物理学原理教你荡秋千

物理学原理教你荡秋千
物理学原理教你荡秋千

物理学原理教你荡秋千

荡秋千在我国有悠久的历史。古时候,每逢寒食节(清明节前一天),皇宫里便竖起了高高的秋千架。嫔妃宫娥争着去玩荡秋千,丝衣花带随风飘荡。唐朝的唐玄宗皇帝曾经把荡秋千叫做“半仙戏”。确实这样,当秋千把你越送越高的时候,风在耳边鸣响,大地在脚下摇晃,真是有点飘然欲仙的感觉呢。

不会荡秋千的小朋友,在秋千上直挺挺地站着,全靠妈妈、爸爸来推,推一下,秋千荡一荡,不推了就越荡越低,最后停了下来。这是由于存在着摩擦。要让秋千越荡越高,就要不断给它输入能量。

会荡秋千的人,荡到高处时会突然下蹲使身体的重心下降加速秋千的下落;在摆到最低点时,你的身体又开始慢慢站立,同时两手用力地向外推荡绳,使荡绳弯曲,向下摆时荡绳变直。这些动作都会消耗人体的能量。荡到最低处时,人站起来重心升高,提高了重力势能(在秋千上站要比地面上多费一些力气,也就是说多付出一些能量),荡秋千的人在最高处突然下蹲,使一部分重力势能变为动能加快秋千的摆动。正是这些能量使秋千越荡越高。

下面的小实验可以帮助你从摆动的角度分析荡秋千:用一根线绳拴住一个大螺母,做成一个摆。摆长应超过一米,越长越好做。

摆线的一端不要固定,而是穿过一个固定在椅背上的圆环。线端抓在你的手中,让这个摆像一个秋千一样摆动起来。如果抓住绳端不动,过一会儿摆就会停下来。但是适当有规律地拉动绳端,可以让摆越摆越高。

经过几次失败以后,你会总结出一个规律:螺母摆到最低点的时候,要突然把手中的线头向下拉使摆线由长变短,摆到高处的时候,手中的线头要突然放松使摆线长度变大。只要配合得好,摆就会越摆越高。

从摆动的规律看,秋千是一个摆,摆长长,周期大,摆得慢;摆长短,摆动周期变小,摆动加快。秋千的摆长可以近似地从悬点到人体的重心计算,人在秋千板上站立时,重心高,摆长短;蹲下,重心低,摆长变长。在最低点,人突然站立使摆长突然减小,摆动加快。在从低处向高处荡过去时,人用手向外用力推荡绳,使它们向外弯曲,这个动作的效果也是使摆长变短,使秋千越荡越高。

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

物理学原理暗藏赢利之道

如果将企业看成由各个环节构成的链条,其强度则取决于各个环节的强度,链条上最薄弱的环节往往就是链条的断裂点,即“制约点”。企业只有控制好“制约点”才能赢。 20多年前,以色列物理学家高德拉特博士开始将物理学等“硬科学”融入其对企业管理的思考。有人认为这种思路很疯狂,“分子、离子等可以测量,但‘人心难测’,把硬科学应用在‘以人为本’的企业管理,实在不可思议。” 但这位近乎偏执的物理学家却一直醉心于此项研究,并先后写成了《目标》、《关键链》等书。日前,他来到上海,向中国企业家详细阐述“制约法”的妙用。 链条强度取决于各环节强度 在高德拉特看来,任何复杂的系统都是基于固有的简单性组合而成,比如宇宙存在的多种运动形式,只需牛顿的三大运动定律便可基本解释清楚。如果能将企业组织结构绘制成图,便可清晰地看到组成企业的各个部门子系统,只需找到每个子系统的关键点并加以控制,便可实现对整个系统的管理与控制。 高德拉特认为,所谓的关键点即为企业管理的难点所在。如果将企业看成由各个环节构成的链条,其强度则取决于各个环节的强度,链条上最薄弱的环节往往就是链条的断裂点。他把这种最薄弱的环节命名为“制约点”,即上述的关键点。 配备“保护性产能” 为了让人们对“制约法”形成进一步的认识,高德拉特出了一道题:“在一条生产线的某个工作站中,包括折旧、营运费用等在内的日常开支是每小时300美元。如果这个工作站停工一个小时,请问企业将为此损失多少?” 有人说是300美元,有人认为更多———因为要考虑机会成本,高德拉特的看法则是:首先要知道这个工作站是否为整条生产线的关键点。如果是,那么就要计算整条生产线停工一小时的损失;如果不是,只要设有足够的“保护性产能”,就不会发生损失。 所谓“保护性产能”,是指企业发生意外导致正常生产中止时可以投入的备用生产资源。 在多数人眼里,预设闲置的备用资源是一种浪费,但高德拉特认为它们甚有必要,这部分保护性产能在平时看似一种资源浪费,却是正常生产的有力保证。 挖尽“制约点”的潜能 如今,众多管理者最关心的是成本,主张最大化地利用资源以降低成本,以致于陷入了一个“成本世界”,但这样做反而容易延长生产周期、延误交货时间。 高德拉特主张,生产周期是企业竞争力的重要方面,准时交货率直接影响着企业的“有效产出”,因此管理者们应转变思维,从“成本世界”跳到“有效产出世界”。

YWE滚齿机切向刀架加工蜗轮(飞刀)分头计算:

YWE滚齿机切向刀架加工蜗轮(飞刀)分头计算:

————————————————————————————————作者:————————————————————————————————日期:

YW3150E滚齿机切向刀架加工蜗轮(飞刀)分头计算: 分头原理:机床工作台不动时,每次分头前应将展成传动链脱离开,然后,将刀架精确位移一个蜗轮的分度圆周节.即:T=MsΠ(Ms——蜗轮轴向模数) 刀架传动结构如图所示: S=2Π的模数丝杆的作用是带动刀架移动. 当脱开离合器是可使展成传动链断开,此时,可通过分头手

柄带动来完成一个周节的精密移距.达到多头蜗轮的分头目的. 分头手柄转数计算: 设刀架移动一个周节T时,手柄转数为转数n.则n=T/S/25=25T/S=25MsΠ/2Π=12.5Ms(转) 分头操作程序: 1:按自己习惯传动方向将手柄转动1-3圈,并对准零位刻线.作用:消除传动间隙. 对准0位. 2:锁紧离合器主动盘.作用是防止分头时产生转动而影响分头精度. 3:松开离合器主动盘的三个螺栓,使主、被动离合器分开。作用是断开展成传动链. 4:按1的旋转方向,使分头手柄转动几转. 作用是移距、分头. 5:锁紧离合器的三个螺帽. 作用是连接展成传动链. 6:松开离合器主动盘螺栓. 7:开动机床,加工另一头齿形. YW3150E滚齿机用切向刀架加工蜗轮切向加工时的差动链计算: 1:切向运动平衡式 ΠmZ/t×25/1×30/34×34/30×24/24×40/40×2/25×a2c2/b2d2×36/72×i合成×e/f×i分×1/108=1转(工件)

物理学原理

一、填空题、选择题 1. 有两束相干光, 频率为ν,初相相同,在空气中传播,若在相遇点它们几何路程差为r 2-r 1 则相位 差。 2. 光强均为I0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是, 可能出现的最小光强是。 3. 如图,如果S1、S2是两个相干光源,它们到P点的距离分别为r1、r2和,路径S1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径S2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于:【】 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 t n t n ) D ( ;) t n r( ) t n r() C ( ]; t)1 n( r[ ] t)1 n( r[ )B ( ); t n r( ) t n r()A ( - - - - - + - - + + - + 题3图

一、填空题、选择题 1. 试分析在双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化? (A) 双缝间距变小: ; (B) 屏幕移近: ; (C) 波长变长: ; (D) 如图所示,把双缝中的一条狭缝挡住,并在两缝垂直平分线上放一块平面反射 镜: ; 2. 如图所示,在双缝干涉实验中SS 1 = SS 2用波长为λ的光照射双缝S 1、S 2,通过空气后在屏幕上 形成干涉条纹,已知P 点处为第三级明条纹,则S 1、S 2到P 点的光程差为 。 若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率 。 题1图 题2图 二、计算题 3. 在双缝干涉的实验中,用波长nm 546=λ的单色光照射,双缝与屏的距离D=300mm ,测得中央明条纹两侧的两个第五级明条纹之间的间距为12.2mm ,求双缝间的距离。

魔术中的物理结题报告

魔术中的物理结题报告 篇一:高中生_研究性学习报告___魔术中的物理 研究性学习报告——魔术中的物理 魔术,相信大家一定多很熟悉,他以其特有的神秘感和趣味性深受大家的喜爱。目前大多数魔术仍未被解秘,在少部分被揭秘的魔术背后,其实大多是欺骗你眼睛的伎俩。那神秘莫测的魔术背后是否有一些科学的物理道理呢?我们的答案是肯定的。 我们研究这一课题的目的,一方面是因为魔术接近我们的生活,有一定趣味性和新颖性,一方面是希望增进大家对魔术的认识,提高大家对魔术的欣赏能力,领悟到神秘事物背后是蕴藏着朴素真理的;最重要的一方面是希望激起大家对物理学习的兴趣,促使大家在生活中运用课堂中学习的物理知识和规律,真正做到学以致用,用以得趣,趣以促学。 我们的研究方法,包括分析法,比较法,类比法,综合法,系统法等。(1)具体的研究过程(1)是制定实施课题方案,论证可行性并修改方案,之后制定出研究计划。(2)在互联网,图书馆等处搜索各种形式的相关资料小组成员从资料提取有用信息并进行分类整合。(3)听取老师指导,进一步修饰和整理。(4)对研究进行概括总结,完成报告论文和ppt幻灯片。 我们的研究内容包括以下几点:手比眼快——魔术与

视觉暂留现象, 魔术与光学,魔术与热学,魔术与大气力学,魔术与电磁学 手比眼快——魔术与视觉暂留现象 典例1 瞬间便没型 魔术师将彩纸塞进一个透明圆管,向你展示后,彩纸瞬间变没。 原理:其实在彩纸的一端系有一根弹性细线,细线从魔术师的一个袖口穿进系在衣内。魔术师只须微张手臂,细绳产生的弹力在极短时间里可将彩纸拉进袖口 典例2 魔术师向平靠在竖直木板上表演者镖飞刀,但总未失手。 原理:魔术师其实并未镖出飞刀,而是将刀藏在衣内。同时木板在极短时间里,木板后的机关在不会伤人的地方插出刀,给人是魔术师在镖刀的假象 典例3 美国枷锁。例如刘谦在春晚上表演的皮筋魔术 原理:这个魔术在两段表演中都有一个必须做的动作,就是第一下先把两个手指即食指和中指合在一起,然后在表演之前有一个绕的动作,也就是这一下,已经把皮筋分开了。拇指和食指勾住皮筋,合拢的时候快速用中指挂住皮筋,松开食指,然后又用食指勾住皮筋,这样就出来了。然后放回原位时不断的晃动皮筋,因为已经出来了,又是连

物理学中的哲学思想

和大学生谈心(3)物理学中的哲学思想 物理学中的哲学思想 当我们学到惠更斯原理、热力学第二定律、推迟势和测不准关系等知识时,总觉得物理与哲学紧密相连。热力学系统、量子力学、相对论等,很难不涉及哲学的系统观、实在论、运动观和物质观。其实,许多大物理学家,如牛顿、爱因斯坦也常常陷入哲学的思考。哲学之所以这样有魅力,不仅是物理的发展得益于许多哲学思想,如开普勒的追求外星运动的和谐性,来自毕达哥拉斯主义的启示;牛顿的运动理论,受实在论的影响。更重要的是,哲学希望比物理更接近事物的本质认识,这也是物理从物质基本运动角度所孜孜以求的。记得在学生时代,我们就选过一些带哲学色彩的物理问题进行探讨: 1、无限可以有界,有限可以无界; 2、物质不灭的局限性; 3、热寂说的实质; 4、无时间的存在形式; 5、有无第一推动力; 6、系统与微扰; 7、测不准的实质; 8、灵感的基础…… 现在回忆起来,记忆犹新。现在这些问题的讨论,有些尚未有定论。但物理学对我们哲学观的影响,却可以看得出来: 一、经典物理学中的哲学思想 经典物理从牛顿力学开始,力、热、点、光、原,在不同程度上都有实在论、决定论的影响。 物理科学的建立是从力学开始的。在物理科学中,人们曾用纯粹力学理论解释机械运动以外的各种形式的运动,如热、电磁、光、分子和原子内的运动等。亚里士多德的思想在这一时期起着重要作用。在他的著作中讨论了力学问题,虽然其中的一些观点和真理相去甚远,但由于亚里士多德的权威性如此之大,以致他的这些观点在科学思想上起着重要作用。他的权威在中世纪被认为是至高无上的,直到伽利略的时候仍不可动摇,在中世纪,他的著作阻碍了物理学的进一步发展。 到了文艺复兴时期,以宗教改革闻名的反对教会权威的斗争标志着物理学家开始以实验的语言来研究自然。哥白尼体系的建立是这时第一个伟大的胜利,它推翻了托勒密体系的地球中心说,主张地球是圆的,绕着自己的轴自转,并绕太阳公转。他第一次揭示了季节的变化和行星视扰动的原因。他的体系的一大缺点是认为一切天上的运动都是圆周运动的复合。完全推翻古典的学说的是开普勒,他吸收了哥白尼的思想,建立了著名的开普勒定律,证实了行星运行的真实的轨道——椭圆。

大学物理演示实验报告.doc

大学物理演示实验报告 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

五、讨论与思考 雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么? 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发

大学物理上实验报告(共2篇)

篇一:大学物理实验报告 大学物理演示实验报告 院系名称:勘察与测绘学院 专业班级: 姓名: 学号: 辉光盘 【实验目的】: 观察平板晶体中的高压辉光放电现象。 【实验仪器】:大型闪电盘演示仪 【实验原理闪电盘是在两层玻璃盘中密封了 涂有荧光材料的玻璃珠,玻璃珠充有稀薄的 惰性气体(如氩气等)。控制器中有一块振荡 电路板,通过电源变换器,将12v低压直流 电转变为高压高频电压加在电极上。 通电后,振荡电路产生高频电压电场, 由于稀薄气体受到高频电场的电离作用二产 生紫外辐射,玻璃珠上的荧光材料受到紫外 辐射激发出可见光,其颜色由玻璃珠上涂敷 的荧光材料决定。由于电极上电压很高,故 所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。 【实验步骤】: 1. 将闪电盘后控制器上的电位器调节到最小; 2. 插上220v电源,打开开关; 3. 调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光; 4. 用手触摸玻璃表面,观察闪光随手指移动变化; 5. 缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。 【注意事项】: 1. 闪电盘为玻璃质地,注意轻拿轻放; 2. 移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂; 3. 闪电盘不可悬空吊挂。 辉光球 【实验目的】 观察辉光放电现象,了解电场、电离、击穿及发光等概念。 【实验步骤】 1.将辉光球底座上的电位器调节到最小; 2.插上220v电源,并打开开关; 3. 调节电位器,观察辉光球的玻璃球壳内,电压超过一定域值后中心处电极之间随机产生数道辉光; 4.用手触摸玻璃球壳,观察到辉光随手指移动变化; 5.缓慢调低电位器到辉光恰好消失,对辉光球拍手或说话,观察辉光随声音的变化。

物理学原理教你荡秋千

物理学原理教你荡秋千 荡秋千在我国有悠久的历史。古时候,每逢寒食节(清明节前一天),皇宫里便竖起了高高的秋千架。嫔妃宫娥争着去玩荡秋千,丝衣花带随风飘荡。唐朝的唐玄宗皇帝曾经把荡秋千叫做“半仙戏”。确实这样,当秋千把你越送越高的时候,风在耳边鸣响,大地在脚下摇晃,真是有点飘然欲仙的感觉呢。 不会荡秋千的小朋友,在秋千上直挺挺地站着,全靠妈妈、爸爸来推,推一下,秋千荡一荡,不推了就越荡越低,最后停了下来。这是由于存在着摩擦。要让秋千越荡越高,就要不断给它输入能量。 会荡秋千的人,荡到高处时会突然下蹲使身体的重心下降加速秋千的下落;在摆到最低点时,你的身体又开始慢慢站立,同时两手用力地向外推荡绳,使荡绳弯曲,向下摆时荡绳变直。这些动作都会消耗人体的能量。荡到最低处时,人站起来重心升高,提高了重力势能(在秋千上站要比地面上多费一些力气,也就是说多付出一些能量),荡秋千的人在最高处突然下蹲,使一部分重力势能变为动能加快秋千的摆动。正是这些能量使秋千越荡越高。 下面的小实验可以帮助你从摆动的角度分析荡秋千:用一根线绳拴住一个大螺母,做成一个摆。摆长应超过一米,越长越好做。 摆线的一端不要固定,而是穿过一个固定在椅背上的圆环。线端抓在你的手中,让这个摆像一个秋千一样摆动起来。如果抓住绳端不动,过一会儿摆就会停下来。但是适当有规律地拉动绳端,可以让摆越摆越高。 经过几次失败以后,你会总结出一个规律:螺母摆到最低点的时候,要突然把手中的线头向下拉使摆线由长变短,摆到高处的时候,手中的线头要突然放松使摆线长度变大。只要配合得好,摆就会越摆越高。 从摆动的规律看,秋千是一个摆,摆长长,周期大,摆得慢;摆长短,摆动周期变小,摆动加快。秋千的摆长可以近似地从悬点到人体的重心计算,人在秋千板上站立时,重心高,摆长短;蹲下,重心低,摆长变长。在最低点,人突然站立使摆长突然减小,摆动加快。在从低处向高处荡过去时,人用手向外用力推荡绳,使它们向外弯曲,这个动作的效果也是使摆长变短,使秋千越荡越高。

刘谦飞刀插牌魔术

教学 整个魔术最关键的地方就是要把牌分成两叠表演,我们把放在桌上不用的那叠牌称为留底叠,给观众选牌的那叠称为表演叠,前半部分的表演就是要把观众选的牌放到留底叠的顶部, 有两种表演方法: 一种是迫牌,以表演视频中的红心8为例,这个要事先准备两张红心8,把牌分成两叠的时候留底叠的顶牌就已经是红心8,另一张在表演叠,需要迫给观众,刘谦的表演有个特点,非常喜欢古典式迫牌,大家看到他把牌在手上展开,要观众伸出一个手指点一张牌,那肯定是迫牌。迫完牌可以按表演视频中的那样洗牌,的确不需要任何魔术手法,但是洗的时候注意,红心8大概在哪个位置你是有数的,虽然不知道具体是哪一张,但是尽量要把红心8洗到靠近牌顶的位置,这个下面会解说。然后拿出刀子一番解说,前半部分表演讲解结束。 另一种方法是不需要迫牌,这个可以让观众在牌上签名,放回来后要把牌控到牌顶,然后右手把顶牌稍微往前推,往下压一下把牌偷藏到手心。怎么控牌并偷牌这里就不详细解说了,不会的可以到论坛找教学。偷牌后把牌放到桌上,左手从兜里拿出小刀,解说并把观众注意力集中到刀子上面,右手盖到留底叠上稍微移动一下牌叠,看起来是不经意的一个动作,整理或移动一下牌叠,其实是把观众选的牌放到牌叠的顶上。 接下来就是整个魔术最出彩的部分了,需要勤加练习。把刀子两边的刀刃都打开,手握一个刀刃,另一个刀刃露出来给观众看到,右手握刀子放到留底叠上,稍微用劲刺破顶牌,接下 来看图说话,注意看右手的动作。

握刀的方向需要注意,把刀旋转过来的时候需要用虎口把原来向上的刀刃顶回刀身,方向反了就割到手了,这样刺完牌展示的时候就是只有一个刀刃是打开的。 善后工作要看前面的表演方式,如果是偷牌而不是用迫牌,那么无须善后,没有破绽的。如果是迫牌就需要注意了,因为有两张相同的牌,如果红心8正面向上落在桌上就穿帮了,因此需要把刺牌的手高高举起,让观众注意力都在上面,自己偷偷观察桌面上牌的分布情况,有红心8就要用左手去把牌反过来,表演视频里刘谦就是这么做的,不过他反过来的是红心6,一时间看错了,实际红心8并没有正面向上出现在桌上。前面提到洗牌时要尽量把红心8洗得靠近牌顶,因为按视频中的弹牌方式,牌底的牌会弹得比较远,如果有红心8自己就够不到了。握刀的方向需要注意,把刀旋转过来的时候需要用虎口把原来向上的刀刃顶回刀身,方向反了就割到手了,这样刺完牌展示的时候就是只有一个刀刃是打开的。

大学物理演示实验报告.doc

大学物理演示实验报告 大学物理演示实验报告一: 实验目的:通过演示来了解弧光放电的原理 实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。 雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。 简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。 实验现象: 两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。 注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,

实验拓展:举例说明电弧放电的应用 大学物理演示实验报告二: 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

社会学的物理学原理

社会科学的物理学原理 --通过熵来分析部分人难以找到女/男朋友的原因 根据热力学第一定律,能量是守恒的,可以互相转化(比如机械能转化为电能),而不会消失。热力学第二定律进一步指出,虽然能量可以转化,但是无法100%利用。在转化过程中,总是有一部分能量会被浪费掉。比如,汽油含有的能量可以转化成发动机的能量,但是会伴随产生大量的热能和废气。即使科技再发达,也无法将被浪费的能量减小至零。 写成公式就是: 能量的总和 = 有效能量 + 无效能量 "有效能量"指的是,可以被利用的能量;"无效能量"指的是,无法再利用的能量,又称为熵。所以,熵就是系统中的无效能量。 考虑到宇宙的能量总和是一个常量,而每一次能量转化,必然有一部分"有效能量"变成"无效能量"(即"熵"),因此不难推论,有效能量越来越少,无效能量越来越多。直到有一天,所有的有效能量都变成无效能量,那时将不再有任何能量转化,这就叫宇宙的"热寂"(Heat Death)。所以,热力学第二定律的一个重要推论就是:熵永远在增加。 热力学第二定律只是定义了"熵",没有解释"熵"的产生原因:为什么总是有一部分能量无法再利用? 1877年,奥地利物理学家玻尔兹曼(Ludwig Boltzmann)对"熵"做出了令人信服的解释。 他认为,任何粒子的常态都是随机运动,也就是"无序运动",如果让粒子呈现"有序化",必须耗费能量。所以,能量可以被看作"有序化"的一种度量。热力学第二定律实际上是说,当一种形式的"有序化"转化为另一种形式的"有序化",必然伴随产生某种"无序化"。一旦能量以"无序化"的形式存在,就无法再利用了,除非从外界输入新的能量,让无序状态重新变成有序状态。 "熵"就是"无序化"的度量。考虑到"无序化"代表着混乱(实质是随机运动),可以得到三个重要结论: 结论1:如果没有外部能量输入,封闭系统趋向越来越混乱(熵越来越大)。比如,如果房间无人打扫,不可能越来越干净(有序化),只可能越来越乱(无序化)。 结论2:如果要让一个系统变得更有序,必须有外部能量的输入。 结论3:当一个系统(或部分)变得更加有序,必然有另一个系统(或部分)变得更加无序,而且"无序"的增加程度将超过"有序"的增加程度。 以上部分为引用 为了说明“找不到女朋友”这样的社会科学研究课题可以通过物理理论来解释,则必将须理论需要的常量和个人生活的各个要素合理对应。熵理论超乎寻常的适用性恰好可以解决这个问题。对于每一个人来说,生活就是从无序到有序的一个过程。每个人在生活的过程中不断寻找适合自己的生活方式,最终使得自己的生活方式流程化,简单化。如果将一个人的“个人生活”看做一个系统处于“社会”这个大系统之下的小系统,将所处的“社会”看做一个常量,通过熵就很容易了解“为什么没有女朋友”这个问题的原因。 熵的变化过程和一个人生活随时间变化的过程是相互对应的。首先,一个人的生活作为一个半封闭系统,向着有序化过度必然有着外部能量的注入。不定的资金、碎片化的时间则构成了个人生活体统中无效能量的部分。精力(不论何人的)、资金可以看做外部注入影响

大学物理演示实验感想

大学物理演示实验感想 通过此次光学演示实验使我了解了光的实质,就是原子核外电子得到能量跃迁到更高的轨道上之后由于所处轨道不稳定,电子还要跃迁回去,跃迁回去会释放出一个光子,就是以光的形式向外发出能量,跃迁的能级不同,释放出来的能量不同,光子的波长就不同,光的颜色就不一样了。当复色光进入棱镜或光栅后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。使我深刻认识到光的传播、干射、衍射、散射、偏振等许多现象及其原理,还有发生这种现象的外部条件。通过对这些特性的理解,使我从现实方面认识到光的波粒二象性,认识到光在什么条件下表现粒子性,在什么条件下表现波动性。通过激光传播信号的演示实验中我知道光不但给人以美的感受还有诸多其它方面的用处。在光的色散实验中,我对牛顿环的印象最深刻,通过对牛顿环现象的认识,我加深了对等厚干涉的了解,尤其是半波损失对牛顿环的应用,对半波损失有了进一步的了解和记忆。 我觉得我们做的虽然是演示实验,但也很有收获,这是我们对课上所学知识的一个更直观的了解,通过此次光学演示实验使我对光有了一种感性的认识,加深了对光学现象及原理的认识,为今后光学的学习打下深厚的基础,此次演示实验把理论与现实相结合,让大家在现实生活中理解光波的本质,这给我们每天的理论学习增添了一点趣味。虽然说演示实验的过程是简单的,但它的意义绝非如此。我们学习的知识重在应用,对大学生来说,演示实验不仅开动了我们思考的马达,也让我们更好地把物理知识运用到了实际现象的分析中去,使我们不但对大自然产生了以前没有的敬畏和尊重,也有了对大自然探究的好奇心,我想这是一个人做学问最最重要的一点。因此我想在我们平时的学习中,要带着一种崇敬的心情和责任感,认认真真地学习,踏踏实实地学习,只有这样,我们才能真正学会一门课,学好一门

(整理)对称性原理在物理学中的重要性.

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理

学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对

大学物理演示实验报告文档2篇

大学物理演示实验报告文档2篇College physics demonstration experiment report docu ment 编订:JinTai College

大学物理演示实验报告文档2篇 小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:大学物理演示实验报告文档 2、篇章2:大学物理演示实验报告文档 篇章1:大学物理演示实验报告文档 院系名称:纺织与材料学院 专业班级:轻化工程11级03班 鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

鱼洗的原理应该是同时应用了波的叠加和共振。摩擦的 双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。这与实验中观察到的现象相同。按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。通过摩擦输入的能量才会激起水花。 令人不解的是,事实上鱼洗是否能产生水花与双手的摩 擦频率并没有关系。在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。(正如在锣面上敲一下。) 为什么湿润的双手更容易引起鱼洗的振动呢?从实践的 角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。 离心力演示仪是一个圆柱形仪器,中间有一个细柱,细 柱穿过一段闭合的硬塑料带上的两个正对小孔。塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。

飞刀的物理学原理

飞刀的物理学原理 译者: 洗剑 ?飞刀是翻着跟头出去的,十面埋伏中的飞刀不符合物理学原理 ?神奇的物理学让飞刀飞行参数只与你手臂长度及释放时机有关 你扔出一把飞刀,且向刀尖命正目标,想当然的做法是,在刀尖刚好指向靶子时释放飞刀。许多相关书籍也提到了这一建议,但在现实情况中释放的时机更早。以物理学观点解释如下:持刀手以肩部为中心,环绕其做近似圆周运动,肘关节的移动会改变圆周的半径,而这一点被忽略了。一经释放,飞刀的飞行情况将与圆周的路径无关。(见图中粉红色的九十度角区域的轨迹,图中采用持刃式投掷)。也许你还记得中学时老师所作的物理学试验:他用绳子拴住砝码并在其头上旋转令砝码做圆周运动,然后松手。(^_^砝码会延松手时所处的圆周切线方向飞出) 如果你刚好在飞刀指向靶子时释放飞刀(图中蓝线所示),它将径直飞向地面。 因此更好的释放时机是在圆周轨迹的切线正好指向靶子的时候。(上面的红线)如果能提前一点就更好,因为理想的切线轨迹会受到重力的影响。(下面的红线) 最恰当的释放时机是飞刀刚好垂直于地面的时刻,飞刀一经释放就开始旋转,而手臂则继续完成其圆周运动(如同棒球击球后的弧形动作)。理论上的轨迹 actual trajectory due to gravity:受重力影响的实际轨迹release point:释放点 follow through:后续动作way of the hand:手部动作路径(类似于圆周运动) shoulder joint:肩关节)

在这种情况下,人的感觉与现实存在了分歧。首先以我个人的经验来看,我无法相信自己提早释放了飞刀,但事实却是如此,物理学知识证实了这一点,而且还有其他证据。David Adamovich在观察其投掷动作的慢镜头时,发现飞刀离手时是与地面垂直的。(见下图) 而Tim Valentine在对一些视频进行了分析后得出了相同的结论。下面是2002年飞刀爱好者集会上的一些飞刀出手瞬间的照片(感谢Johann Müller提供了照片)。 second

大学物理演示实验报告

【实验名称】弹性碰撞演示仪 【实验目的】 本实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。 【实验原理】 根据动量守恒定律可知,如果正碰撞的两球,撞前速度分别为V10和V20,碰撞后的速度分别为V1和V2,质量分别为m1和m2. 则 (1) 由碰撞定律可知:(2) 若e=1时,则分离速度()等于接近速度() 解式(1)和式(2)可得: (3) (4) 若m1=m2=m;e=1则v1=0,v2=v10 即球1正碰球2时,球1静止,球2继续以V10的速度正碰球3,等等以此类推,实现动量的传递。【实验器材】 1、实验装置如实验原理图示: 1一底座 2—支架 3—钢球 4—拉线 5—调节螺丝 2、技术指标 钢球质量:m=7×0.2kg 直径:l=7×35mm 拉线长度:L=55Omm 【实验操作与现象】 l、将仪器置于水平桌面放好,调节螺丝,使七个钢球的球心在同一水平线上。 2、将一端的钢球拉起后,松手,则钢球正碰下一个钢球,末端的钢球弹起,继而,又碰下一个钢球,另一端的钢球弹起,循环不已,中间的五个钢球静止不动。但在一般情况下,两球碰撞时,总要损失一部分能量,故两端的钢球摆动的幅度将逐渐减弱。 【注意事项】 操作前一定将七个钢球的球心调至同一水平线上,否则现象不明显。 在理想情况下,物体碰撞后,形变能够恢复,不发热、发声,没有动能损失,这种碰撞称为弹性碰撞(elastic collision),又称完全弹性碰撞。真正的弹性碰撞只在分子、原子以及更小的微粒之间才会出现。生活中,硬质木球或钢球发生碰撞时,动能的损失很小,可以忽略不计,通常也将它们的碰撞看成弹性碰撞。碰撞时动量守恒。当两物体质量相同时,互换速度。 大型闪电盘(辉光盘)演示实验 【实验目的】: 观察平板晶体中的高压辉光放电现象。

小黎飞刀10日均线理论

小黎飞刀之一 第1节第1招:价值100万的“10日均线理论”(1)飞刀的“10日均线理论”: 股价运行在5日、10日均线之上就是健康的,最低限度也一定要运行在20日均线之上。股价跌破10日均线时,你就需要小心警惕了;如果股价跌破10日均线,或10日均线走平甚至是拐头向下(有时均线死叉)则是(短线波段或有可能是中线)行情变坏的标志!建议短线出局!如果3日内股价不能收在10日均线之上你就要十分小心了。是否是准确的卖出信号,要同时结合其他分析条件来分析是否要卖股。 飞刀的操盘卖股止损经典: 股价在高位跌破10日均线甚至拐头向下则是(短线波段或有可能是中线)行情变坏的标志! 飞刀的操盘短线买股经典: 股价在低位上穿10日均线,10日均线开始拐头向上则是(短线波段或有可能是中线)行情变好的标志,此时才是短线买进的稳妥条件! 飞刀的操盘中线买股经典: 股价在低位上穿30日均线(也就是月线),30日均线开始拐头向上则是中线行情变好的标志,此时才是中线买进的稳妥条件! “10日均线理论”是飞刀认为可以价值100万的一句操盘经典理论,不信你自己可以检验!使用的时候注意结合自身的操盘经验来用,不能单纯地靠理论来指导操作,经验还是必需的。价值100万只是飞刀个人衡量而已,到底值不值100万呢?有一句话说得很有道理:对于不识货的人来说,你即使给他一个金碗,他也只会用来讨饭而已! “股市保本”炒股口诀: ①5日均线是股价短线运行的保护线,跌破它则是短线操作的警戒信号!10日均线是短线波段的生命线,跌破它,“生命”将不保! ②20日均线是股价中线运行的保护线,跌破它则是中线操作的警戒信号!30日均线是中线波段的生命线,跌破它,“生命”将不保!跌破60日均线的保命线,那就是重大亏损!如果再跌破120日半年线,那将是巨额亏损,血本无归了!

大学物理演示实验报告

【实验目的】:借助视觉暂留演示声波。 【实验仪器】:声波可见演示仪。 【实验原理】:不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。 【实验步骤】: 1、将整个装置竖直放稳,用手转动滚轮。 2、依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波。 3、重复转动滚轮,拨动琴弦,观察弦上的波形。 【注意事项】: 1、滚轮转速不必太高。 2、拨动琴弦切勿用力过猛。 【实验目的】:演示翼形升力的产生。 【实验仪器】:飞机升力演示仪。 【实验原理】:一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。当气流迎面流过机翼时,流线分布情况如图。原来是一股气流,由于机翼的插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,使上方的那股气流的通道变窄,流速加快。根据伯努利原理可以得 知:流速大的地方压强小。机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 【实验步骤】: 1.打开位于底座前方的电源开关,用手感受一下出风口处的气流; 2.把手移开,观察到小球从管内升起; 3.用手挡住出风口,小球立即从管内下落; 4.重复操作2、3,观察小球在管内的起落。 5.实验结束,关闭电源。 【注意事项】: 如果小球不能从管内升起,适当调节机翼的高度,使机翼的上部对准气咀,使流过机翼上部的气流最大。【思考】: 飞机的机翼为何做成上凸下平的形状?

【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象, 使学生加深了解在重力场中物体总是以降低重心,趋 于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运 动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 【实验原理】:能量最低原理指出:物体或系统的能 量总是自然趋向最低状态。本实验中在低端的两根导 轨间距小,锥体停在此处重心被抬高了;相反,在高 端两根导轨较为分开,锥体在此处下陷,重心实际上 降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.不要将锥体搬离轨道。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。 【实验目的】:了解扫描成像原理及视觉暂留现象。 【实验仪器】:扫描成像原理演示仪。 【实验原理】:本仪器中的铝盘上沿螺旋线均匀排布小孔,目的是使盘旋转时小孔能够从上到下依次扫过画面,有如电视机中的逐行扫描.画面虽然是被依次扫过, 只要扫过整个画面的时间短于人眼的视觉暂留时间,人眼看到的就是一幅完整的画面. 【实验步骤】: 1、接上电源,打开仪器电源开关; 2、观察窗口处铝盘小孔及其后面的图画,此时看不到完整的的画面; 3、顺时针旋转仪器正面板右下角的调速旋钮,使铝盘转起来.先使旋钮上的箭头旋至“起动”位置,待铝盘转动平稳后再将旋钮上的箭头旋至“运行”位置; 4、透过铝盘上的小孔观察其后面的图画,发现可看到一幅完整的画面; 5、注意在铝盘转速由慢变快的过程中,其后面的图画由看不见,到断续看见,到连续看见一幅完整画面的过程. 【注意事项】: 1、因铝盘的转动惯量较大,起动时需加较大电压,一旦启动就要把电压调到正常值,以免转速过大,仪器不稳.

打水漂中的物理学原理

打水漂中的物理学原理 俗话说,有人的地方就有江湖,有江湖的地方必定有一种游戏,那就是打水漂。想象一下,黄昏时分,晚风清凉,你牵着伴侣的手走在湖边,这时你捡起一片石片扔在水中,你想象中是石片掠过水面,荡起一圈圈涟漪,可是只听扑通一声,身边的伴侣一边抹掉脸上的水,一边还惊恐地望着你,场面是多么尴尬?所以为了各位的幸福,本期就讲讲如何打一个成功的水漂。 从力学原理来讲,石片能从水面上弹起,那必定是水面给它向上的力大于它自身的重力,那我们就需考虑这个力从何而来?当石片掠过水面时,会带动它下面的水快速流动,根据伯努利原理流速越大,压强越小,所以与石片接触的水面压强减小,而更下方的水压不变,这样水体就会对石片产生向上的压力,当压力大于石片的重力时,石片就会往上弹,这样重复多次就是打水漂现象。了解了打水漂的原理后,怎样才能打出一个完美的水漂呢?事实上,这是个很值得研究的问题,法国科学家克里斯托夫·克拉内就研究了这个问题并将研究成果发在了《nature》上,要知道,有一篇《nature》的文章几乎是可以在国内的任何高校中做教授的,他的研究成果指出,打一个成功的水漂需要几个条件,一是石片的形状,扁平的石片可以通过增大石片与水面的接触面积,获得更大的升力;二是抛射速度和石片自旋转速度,这两者可以通过改变接触面水流速度造成更大的压强差来获得更大的升力,三是抛射角度,实验和理论都证实了当石片首次触水与水面成20度角时效果最好,这是因为无论自旋速度、抛射速度如何,石片与水面的攻角在20°时,石片与水面的接触时间都最少,而该接触时间就决定了能量损耗的大小,接触时间越短能量损耗越少。 以上就是打一个成功水漂的所有要素:尽量用又扁又圆的石片,扔的力量越大越

相关文档
最新文档