材制造装备,重点进行技术研究与应用推广。国内自上世纪90年代初开始增材制造技术研发。以西安交通大学、华中科技大学、清华大学为代表的研究机构开始自主研制增材制造装备并在国内开展广泛应用。其中,以西安交通大学的SLA装备、华中科技大学研制的LOM和SLS装备以及清华大学的FDM装备最具代表性。

?第四阶段,大范围应用

随着工艺、材料和装备的日益成熟,增材制造技术的应用范围由模型和原型制造进入产品快速制造阶段。早期增材制造技术受限于材料种类少及工艺水平低的限制,主要应用于模型和原型制造,如制造新型手机外壳模型等,因而统称为快速原型技术(Rapid Prototyping, RP)。目前,“3D打印”这一更加亲民的概念被越来越多的人熟知。如今由于诸多快速原型和快速制造装备均以3D打印机示人,最早的3D打印已可被称为“经典3D打印技术”。“新兴3D打印技术”可以直接制造为人所用的功能部件及零件和传统工艺使用的工具,包括电子产品绝缘外壳,金属结构件,高强度塑料零件,劳动工具,橡胶缓震制件,汽车及航空应用的高温陶瓷部件及各类金属模具等。金属零件的直接制造是标志增材制造技术由“快速原型”向“快速制造”的重要标志之一。2002年,德国成功研制了选择性激光熔化增材制造装备(SLM),可成形接近全致密的精细金属零件和模具,其性能可达到同质锻件水平。同时,电子束熔化(EBM)、激光工程净成形(LENS)等一系列新技术与装备涌现出来。这些技术面向航天航空、武器装备、汽车/模具及生物医疗等高端制造领域,直接成形复杂和高性能的金属零部件,解决一些传统制造工艺面临的难加工甚至是无法加工等制造难题。

2 国内的发展历史

我国增材制造技术自上世纪九十年代初开始发展,在西安交通大学、清华大学、华中科技大学、北京隆源公司等在典型的成形设备、软件、材料等方面研究和产业化方面获得了重大进展,接近国外产品水平。随后国内许多高校和研究机构也开展了相关研究,重点在金属成形方面开展研究,如西北工业大学、北京航空航天大学、南京航空航天大学、上海交通大学、大连理工大学、中北大学、中国工程物理研究院等单位都在做探索性的研究和应用工作。其中西安交通大学开展料光固化快速成形、金属熔敷制造、生物组织制造、陶瓷光固化成形研究,建立了快速制造国家工程研究中心;华中科技大学开展了叠层制造、激光选取烧结、金属烧结等技术研究;清华大学开展了多功能快速成形设备、熔融沉积制造设备、电子束制造设备、生物打印技术研究;北京隆源公司开展了激光选取烧结设备研究;北京航空航天大学和西北工业大学开展了金属熔敷成形技术研究,中航625所开展了电子束成形制造研究,华南理工大学开展了激光金属烧结技术研究。国内的高校和企业通过科研开发和设备产业化改变了该类设备早期仰赖进口的局面,通过二十多年的应用技术研发与推广,在全国建立了20多个服务中心,设备用户遍布医疗、航空航天、汽车、军工、模具、电子电器、造船等行业。推动了我国制造技术的发展。作为一项正在发展中的制造技术,其成熟度还远不能同金属切削、铸、锻、焊、粉末冶金等制造技术相比,还有大量研究工作需要进行,包括激光成形专用合金体系、零件的组织与性能控制、应力变形控制、缺陷的检测与控制、先进装备的研发等,涉及到从科学基础、工程化应用到产业化生产的质量保证各个层次的研究工作。

3 近年的国外最新进展

2012年的增材制造设备市场延续近年的发展好形势,销售数目和收入的增加让销售商从中获益,进一步推动了美国股票价格的增长。2012年,增材制造技术通过主要出版物、电视节目,甚至电影的方式涌入公众的视野。2012年4月,在Materialise公司(比利时)的世界大会上,举办了一场时装秀,展出了快速成型制造的帽子和饰品。

据调查,价格低于2000美元的设备多用于科学研究或个人,对行业产值影响不大。行业发展主要依赖于专业化设备性能的提高。目前,专业化设备主要销往美国市场。由于经济不景气隐藏的潜在客户被挖掘,并随着设计与制造的快速

增长,快速成型制造行业也得以发展。在美国明尼苏达州明尼阿波利斯市举行的年度快速成型会议上,Materialise公司(比利时)的创始人兼首席执行官Wilfried Vancraen因其对快速成型行业的广泛贡献被授予行业成就奖。

产业不断壮大:在快速成型企业中正在进行公司间的合并,兼并的对象主要是设备供应商、服务供应商以及其他的相关公司。其中最引人注目的是Z Corp.公司被3D System 公司收购,还有Stratasys 公司与Objet公司合并。Delcam公司(英国)收购了快速成型软件公司——Fabbify Software公司(德国)的一部分。据预计,Fabbify Software会在Delcam公司的设计及制造软件里增添快速成型应用项。3D Systems公司购买了参数化计算机辅助设计(CAD)软件公司Alibre 公司,以实现对计算机辅助设计(CAD)和3D打印的捆绑。2011年11月,EOS 公司(德国)宣布该公司已经安装超过1000台的激光烧结成型机。11月初,3D system公司在宣布收购Huntsman公司(德州,林地)与光敏聚合物及数字快速成型机相关的资产;随后又宣布兼并3D打印机制造商Z Corp(马萨诸塞州,伯灵顿市),这次兼并花费了亿美元。

新材料新器件不断出现:Objet公司发布了一种类ABS的数字材料以及一种名为VeroClear的清晰透明材料。3D Systems公司也发布了一种名为Accura CastPro新材料,该种材料可用于制作熔模铸造模型。同期,Solidscape公司(梅里马克,新罕布什尔州)也发布了一种可使蜡模铸造铸模更耐用的新型材料——plusCAST。2011年8月,Kelyniam Global (新不列颠,康涅狄格州)宣布它们正在制作聚醚醚酮(PEEK)颅骨植入物。利用CT或MRI数据制作的光固化头骨模型可以协助医生进行术前规划,在制作规划的同时,加工PEEK材料植入物。据估计,这种方法会将手术时间降低85%。2011年6月,Optomec公司(新墨西哥州,阿尔伯克基)发布了一种可用于3D打印及保形电子的新型大面积气溶胶喷射打印头。Optomec公司虽以生产透镜设备而为快速成型行业所熟知,但它的气溶胶喷射打印却隶属于美国国防部高级研究计划局的介观综合保形电子(MICE)计划,该计划的研究成果主要应用在3D打印、太阳能电池以及显示设备领域。

新产品不断涌现:2011年7月,Objet公司发布了一种新型打印机——Objet260 Connex,该种打印机可以构建更小体积的多材料模型。2011年7月,Stratasys公司发布了一种复合型快速成型机——Fortus250mc,该成型机可

以将ABSplus材料与一种可溶性支撑材料的进行复合。Stratasys公司还发布了一种适用于Fortus400mc及900mc的新型静态损耗材料——ABS-ESD7。2011年9月,Bulidatron Systems公司(纽约,纽约)宣布推出基于RepRap的Buildaron1 3D 打印机。这种单一材料打印机既可以作为一种工具箱使用(售价1,200美元),也作为组装系统使用(售价2,000美元)。Objet公司引入了一种新型生物相容性材料——MED610,这种材料适用于所有的PolyJet系统。刚性材料主要面向医疗及牙科市场。3D System公司发布了一种基于覆膜传输成像的打印机——PROJET1500,同时也发布了一种从二进制信息到字节的3D触摸产品。2012年1月,MakerBot(布鲁克林,纽约)推出了售价1759美元的新机器MakerBot Replicator,与它的前身相比。该机器可以打印更大体积的模型,并且第二个塑料挤出机的喷头可以更换,从而挤出更多颜色的ABS或PLA。3D Systems公司推出了一种名Cube的单材料、消费者导向型3D打印机,其售价低于$1,300。该机器装有无线连接装置,从而具有了从3D数字化设计库中下载3D模型的功能。国防部与Stratasys公司签订了100万美元的uPrint3D打印机订单,以支持国防部的DoD’s STARBASE计划,该计划的目的是吸引青少年对科学、技术、工程、数学以及先进制造技术中快速成型制造的兴趣。2012年2月,EasyClad 公司(法国)发布了MAGIC LF600大框架快速成型机,该成型机可构建大体积模型,并具有两个独立的5轴控制沉积头,从而可具有图案压印、修复及功能梯度材料沉积的功能。3D Systems公司推出了一种可用于计算机辅助制造程序,如Solidworks,Pro / Engineer的插件——Print3D。通过3D Systems’ ProParts服务机构,这种插件可对零件及装配体进行动态的零件成本计算。2012年3月,BumpyPhoto公司(俄勒冈州,波兰市)正式推出了一款彩色3D打印的照片浮雕。先输入数字照片,再在24位色打印机ZPrinter上打印,就能形成3D照片浮雕。价格也从最初79美元的3D照片变为89美元的3D刻印图样。Stratasys 公司和Optomec公司展出了带有保形电子电路(利用的是Optomec’s Aerosol Jet公司的技术)的熔化沉积打印的机翼结构

新标准不断更新:2011年7月,同期,美国试验材料学会(ASTM)的快速成型制造技术国际委员会F42发布了一种专门的快速成型制造文件(AMF)格式,新格式包含了材质,功能梯度材料,颜色,曲边三角形及其他的STL文件格式不支持的信息。十月份,美国试验材料学会国际(ASTM)与国际标准化

组织(ISO)宣布,ASTM 国际委员会F42与ISO技术委员会261将在快速成型制造领域进行合作,该合作将降低重复劳动量。此外,ASTM F42还发布了关于坐标系统与测试方法的标准术语。

四、增材制造技术发展趋势

(1)向日常消费品制造方向发展。三维打印是国外近年来的发展热点。该设备称为三维打印机,将其作为计算机一个外部输出设备而应用。它可以直接将计算机中的三维图形输出为三维的彩色物体。在科学教育、工业造型、产品创意、工艺美术等有着广泛的应用前景和巨大的商业价值。其发展方向是提高精度、降低成本、高性能材料发展。

(2)向功能零件制造发展。采用激光或电子束直接熔化金属粉,逐层堆积金属,形成金属直接成形技术。该技术可以直接制造复杂结构金属功能零件,制件力学性能可以达到锻件性能指标。进一步的发展方向是进一步提高精度和性能,同时向陶瓷零件的增材制造技术和复合材料的增材制造技术发展。

(3)向智能化装备发展:目前增材制造设备在软件功能和后处理方面还有许多问题需要优化。例如,成形过程中需要加支撑,软件智能化和自动化需要进一步提高;制造过程,工艺参数与材料的匹配性需要智能化;加工完成后的粉料或支撑的需要去除等问题。这些问题直接影响设备的使用和推广,设备智能化是走向普及的保证。

(4)向组织与结构一体化制造发展。实现从微观组织到宏观结构的可控制造。例如在制造复合材料时,将复合材料组织设计制造与外形结构设计制造同步完成,在微观到宏观尺度上实现同步制造,实现结构体的“设计-材料-制造”一体化。支撑生物组织制造、复合材料等复杂结构零件的制造,给制造技术带来革命性发展。

增材制造技术代表制造技术发展的趋势,产品从大规模制造向定制化制造发展,满足社会多样化需求,目前增材直接年直接产值亿美元,仅占全球制造业市场%,但是其间接作用和未来前景难以估量。增材制造优势在于制造周期短、适合单件个性化需求、大型薄壁件制造、钛合金等难加工易热成形零件制造、结构复杂零件制造,在航空航天、医疗等领域,产品开发阶段,计算机外设发展和创新教育上具有广阔发展空间。

增材制造技术的应用,为许多新产业和新技术的发展提供了快速响应制造技术。例如,在生物假体与组织工程上的应用,为人工定制化假体制造、三维组织支架制造提供了有效的技术手段。在汽车车型快速开发和飞机外形设计提供了快速制造技术,加快了产品设计速度。国外增材制造技术在航空领域超过12%的应用量,而我国的应用量则非常低。增材制造技术尤其适合于航空航天产品中的零部件单件小批量的制造,具有成本低和效率高的优点,在航空发动机的空心涡轮叶片、风洞模型制造和复杂精密结构件制造方面具有巨大的应用潜力。因此,增材制造技术是实现创新性国家的锐利工具。

增材制造技术还存在许多问题,目前主要应用于产品研发,还存在使用成本高(10-100元/g),制造效率低,例如金属材料成形为100g-3000g/h,制造精度尚不能令人满意。其工艺与装备研发尚不充分,尚未进入大规模工业应用。应该说目前增材制造技术是传统大批量制造技术的一个补充。任何技术都不是万能,传统技术仍会有强劲生命力,增材制造应该与传统技术优选、集成,会形成新的发展增长点。对于增材制造技术需要加强研发、培育产业、扩大应用。通过形成协同创新的运行机制,积极研发、科学推进,使之从产品研发工具走向批量生产模式,技术引领应用市场发展,改变我们的生活。

增材制造以其制造原理的优势成为具有巨大发展潜力的制造技术。随着材料适用范围增大和制造精度的提高,增材制造技术将给制造技术带来革命性的发展。美国奇点大学(Singularity University)学术与创新中心副主席Vivek Wadhwa 在华盛顿邮报上发表文章(2012年1月11日)“为何该轮到中国为制造业担忧?”(Why it’s China’s turn to worry about manufacturing)。他认为“新技术的出现很可能导致中国在未来20年中出现美国在过去20年所经历的空心化”,引领技术之一是以3D打印为代表的数字化制造。他认为今天简单的3D打印只能制作出相对粗糙的物体,这类设备正在快速发展,成本不断降低,功能不断提高,到2020年代中期,美国人能够在分子级别上制作精确的3D物体。“这样,中国还如何能与我们竞争”。他的观点或许值得我们借鉴,我们想要在未来的竞争中立于不败之地,那么我们今天就要毫不松懈的追赶和创造。

增材制造(3D打印)国内外发展状况报告

增材制造(3D打印)技术国内外发展状况 --西安交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活

增材制造产业调研报告(20171201)

杭州市增材制造(3D打印)产业发展 调研报告 增材制造(Additive Manufacturing,AM)又称3D打印,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。当前,增材制造技术已经从研发转向产业化应用,其与信息网络技术的深度融合,将给传统制造业带来变革性影响,被称为新一轮工业革命的标志性技术之一。世界各国纷纷将增材制造作为未来产业发展新的增长点重点培育,推动增材制造技术与信息网络技术、新材料技术、新设计理念的加速融合,力争抢占未来科技和产业制高点。 一、全国3D打印产业发展情况 经过二十多年发展,我国增材制造产业化步伐明显加快。在《国家增材制造产业发展推动计划(2015-2016年)》等相关规划政策的引导和支持下,我国增材制造产业快速发展,关键技术不断突破,装备性能显著提升,应用领域日益拓展,生态体系初步形成,涌现出一批具有一定竞争力的骨干企业,形成了若干产业集聚区。 (一)发展现状

1.产业规模实现快速扩张。据中国增材制造产业联盟对23家规模以上企业的经营数据统计,2016年规模以上增材制造企业总产值20.3亿元,比2015年的10.8亿元增长87.5%。2017年上半年总产值为11.6亿元,同比增长50.5%,产业规模实现快速增长。从产业构成看,增材制造装备、材料和服务的产值比例分别为50.1%、26.9%、23.0%,增材制造装备产值占一半。 2.产业发展格局初步形成。我国增材制造产业已初步形成了以环渤海地区、长三角地区、珠三角地区为核心,中西部地区为纽带的产业空间发展格局。环渤海地区,增材制造产业发展处于国内领先地位,形成了以北京为核心,多地协同发展,各具特色的产业发展格局。长江三角洲地区,具备良好经济发展优势、区位条件和较强的工业基础,已初步形成了包括增材制造设备研究开发、生产、应用服务及相关配套设备的增材制造产业链。珠三角地区,增材制造产业发展侧重于应用服务,主要分布在广州、深圳、珠海和东莞等地。此外,陕西、湖北、湖南等省份是我国增材制造技术中心和产业化重镇,集聚了一批龙头企业。安徽省也是增材制造产业的重要集聚区,芜湖市繁昌县的春谷3D打印智能设备产业园已成为华东地区最大的增材制造产业集聚区。 3.行业应用持续拓展深化。增材制造已经成为航空航天等高端设备制造及修复领域的重要技术手段,初步成为产品研发设计、创新创意及个性化产品的实现手段以及新药研发、临床诊断与治疗的工具,并且应用范围不断向医疗、建

江苏增材制造项目立项申请报告(申报材料)

江苏增材制造项目立项申请报告 投资分析/实施方案

承诺书 申请人郑重承诺如下: “江苏增材制造项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx实业发展公司(盖章) xxx年xx月xx日

项目概要 增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算 机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与 数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、 烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自 下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造 方式的约束,而无法实现的复杂结构件制造变为可能。 3D打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层 堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。 该增材项目计划总投资7760.35万元,其中:固定资产投资 6293.16万元,占项目总投资的81.09%;流动资金1467.19万元,占 项目总投资的18.91%。 达产年营业收入11903.00万元,总成本费用8969.17万元,税金 及附加147.86万元,利润总额2933.83万元,利税总额3486.36万元,税后净利润2200.37万元,达产年纳税总额1285.99万元;达产年投 资利润率37.81%,投资利税率44.93%,投资回报率28.35%,全部投资回收期5.03年,提供就业职位221个。

全球及中国增材制造工作流程软件解决方案行业研究及十四五规划分析报告(2020-2026)

全球及中国增材制造工作流程软件解决方案行业研究及十四五规划分析报告(2020-2026) 恒州博智(QYResearch) 2020年

2019年,全球增材制造工作流程软件解决方案市场规模达到了XX亿元,预计2026年将达到XX亿元,年复合增长率(CAGR)为XX%。中国市场规模增长快速,预计将由2019年的XX亿元增长到2026年的XX亿元,年复合增长率为XX%。 本报告研究“十三五”期间全球及中国市场增材制造工作流程软件解决方案的供给和需求情况,以及“十四五”期间行业发展预测。重点分析全球主要地区增材制造工作流程软件解决方案的市场规模,历史数据2015-2020年,预测数据2021-2026年。 本文同时着重分析增材制造工作流程软件解决方案行业竞争格局,包括全球市场主要企业中国本土市场主要企业竞争格局,重点分析全球主要企业近三年增材制造工作流程软件解决方案的收入和市场份额。 此外针对增材制造工作流程软件解决方案行业产品分类、应用、行业政策、产业链、生产模式、销售模式、波特五力分析、行业发展有利因素、不利因素和进入壁垒也做了详细分析。 全球及国内主要企业包括: 3D Trust 3YOURMIND AM-flow Authentise Fabpilot LEO Lane

Link3D MakerOS Materialise Robots Oqton’s FactoryOS AMFG Siemens 按照不同产品类型,包括如下几个类别: 云部署 本地部署 按照不同应用,主要包括如下几个方面: 生产性企业 服务性企业 本文包含的主要地区和国家: 北美(美国和加拿大) 欧洲(德国、英国、法国、意大利和其他欧洲国家) 亚太(中国、日本、韩国、中国台湾地区、东南亚、印度等) 拉美(墨西哥和巴西等) 中东及非洲地区 本文正文共9章,各章节主要内容如下: 第1章:报告统计范围、产品细分、下游应用领域,以及行业发展总体概况、有利和不利因素、进入壁垒等; 第2章:全球市场总体规模、中国地区总体规模,包括主要地区增材制造

安徽增材制造项目立项申请报告(申报材料)

安徽增材制造项目立项申请报告 规划设计/投资方案/产业运营

承诺书 申请人郑重承诺如下: “安徽增材制造项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx集团(盖章) xxx年xx月xx日

项目概要 增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出 实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产 业链组合产生深刻影响,是制造业有代表性的颠覆性技术。 增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算 机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与 数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、 烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自 下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造 方式的约束,而无法实现的复杂结构件制造变为可能。 该增材项目计划总投资18916.67万元,其中:固定资产投资13299.65万元,占项目总投资的70.31%;流动资金5617.02万元,占 项目总投资的29.69%。 达产年营业收入45929.00万元,总成本费用35469.26万元,税 金及附加378.48万元,利润总额10459.74万元,利税总额12280.94 万元,税后净利润7844.81万元,达产年纳税总额4436.13万元;达 产年投资利润率55.29%,投资利税率64.92%,投资回报率41.47%,全部投资回收期3.91年,提供就业职位657个。

增材制造报告-上传

增材制造报告 西北工业大学 一、实验背景 3D打印技术也称增材制造技术,加工过程中打印材料通过打印机喷嘴挤出,逐层累积、叠加,进而完成整个制造过程。其具有高效率、低成本、能够加工形状复杂的制件、无加工废料等特点,为零件的加工制造提供了一种新方法。近年来,3D打印技术在工业中的应用成为研究重点,但由于其逐层叠加的加工方式,层与层之间的结合是通过固体物料和熔融物料相互粘接来实现,由此导致了试样打印表面品质较差问题的同时,也导致了试样力学性能相对较低,这成为限制其在工业领域广泛应用的关键因素。提高打印制品的力学性能和打印精度是 3D打印技术的一个重要研究方向。 二、实验目的 研究3D打印关键工艺参数(填充密度、打印层高、打印壁厚和打印温度等等)及试件结构对聚乳酸(PLA)试样剪切强度的影响。 三、试件制作参数 首先,利用Solidworks软件设计试样的3D模型,保存为STL格式;其次,把STL文件导入Cura软件中,导出gcode格式文件放入打印机中便可以打印。白色试件的打印参数为Cura软件上显示的,红色试件打印参数为雷老师提供的。 白色试件设定的参数为: 支撑&成型

红色试件参数为: 四、简支梁的力学分析 试件长100mm ,重10g,材料为聚乳酸PLA,分别在试件10mm,90mm处放置支撑,在试件中心施加负载,下图是在材料力学分析软件上关于剪力与弯矩的分析图,依据此剪力图与弯矩图,设计试件形状。(图中施加的力大小为30N)

五、solidworks建模与仿真 根据弯矩图的形状,我们的试件也设计成中间厚,往两端方向逐渐减薄,同时为了方便两个方向的测试,我们设计成了轴对称结构,使其两个方向的惯性矩相同。以下为设计图与受力仿真图。

南昌关于成立增材生产公司可行性分析报告

南昌关于成立增材生产公司可行性分析报告 xxx有限公司

报告摘要说明 3D打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。 xxx公司由xxx实业发展公司(以下简称“A公司”)与xxx实业发展公司(以下简称“B公司”)共同出资成立,其中:A公司出资650.0万元,占公司股份67%;B公司出资320.0万元,占公司股份33%。 xxx公司以增材产业为核心,依托A公司的渠道资源和B公司的行业经验,xxx公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx公司计划总投资6226.73万元,其中:固定资产投资5183.55万元,占总投资的83.25%;流动资金1043.18万元,占总投资的 16.75%。 根据规划,xxx公司正常经营年份可实现营业收入7730.00万元,总成本费用6178.49万元,税金及附加104.65万元,利润总额1551.51万元,利税总额1870.16万元,税后净利润1163.63万元,纳税总额706.53万元,投资利润率24.92%,投资利税率30.03%,投资回报率18.69%,全部投资回收期6.85年,提供就业职位120个。

2018年我国增材制造产业规模有望达到18.3亿美元左右。另据中国增材制造产业联盟统计,2018年中国增材制造产业增速维持在25%以上,同时提供增材制造服务的企业数量已经超过500家。

第一章总论 一、拟筹建公司基本信息 (一)公司名称 xxx公司(待定,以工商登记信息为准) (二)注册资金 公司注册资金:970.0万元人民币。 (三)股权结构 xxx公司由xxx实业发展公司(以下简称“A公司”)与xxx实业发展公司(以下简称“B公司”)共同出资成立,其中:A公司出资650.0万元,占公司股份67%;B公司出资320.0万元,占公司股份33%。 (四)法人代表 胡xx (五)注册地址 某某临港经济开发区(以工商登记信息为准) 南昌,简称洪或昌,古称豫章、洪都,是江西省省会、环鄱阳湖城市群核心城市,国务院批复确定的中国长江中游地区重要的中心城市。截至2018年,全市下辖6个区、3个县,总面积7402平方千米,建成区面积

国内电弧增材制造技术的研究现状与展望

国内电弧增材制造技术的研究现状与展望 摘要:本文简述了电弧(电熔)增材制造技术特点、优势和发展历史,详细分 析了国内在电弧增材制造工艺、质量控制、电弧增材制造材料性能三方面的研究 情况,并基于目前的研究现状,提出了电弧增材制造技术在制造工艺、质量控制 和材料性能三方面研究的建议。 关键词:电弧增材制造,研究现状,展望 1引言 增材制造,是一种新型的金属“降维”制造工艺,通过对三维数字模型进行分 层切片处理,再按照预先规划好的路径将材料逐层累加的制造方式,是一种自下 而上,化零为整的制造方法,在复杂结构零部件制造方面有很大优势。电弧增材 制造(Arc welding additive manufacturing,简称WAAM)技术,也称为电熔增材制造 技术(Electrical additive manufacturing,简称EAM )是采用电弧为热源的增材制 造技术,通过熔化金属丝材或粉末,逐层堆积出金属零部件的制造方法,具有丝 材利用率高、生产效率高,成本底,零件的尺寸不受成形缸或真空室的限制,易 于修复零件等优点。和传统的铸造、锻造技术相比,制造过程无需模具,整体制 造流程短,制造周期短,柔性化程度高,易于实现数字化、智能化,对设计的响 应快,可实现零部件的拓扑优化设计,在小批量、复杂构件的个性化定制方面具 有很大技术和成本优势。 20世纪70年代,德国学者提出了电弧增材制造的概念,并采用该技术制造 了一金属容器。20世纪80年代,美国使用等离子弧焊、熔化极气体保护焊技术 制造出了镍基合金金属构件,20世纪90年代,随着增材制造技术的发展,电弧 增材制造技术也得到了空前的发展,在装备、工艺及材料性能研究方面均取得了 很大突破。 2电弧增材制造技术研究现状 目前国内外用于WAAM制造的电弧种类主要为熔化极气体保护焊(GMAW),钨极惰性气体保护焊(GTAW)、等离子弧焊(PAW)等,尤其是配以冷金属过 度的熔化极气体保护焊,因其热输入小,电弧稳定性好等特点,得到了广泛发展 和应用。今年来,国内各大高校针对电弧增材制造的研究也在不断深入,主要集 中在成形控制、过程监控和成形件性能研究等方面。 2.1工艺与成形研究 电弧增材制造在制造过程中液态熔池较大,电弧的可控性难,故成形控制是 电弧增材制造的发展的主要瓶颈之一。电弧增材制造的在成形设备方面,主要有 两种方式,一种是焊接设备与多功能数控机床复合,另一种是焊接设备与多轴机 械手复合,实现柔性制造。成形控制方面的研究主要集中在工艺优化、过程监控 以及实时反馈等方面,在工艺优化环节主要是通过实验,针对不同的增材方法, 研究合适的工艺参数,例如打印速度,丝径,送丝速度,电流,电压等。沈泳华[[[]沈泳华.电弧增材制造成形系统设计和成形规律研究[D].南京:南京航空航天大学,2017]]研究了以KUKA焊接机器人和Fronius数字化焊机为主要设备的GMAW 冷金属过渡电弧增材制造系统和成形规律,采用“反切削法”实现了电弧增材制造 成形路径规划系统,并研究了不同工艺条件下的表面成形质量。熊俊[[[] 熊俊.多 层单道GMA增材制造成形特性及熔敷尺寸控制[D].哈尔滨:哈尔滨工业大学,2014]]研究了单道熔化极气体保护增材制造的工艺特性和成形质量,表明熔敷电 流是决定成形形貌的决定因素,良好的成形电流区间为100~180A。柳建等人[[[]

郑州关于成立年产xx吨增材公司可行性分析报告

郑州关于成立年产xx吨增材公司可行性分析报告 参考模板

报告摘要说明 2018年我国增材制造产业规模有望达到18.3亿美元左右。另据中国增材制造产业联盟统计,2018年中国增材制造产业增速维持在25%以上,同 时提供增材制造服务的企业数量已经超过500家。 xxx(集团)有限公司由xxx科技公司(以下简称“A公司”)与xxx公司(以下简称“B公司”)共同出资成立,其中:A公司出资330.0万元,占公司股份76%;B公司出资110.0万元,占公司股份24%。 xxx(集团)有限公司以增材产业为核心,依托A公司的渠道资源 和B公司的行业经验,xxx(集团)有限公司将快速形成行业竞争力, 通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx(集团)有限公司计划总投资6900.13万元,其中:固定资产 投资5711.79万元,占总投资的82.78%;流动资金1188.34万元,占 总投资的17.22%。 根据规划,xxx(集团)有限公司正常经营年份可实现营业收入8477.00万元,总成本费用6360.08万元,税金及附加127.46万元, 利润总额2116.92万元,利税总额2536.37万元,税后净利润1587.69万元,纳税总额948.68万元,投资利润率30.68%,投资利税率

36.76%,投资回报率23.01%,全部投资回收期5.85年,提供就业职位155个。 增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。

江苏省增材制造产业发展三年行动计划

江苏省增材制造产业发展三年行动计划 (2018-2020年) 增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的具有颠覆性的新兴制造技术,对传统制造业的工艺流程、生产线、工厂模式、产业链组合具有广泛而深远的影响。基于增材制造技术的增材制造产业涵盖了产业设计、材料、装备、软件、工艺、应用等众多领域,发展前景广阔。“十三五”以来随着我省大力发展高端装备制造等战略性新兴产业,我省增材制造产业领域得到了较快发展,形成了一批具有良好竞争力的企业和研发机构,产业链逐步完善,产业竞争力明显增强,目前全省增材制造领域年专利申请量国内领先。但总体来看,我省增材制造产业规模总量还不够大,创新能力还不够强。 为全面贯彻落实党的十九大精神,深入推进制造强省建设,加快培育制造业发展新动能,根据工信部等十二部门联合发布的《增材制造产业发展行动计划(2017-2020年)》(工信部联装〔2017〕311号)要求和《中国制造2025江苏行动纲要》(苏发〔2015〕16号)相关部署,现就今后三年加快江苏增材制造产业发展提出以下行动计划。 - 14 -

一、总体要求与基本原则 (一)总体要求 围绕推进供给侧结构性改革、培育产业发展新动能、推动和服务制造强省建设的要求,坚持做强产业和做大市场协同推进。一方面强化技术创新,着力突破基础材料、成型技术、工艺软件等关键环节,研发一批国内领先、达到国际先进水平的增材制造装备;另一方面强化市场应用,面向航空航天、汽车、家电、生物医疗、文化教育等领域重大需求,深入开展增材制造产品示范应用和市场推广,加快形成产业链协同推进体系,实现产业快速健康高效发展,稳步提升产业整体竞争力。 (二)基本原则 1、坚持市场主导和政府引导相结合。发挥市场在资源配置中的决定性作用,突出做强做大企业主体,充分激发企业活力和创造力。更好地发挥政府的引导和服务作用,积极营造市场环境,培育产业生态,强化政策扶持,促进产业集聚集群发展。 2、坚持需求牵引与创新驱动相结合。面向传统产业升级改造、新兴产业和新兴消费发展需求,统筹推进装备、技术、材料等产业链协同创新,着力解决产业发展关键瓶颈制约,不断提高产品和服务质量,满足用户应用需求。 3、坚持重点突破和统筹推进相结合。以重大技术、产品在推动智能制造、发展创意产业、满足个性化消费等领域的创新突 - 14 -

增材制造(3D打印)国内外发展状况

增材制造(3D打印)技术国外发展状况 --交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的式,并改变世界的经济格局,进而改变人类的生活式。

3D打印技术应用趋势及发展前景

3D打印技术应用趋势及发展前景 1 3D打印的概述 3D打印是能够有效地将数字化二维模型实体化的一种快速成型技术,它在设计和制造物体方面表现十分高效,又称增材制造。3D打印的工作原理就是将一个三维的几何拆分为若干个二维的平面,依据拆分对象的三維数据对打印对象进行逐层加工,利用成形设备层层材料堆积而形成所需要的立体模型,制造出实体三维模型。通俗一点来说,就像是现今社会上普遍存在的普通打印机,可以打印出纸面(即二维空间)上的任意图画,3D打印就是将三维几何切分成一个个二维平面进行打印,然后将平面进行顺序叠加,最终制造出一个实体立体几何模型。3D打印采用的是增材制造的方式,和采用减材制造的传统工艺有所不同,它在实现原材料的高效利用上具有重要意义,节约能源,是一种更加符合现代化建设的制造方式。目前为止,发展的3D打印技术类型有熔融沉积式(FDM)、分层叠加式(GLOM)、光敏树脂固液化成式(SLA)、选择性粉末激光烧结式(SLS)、激光选区融化式(SLM)等。 自3D打印技术产生以来,就是作为人类社会文明的一次重大突破而存在的。仅仅几十年的时间,3D打印技术就已经广泛应用于各个不同的领域,产生显著影响。同时,随着社会的进步,3D打印技术快速且广泛的被大众所关注、讨论和接受,3D打印机的价格也不断下降,更为其普及程度作出贡献,使更多普通用户能够体验到制造三维立体模型的所带来的新奇感与愉悦感。现如今3D打印技术的普遍应用,不仅仅是因为它更为多样化的材料选择和加工方式更加符合现代化道路的发展,也是因为它是人类文明历史上前所未有的一种生产生活方式和理念。准确来讲,3D打印并非是一种全新的技术,与其称它为新,不如称它是综合性生产方式,毕竟它综合了现代计算机、激光、材料等多种先进技术。可以说3D打印是一种应运而生的综合

增材制造技术概述

3.1 增材制造技术概述 增材制造技术诞生于20世纪80年代后期的美国。一开始,增材制造技术的诞生源于模型快速制作的需求,所以经常被称为“快速成型”技术。历经三十年日新月异的技术发展,增材制造已从概念(沟通)模型快速成型发展到了覆盖产品设计、研发和制造的全部环节的一种先进制造技术,已远非当初的快速成型技术可比。 3.1.1概述 1.概念 增材制造(即Additive Manufacturing,简称AM):一种与传统的材料“去除型”加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。 增材制造的概念有“广义”和“狭义”之说,如图3-1所示。 “广义”增材制造则以材料累加为基本特征,以直接制造零件为目标的大范畴技术群。而“狭义”的增材制造是指不同的能量源与CAD/CAM技术结合、分层累加材料的技术体系。 目前,出现了许多令人眼花缭乱的多种称谓:快速成型(Rapid Proto-typing)、直接数字制造(Direct Digital Manufacturing)、增材制造(AdditiveFabrication)、“三维打印(3D—Printing )”、“实体自由制造(Solid Free-form Fabrication) ”、增层制造(Additive Layer Manufacturing)等。2009年美国ASTM专门成立了F42委员会,将各种RP统称为“增量制造“技术,在国际上取得了广泛认可与采纳。 2.原理与分类 实际上在我们的日常生产、生活中类似“增材”的例子很多,例如:机械加工的堆焊、建筑物(楼房、桥梁、水利大坝等)施工中的混凝土浇筑、元宵制法滚汤圆、生日蛋糕与巧克力造型等。 图3-1 增材制造概念 基本原理:首先将三维CAD模型模拟切成一系列二维的薄片状平面层。然后利用相关设

(完整版)增材制造技术较传统工艺的优势与关键技术

增材制造技术较传统工艺的优势与关键技术 一、增材制造技术的简介 增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除一切削加工技术,是一种“自下而上”的制造方法。这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。 增材制造原理与不同的材料和工艺结合形成了许多增材制造设备,目前已有的设备种类达到20多种。该技术一出现就取得了快速发展,在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等多个领域都得到了广泛的应用。其特点是单件或小批量的快速制造,这一技术特点决定了快速成形在产品创新中具有显著的作用。 二、增材制造技术的优势 2.1设计上的自由度——在机加工、铸造或模塑生产当中,复杂设计的代价高昂,其每项细节都必须通过使用额外的刀具或其它步骤进行制造。相比而言,在增材制造当中,部件的复杂度极少需要或根本无需额外考虑。增材制造可以构建出其它制造工艺所不能实现或无法想像的形状,可以从纯粹考虑功能性的方面来设计部件,而无需考虑与制造相关的限制。 2.2小批量生产的经济性——增材制造过程无需生产或装配硬模具,且装夹过程用时较短,因此它不存在那些需要通过大批量生产才能抵消的典型的生产成本。增材工艺允许采用非常低的生产批量,包括单件生产,就能达到经济合理的打印生产目的。 2.3高材料效率——增材制造部件,特别是金属部件,仍然需要进行机加工。增材制造工序经常不能达到关键性部件所要求的最终细节、尺寸和表面光洁度的要求。但是所有近净成形工艺当中,增材制造是净成形水平最高的工艺,其后续机加工所必须切削掉的材料数量是很微量的。

论述3D打印的技术现状及发展趋势

3D打印的技术现状及发展趋势 一 3D打印技术概况 3D打印技术是指通过连续的物理层叠加,逐层增加材料来生成三维实体的技术,与传统的去除材料加工技术不同,因此又称为添加制造(AM,Additive Manufacturing)。 3D 打印(3Dprinting)是制造业领域正在迅速发展的一项新兴技术,被称为“具有工业革命意义的制造技术”。运用该技术进行生产的主要流程是:应用计算机软件设计出立体的加工样式,然后通过特定的成型设备(俗称“3D 打印机”),用液化、粉末化、丝化的固体材 料逐层“打印”出产品。 3D 打印是“增材制造”(AdditiveManufacturing)的主要实现形式。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余部分,得到零部件,再以拼装、焊接等方法组合成最终产品。 而“增材制造”与之截然不同,无需原胚和模具,就能直接根据计算机图形数据,通过增加材料的方法生成任何形状的物体,简化产品的制造程序,缩短产品的研制周期,提高效率并降低成本。 作为一种综合性应用技术,3D打印综合了数字建模技术、机电控制技术、信息技术、材料科学与化学等诸多方面的前沿技术知识,具有很高的科技含量。 3D打印机是3D打印的核心装备。它是集机械、控制及计算机技术等为一体的复杂机电一体化系统,主要由高精度机械系统、数控系统、喷

射系统和成型环境等子系统组成。此外,新型打印材料、打印工艺、设计与控制软件等也是3D打印技术体系的重要组成部分。 二 3D 打印所需的关键技术 3D 打印需要依托多个学科领域的尖端技术,至少包括以下方面:1.信息技术:要有先进的设计软件及数字化工具,辅助设计人员制作出产品的三维数字模型,并且根据模型自动分析出打印的工序,自动控制打印器材的走向。 2.精密机械:3D 打印以“每层的叠加”为加工方式。要生产高精度的产品,必须对打印设备的精准程度、稳定性有较高的要求。 3.材料科学:用于3D 打印的原材料较为特殊,必须能够液化、粉末化、丝化,在打印完成后又能重新结合起来,并具有合格的物理、化学性质。 三 3D打印的应用领域 具体应用领域包括: 1.工业制造:产品概念设计、原型制作、产品评审、功能验证;制作模具原型或直接打印模具,直接打印产品。3D 打印的小型无人飞机、小型汽车等概念产品已问世。3D 打印的家用器具模型,也被用于企业的宣传、营销活动中。 2.文化创意和数码娱乐:形状和结构复杂、材料特殊的艺术表达载体。科幻类电影《阿凡达》运用3D 打印塑造了部分角色和道具,3D 打印的小提琴接近了手工艺的水平。 3.航空航天、国防军工:复杂形状、尺寸微细、特殊性能的零部件、

浙江增材制造项目可行性研究报告

浙江增材制造项目可行性研究报告 仅供参考

报告摘要说明 增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出 实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产 业链组合产生深刻影响,是制造业有代表性的颠覆性技术。 增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算 机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与 数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、 烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自 下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造 方式的约束,而无法实现的复杂结构件制造变为可能。 该增材项目计划总投资5817.71万元,其中:固定资产投资 5017.06万元,占项目总投资的86.24%;流动资金800.65万元,占项 目总投资的13.76%。 本期项目达产年营业收入7766.00万元,总成本费用6034.26万元,税金及附加107.58万元,利润总额1731.74万元,利税总额2078.18万元,税后净利润1298.81万元,达产年纳税总额779.38万元;达产年投资利润率29.77%,投资利税率35.72%,投资回报率 22.33%,全部投资回收期5.98年,提供就业职位137个。

3D打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。 2018年我国增材制造产业规模有望达到18.3亿美元左右。另据中国增材制造产业联盟统计,2018年中国增材制造产业增速维持在25%以上,同时提供增材制造服务的企业数量已经超过500家。

增材制造技术发展前景

中国信息化周报/2013年/7月/22日/第005版 趋势 增材制造技术发展前景广阔 中国工程院院士李培根 增材制造技术将成为产业和社会变革的助推器,将为建设创新型社会,提供强有力的技术支撑。 发展增材制造技术,可以成为我们国家制造业基础创新的有效手段。增材制造大大增加了创新设计空间技术。另外符合绿色制造的发展方向,有利于制造业的可持续发展。它可以促进传统制造业技术水平的提升,尤其是我们把增材制造技术和传统工艺结合起来,可有望培育新兴产业,优化产业结构,促进产业升级。 我国正处于工业转型升级的关键时期,这既是重大的机遇,又有严峻的挑战。在此背景下召开增材制造技术工程国际研讨会及展览会,将为我们全面客观地掌握国内外增材制造技术的发展现状和趋势,研讨制定3D打印技术性发展带来的机遇和挑战,以及我国增材制造业技术创新与产业化发展战略对策部具有非常重要的意义。 用科普图书带动增材制造的激情 当前,全球迎来技术创新与产业变革的新高潮,其基本特征是制造业数字化、智能化,新能源、新材料技术取得突破,这必将引发新一轮的科技革命。增材制造技术是典型的数字技术,利用计算机数据,生产三维实体,将对制造业生重要的影响。 2012年,美国学者杰里米里夫金的《第三次工业革命》一书出版后,在中国引起了很大的反响,人们认为第三次工业革命有可能会改变未来的生产与生活模式。尽管这些观点现在还存在着一些争议,但是我们认为增材制造技术不管怎样都会有很大的发展前景。 我们希望科普图书能够以通俗的语言介绍增材制造技术的概念、现状、案例等等。大家可能会感到奇怪,我们的咨询报告为什么要去关注科普图书? 我认为科普图书对增材制造技术未来在中国的普及具有非常重要的意义。仔细对比一下美国和中国在增材制造技术方面的研究和研发情况,我们可以发现国内目前有好多家机构在做相关的研究,并且有一些已经做得非常好。但是,我们发现有一个很大的差别是,美国的民间对增材制造技术的热情要远远大于中国。如何去激发我们民间对增材制造技术及其运用的热情?我想科普图书可以发挥非常重要的作用。 我们希望通过科普图书吸引更多的人尤其是青少年,去关注增材制造技术,激发青少年的创意。这样,未来增材制造技术在中国才会有发展前景,否则,仅仅是依靠大学和一些科研院所进行研究是远远不够的。 增材制造技术的科普图书是面向所有对该技术感兴趣的人,因此当然要用简明生动的形式去做介绍。我觉得这本3D打印科普书最让人感兴趣的就是它的案例,该书大约搜集了一百多个案例,领域涉及到航空航天、汽车、现代制造业、医学、生物工业技术,以及个人消费品等多个方面。 提升增材制造技术的重大需求 从国外的总体技术情况来讲,3D打印已经从快速原型、工艺辅助等间接制造发展到直接制造,装备产业化、系列化向专业化方向发展,从科研到工业,高端型向办公和个人消费等大众化领域拓展,正在形成一个集装备材料、软件服务为一体的产业链。 3D打印需要标准,现在已经开始制订国际标准。其应用是多学科交叉的融合和发展,存在的问题包括:成形的材料种类仍然很有限,不是所有的材料都可以适用这种方法。此外,成形的精

【精品报告】我国增材制造产业发展现状、问题和趋势分析

目录 1.增材制造技术概述 (3) 2.增材制造产业链分析 (6) 2.1 上游产业 (6) 2.2中游产业 (6) 2.3下游产业 (7) 3.我国增材制造产业发展现状 (8) 3.1产业发展初具规模 (8) 3.2工艺技术不断突破 (8) 3.3高校院所拥有一批高水平研发团队 (9) 3.4.主要应用于先进制造相关领域 (10) 3.4.1航空航天领域 (10) 3.4.2汽车领域 (11) 3.4.3船舶领域 (11) 3.4.4表面修复领域 (12) 3.4.5生物医疗领域 (12) 3.4.6文化创意领域 (13) 4.我国增材制造产业发展面临的主要问题 (14) 4.1材料方面 (14) 4.2知识产权方面 (14) 4.3行业标准方面 (15) 4.4安全方面 (15) 4.5尺寸方面 (15) 5.我国增材制造产业发展趋势 (16) 5.1研发生产增材制造专用材料 (16) 5.2提高增材制造工艺技术 (16) 5.3研制增材制造装备及核心器件 (17) 5.4建立和完善产业标准体系 (17) 5.5应用示范成熟技术产品 (17) 6.结语 (17)

我国增材制造产业发展现状、 问题和趋势分析 1.增材制造技术概述 增材制造(Additive Manufacturing,AM)技术是通过计算机软件设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自20世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”、“快速原型”、“分层制造”、“实体自由制造”、“3D打印技术”。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 狭义的增材制造技术是指当前出现的3D打印技术或者快速成型技术等。广义的增材制造技术,则以设计数据为基础,将材料(包括液体、粉材、线材或块材等)自动化地累加起来成为实体结构的制造方法。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。越是复杂结构的产品,其制造的速度优势越显著。近年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。 根据3D打印所用材料的状态及成形方法,3D打印技术可以分为熔融沉积成形、光固化立体成形、分层实体制造、

厦门增材制造项目立项申请报告(申报材料)

厦门增材制造项目立项申请报告 xxx有限公司

承诺书 申请人郑重承诺如下: “厦门增材制造项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx(集团)有限公司(盖章) xxx年xx月xx日

项目概要 增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出 实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产 业链组合产生深刻影响,是制造业有代表性的颠覆性技术。 增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算 机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与 数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、 烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自 下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造 方式的约束,而无法实现的复杂结构件制造变为可能。 该增材项目计划总投资14851.84万元,其中:固定资产投资10977.80万元,占项目总投资的73.92%;流动资金3874.04万元,占 项目总投资的26.08%。 达产年营业收入31988.00万元,总成本费用24303.40万元,税 金及附加302.19万元,利润总额7684.60万元,利税总额9046.73万元,税后净利润5763.45万元,达产年纳税总额3283.28万元;达产 年投资利润率51.74%,投资利税率60.91%,投资回报率38.81%,全部投资回收期4.08年,提供就业职位535个。

相关文档
最新文档