第二章 自喷与气举采油分析

第二章  自喷与气举采油分析
第二章  自喷与气举采油分析

第二章自喷与气举采油

通过油井从油层中开采原油的方法按油层能量是否充足,可分为自喷和机械采油两大类。当油层能量充足时,完全依靠油层本身能量将原油举升到地面的方法称为自喷(natural flowing);当油层能量不足时,人为地利用机械设备给井内液体补充能量的方法将原油举升到地面,称为机械采油方法也称人工举升(artifical lift)方法。

人工举升方法按其人工补充能量的方式分为气举和深井泵抽油(泵举)两大类。气举采油是人为地将高压气体从地面注入到油井中,依靠气体的能量将井中原油举升到地面的一类人工举升方法。气举采油与自喷采油具有基本相同的流动规律,即气液两相上升流动。本章重点阐述自喷井的协调原理和节点分析方法,以及气举采油原理和设计方法。

第一节自喷井节点系统分析

节点系统分析(nodal systems analysis)方法简称节点分析。最初用于分析和优化电路和供水管网系统,1954年Gilbert提出把该方法用于油气井生产系统,后来Brown等人对此进行了系统的研究。20世纪80年代以来,随着计算机技术的发展,该方法在油气井生产系统设计及生产动态预测中得到了广泛应用。

节点分析的对象是油藏至地面分离器的整个油气井生产系统,其基本思想是在某部位设置节点,将油气井系统隔离为相对独立的子系统,以压力和流量的变化关系为主要线索,把由节点隔离的各流动过程的数学模型有序地联系起来,以确定系统的流量。

节点分析的实质是计算机程序化的单井动态模型。借助于它可以帮助人们理解油气井生产系统中各个可控制参数与环境因素对整个生产系统产量的影响和变化关系,从而寻求优化油气井生产系统特性的途径。

本节以自喷井为例,讲述节点分析的基本概念、方法及其应用。

一、基本概念和分析步骤

1.油井生产系统

油井生产系统是指从油层到地面油气分离器这一整个水力学系统。由于各油田的地层特性、完井方式、举升工艺及地面集输工艺的差异较大,使得油井生产系统因井而异,互不相同。图2-1给出了一个较完整的自喷井生产系统及各流动过程的压力损失。对系统各组成部分的压力损失是节点分析的一个核心内容。

2.节点

在油井生产系统中,节点(node)是一个位置的概念。对于图2-1所示的自喷井系统,至少可以确定图示中的8个节点,对其它举升方式还会有不同的节点位置。节点可分为普通节点和函数节点两类。

1) 普通节点

一般指两段不同流动过程的衔接点,如图2-1所示的井口3,井底6以及系统的起、止点(地层边界8、分离器1)均属普通节点。在这类节点处不产生与流量有关的压降。

2)函数节点

具有限流作用的装置也可作为节点,如图2-1所示,地面油嘴2、井下安全阀4、井下油嘴5和完井段7。由于这类装置在局部会产生一定压降,其压降的大小为流量的函数?,故称为函数节点(function node)。函数节点所产生的压降可用适当的公式计算。p=

)q(f

3)解节点

应用节点分析方法时,通常要选定一个节点,将整个系统划分为流入节点和流出节点两个部分进行求解。所选用的这个使问题获得解决的节点称为求解节点(solution node),简称解节点或求解点。

图2-1自喷井生产系统及压力损失 r p —平均地层压力;p wfs —井底油层岩面压力;p wf —井底流压;p ur ,p dr —井下油嘴上、下游压力;p usv ,p dsv —安全阀上、下游压力;p wh —井口油压;p b —地面油嘴下游压力;p sep —分离器压力;Δp 1=r p -p wfs —油层渗流压力损失;Δp 2=p wfs -p wf —完井段压力损失;Δp 3=p UR -p DR —井下节流器压力损失;

Δp 4=p USV -p DSV —井下安全阀压力损失;Δp 5=p wh -p B —地面油嘴压力损失;Δp 6=p B -p sep —地面出油管线压力损失;Δp 7=p wf -p wh —举升油管压力损失(包括Δp 3和Δp 4);Δp 8=p wh -p sep —地面管线中的总损失(包括Δp 5)

3.节点分析的基本步骤

进行节点分析必须具备能够正确描述各流动过程动态规律(流量与压降)的数学模型。例如,自喷井系统分析模型中应包括适用的油井流入动态IPR 、举升管柱及地面管线压力计算方法、油嘴流动相关式,以及流体在不同压力温度下的物性参数相关式。

以普通节点为例,节点分析的基本步骤如下:

1) 建立油井模型并设置节点

按油井生产的逻辑关系,明确生产流程的构成,并在系统内设置相应的节点,从而把油井系统有序地划分为相互联系又相互独立的若干部分。

2) 解节点的选择

解节点位置与系统分析的结果无关。灵活的节点位置有利于研究分析在整个系统中不同因素对产量的影响。如果旨在说明接近地面部分的影响,则解节点可选为井口。取井底为解节点有利于分析油层的供液能力和井筒的举升能力,以便优选油管尺寸和控制井口压力。取系统终端(分离器)为解节点有利于分析整个井网各口井对产量的影响。同样,如果关心井下部分的影响,解节点可选在井底和完井段,井底解节点应用很普遍。以油嘴和完井段为函数节点,有利于进一步分析油嘴直径,完井结构因素(如孔密、孔径和孔深等)对井系统产量的影响。

总之,应根据所求解的问题合理选择解节点,通常应选在尽可能靠近分析对象的节点作为解节点。

3) 计算解节点上游的供液特征

p)至解节点沿流动方向,按解节点上游各改变产量,从系统的始端(平均地层压力r

流动过程的数学模型计算相应的解节点处的压力。

4) 计算解节点下游的排液特征

改变产量,从系统终端(分离器p sep)至解节点逆流动方向,按解节点下游各流动过程的数学模型计算相应的解节点处的压力。

5) 确定生产协调点

根据解节点上、下游的压力与产量的关系,在同一坐标系中绘制出解节点上游压力与产

量的关系曲线(节点流入曲线)和解节点下游压力与产量的关系曲线(节点流出曲线),二

曲线称为系统分析曲线,如图2-2所示。节点流入曲线反映在给定地层压力下油层到解节点

(流入段)的供液能力。节点流出曲线反映在给定分离器压力下,从解节点到分离器(流出

段)的排液能力。在解节点流入、流出曲线的交点A处,流入段的产量等于流出段的排量;

并且流入段的剩余压力等于流出段所需要的起点压力。解节点上、下游能够稳定协调工作,

因此该交点A称为油井生产协调点(q,p),简称协调点。如果流入、流出曲线不相交或者

存在双交点的情况将在后面进一步说明。

图2-2系统分析曲线及其解

6) 进行动态拟合

由于数学模型及有关参数的误差,上述产量常与实际产量不相吻合,此时应对数学模型

及有关参数进行调整,经过拟合使所建立的数学模型和计算程序能正确反映油井生产系统的

实际情况。

7) 程序应用

拟合后的计算程序既可以用于对整个生产系统的分析,也可以围绕所需解决的问题进行

参数的敏感性分析。通过分析,优化出生产参数,实现油井系统的优化生产。

二、节点分析方法及其应用

下面以油层到分离器(图2-3a)简单的自喷井生产系统为例,说明节点分析方法及其应

用。

1.井底为解节点

以井底为解节点是最常用的分析方法。井底节点将整个油井系统隔离为油层和举升油管+地面管线两部分,如图2-3a 所示。节点流入部分即为油层渗流,用流入动态IPR 曲线描述。从油层中部位置至地面分离器,其压降为举升油管压降与地面管线压降之和。 解节点流出压力为 油管

地面管线p p p p sep wf ?+?+= 设定一组产液量q i (q i =i Δq ,Δq 为产量步长,i 为计算点序号,i=1,2,……,N ),

分别以给定的平均地层压力r p 和分离器压力p sep 开始计算至解节点,计算得出流入和流出解节点的压力。并在同一坐标图上绘制解节点流入和流出动态p wf ~q 曲线(即系统分析曲线),如图2-3b 所示。也可能会出现图2-3c 、d 的情况。这三种系统分析曲线解释如下:

(1)第一种情况。图2-3b 中解节点流入与流出曲线相交,其交点即为油井系统的产量q 及其井底流压p wf ,此交点产量q 为目前平均地层压力r p 和给定分离器压力p sep 条件下的油井的自喷产量(无地面油嘴)。

(2)第二种情况。图2-3c 中两条曲线不相交。这说明在给定油井条件下,油层的供液能力小于油井的排液能力,油井不能协调自喷生产,需要补充人工能量进行机械采油。欲使油井以产量q 生产,节点流入与流出曲线之间的压差△p 即为机械采油系统需要补充的人工能量。

(3)第三种情况。图2-3d 中两条曲线在较低产量和较高产量处存在两个交点,两个交点之间的节点流出曲线低于流入曲线。经理论分析和实践证明,较低产量的交点是不稳定流动;而较高产量的交点是稳定流动的,即为协调点。

在其它解节点位置的分析也存在上述情况时与上述解释相同。

选井底为解节点,可预测油层压力降低后的产量及其井底流压,如图2-4所示。当油层压力降至图示3r p 时,系统分析曲线无交点(流入、流出部分无协调点),说明油层供液能力小于举升油管排液能力,则油井停喷。

图2-4 预测未来产量 图2-5流动效率对产量的影响

选井底为解节点也可应用于研究油层污染及增产措施后,改变了油井流动效率所引起的井底流压及其产量的变化,如图2-5所示。

2. 平均地层压力为解节点

设定一组产液量,并以给定的分离器压力为起点,逆流体流动方向计算出相应的平均地层压力,即

解节点流出压力 油层油管地面管线p p p p p sep r ?+?+?+=

解节点流入压力 r p =常数

如图2-6所示,不同给定r p 的水平线与油井特性曲线的交点表示r p 对油井产量的影响。应当指出,随平均地层压力r p 降低,油层渗流特性会发生变化,故应采用未来IPR 预测方法。

图2-6 r p 变化对产量的影响 3.井口为解节点(无油嘴)

以井口为解节点也是常用的分析方法之一。井口解节点将油井系统隔离成两部分,即从分离器开始至井口部分与油层到井底再经举升油管到井口部分。其计算步骤与井底节点相似,以设定的一组产液量,分别按所选用的方法计算,求出两部分相应产液量在解节点(井口)处的压力。

解节点流入压力

油管油层p p p p r wh ?-?-=

解节点流出压力 地面管线p p p sep wh ?+=

图2-7 井口为解节点 图2-8 不同直径油管和出油管线的影响 然后将这两组数据即井口解节点的流入和流出曲线绘制在同一坐标图上,便可求出相应的井口油压和产量,如图2-7所示。图中的井口解节点的流入曲线表示油井不同产量下的井口油压的大小。需要说明油压并不总是随产量的增加而降低,而是在q c 时存在峰值。这种现象符合前面所述气液两相管流规律。因产量较低时管内流速低,滑脱损失严重;产量较高时,摩阻损失较大。这两种情况均会使油管举升的能量损失增大。而只有在某一产量范围内,滑脱与摩阻都不是很高时,达到较低的管流能量损耗。因此,油压随着产量的增加也有高有低。

应用井口解节点可以分析不同直径的油管和地面管线,对油井生产动态的影响(图2-8)。

需要强调选择油管直径的重要性。油管直径将直接影响套管直径及其配套井下工具的确定。若选用过小的油管会限制油井产量;而选用过大的油管会增大滑脱损失。因此,在高产

油区的套管程序应在合理的油管直径的基础上进行优化设计。

4.井口为解节点(井口安装油嘴)

在上述简单油井系统中考虑在井口安装油嘴以控制油井产量。油层、举升油管、油嘴和地面管线四个流动过程的关系曲线如图2-9所示。仍先设定一组产液量,从油层和分离器开始分别计算出井口(即油嘴)处相应的油压和回压,与上述无油嘴情况不同的是,将满足回压低于油压一半(油嘴临界压力比近似取0.5)的点绘制p wh ~q 的曲线B ,此曲线上的任一点均满足油嘴达到临界流动条件。油压曲线B 与给定嘴径d 的油嘴特征曲线G 的交点C 即为该油嘴下的产量及其油压p wh 。

图2-9中r p -wf p 表示油层渗流压降,wf p -wh p

表示井筒油管的举升压降。

图2-10中绘制了油嘴直径d 分别为4,6,8,10,15mm 的油嘴曲线,分别与管流曲线B 相交,其交点所对应的产量分别是q 6,q 8,q 10,q 15。可根据配产确定与之对应的油嘴直径。

图2-9自喷井四个流动过程的协调关系 图2-10不同油嘴直径的油井产量 5. 以射孔段为函数节点

以上讨论的是普通节点分析方法,即在解节点处不存在压力的变化。而射孔完井段相当于节流装置,它的两端存在与产量相关的压差,故称为函数节点。射孔段的压差与射孔方式(正压或负压)和射孔参数(孔密、穿深和孔径等)有关,可由近似公式(1-32)计算。

以射孔段为解节点的计算路径与上述井底节点类似,即将油井系统隔离为两部分:节点

流入部分是从r p 计算油层到岩面流压wfs p (考虑理想完善井S=0);而另一部分从分离器压

力p sep 计算到油管吸入口p wf 。上述两条曲线之间的压差反映了相应产量下油井系统在射孔段处所要求的油井系统压降Δp 系统,如图2-11所示。由射孔段压降公式(1-32)计算出给定射孔条件下(不同射孔密度N 1-N 4)的压降动态曲线Δp 射孔,如图2-12所示。再由Δp 系统与Δp 射孔两条压差曲线的交点确定系统的产量。此方法可用于优选射孔方式及参数。

图2-11 射孔段上下游压力与产量的关系 图2-12 不同射孔方式及孔密对产量的影响

同理,地面和井下油嘴、井下安全阀一类节流装置均可函数节点通过绘制相应油井系统在函数节点处的系统压降曲线(Δp系统~q)之后,再计算出相应的节流压降动态曲线求解油井产量。

第二节气举采油

气举采油是指人为地从地面将高压气体注入停喷(间喷或自喷能力差)的油井中,以降低举升管中的流压梯度(气液混合物密度),利用气体的能量举升液体的一类人工举升方法。

气举的工作介质可以为天然气、氮气等高压气体,其井下设备简单。因此它具有较强的适应性,适用于高气液比的直井、斜井、丛式井、水平井以及小井眼井的采油和气井排液采气,也可用于油井诱喷或压裂酸化增产措施井和修井排液作业。气举的举升深度和排量变化灵活,井口和井下设备比较简单,管理方便。在高气液比、含砂及含腐蚀性介质的油井条件下,较其它人工举升方式更具优势。但气举采油要求稳定充足的气源,采用压缩机增压其地面设备一次性投资大。油田气举采油系统如图2-13所示。

图2-13 气举系统示意图

一、气举采油原理、方式及管柱

1.气举采油原理

气举采油是基于“U”型管原理(图2-14),通过地面向油套环空(反举)或油管(正举)注入高压气体,使之与地层流体混合,降低液柱密度和对井底的回压(井底流压),从而提高油井产量。

气举采油设计方法

一、气举采油的概念 气举采油就是依靠地面注入井内的高压气体与油层产出流体在井筒中混合,利用气体的膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面的一种采油方式。 二、气举采油的方式 气举采油主要分为连续气举、间歇气举、腔式气举与柱塞气举四类。 (1)连续气举方式 连续气举就是连续不断往井下注气,使油井持续稳定生产。连续气举适应产能较高的油井,产量可以适应16m3/d~11924m3/d。连续气举生产管柱可以分为开式管柱、半开式管柱与闭式管柱,如图1所示。对于开式管柱而言,可以环空注气,油管采油。也可以就是油管注气,环空采油。 图1 气举管柱的类型 (2)间歇气举方式 间歇气举就是间断地把气体注入油井中,通过气举阀进入油管,把气举阀上面的液柱段举升到地面。间歇气举可以就是半开式或闭式,一般采用闭式作为间歇气举。间歇气举由于具有单流阀可以达到很低的井底流压,一般适应于低压低产井,产量从0、16m3/d ~80 m3/d。 (3)腔式气举方式 腔式气举就是一种特殊的间歇气举,主要应用于低产能井。腔式气举的生产管柱下面有一个集液腔包,以便有足够的液柱,如图2所示。它的排液与举升与间歇气举相似。不同的就是当气举工作阀打开时,气体把腔包的液体往下推,由于下面有单流阀,迫使液体进入油管,气体把这段液柱举升到地面。这时地面控制阀(连续气举不存在)关闭,工作阀也关闭。环空(腔包)通过泄压孔与油管压力平衡,防止气

锁,这样腔包压力下降,单流阀打开,地层液体进入腔包。该过程不断循环进行腔式间歇气举。 图2 腔式气举生产管柱图3 柱塞气举生产管柱 (4)柱塞气举方式 柱塞气举就就是在举升的气体与液柱之间增加一个固体柱塞,防止液柱滑脱,以提高举升的效率。此外,柱塞气举还能起到油管清蜡的作用。柱塞气举把气体注入环空中,通过气举阀注入在柱塞下面,把柱塞上面的液柱举到地面。当柱塞到达地面时,与防喷器顶针相撞时,柱塞中间的阀门打开,柱塞上下压力平衡,由于重力作用,柱塞落到油管下面。当柱塞落到下面与单流阀上面的弹簧相撞,柱塞中间的阀门关闭,把柱塞上面的液体隔住,重复这个过程,不断把液柱举到地面。柱塞气举生产管柱如图3所示。这种气举方式不适用于井斜角较大与出砂的井。 三、气举阀 (1)气举阀使用的必要性 气举过程(环空注气,油管采油)中,当启动压缩机向环空中注入高压气体时,环空液面将被挤压下降,如不考虑液体被挤入地层,环空中液体将全部进入油管,油管内液面上升。随着压缩机压力的不断提高,环空内的液面最终将达到油管鞋处,井口注入压力达到的最高值称为启动压力。气举时压缩机压力随时间的变化曲线如图4所示。

第二章 自喷与气举采油分析

第二章自喷与气举采油 通过油井从油层中开采原油的方法按油层能量是否充足,可分为自喷和机械采油两大类。当油层能量充足时,完全依靠油层本身能量将原油举升到地面的方法称为自喷(natural flowing);当油层能量不足时,人为地利用机械设备给井内液体补充能量的方法将原油举升到地面,称为机械采油方法也称人工举升(artifical lift)方法。 人工举升方法按其人工补充能量的方式分为气举和深井泵抽油(泵举)两大类。气举采油是人为地将高压气体从地面注入到油井中,依靠气体的能量将井中原油举升到地面的一类人工举升方法。气举采油与自喷采油具有基本相同的流动规律,即气液两相上升流动。本章重点阐述自喷井的协调原理和节点分析方法,以及气举采油原理和设计方法。 第一节自喷井节点系统分析 节点系统分析(nodal systems analysis)方法简称节点分析。最初用于分析和优化电路和供水管网系统,1954年Gilbert提出把该方法用于油气井生产系统,后来Brown等人对此进行了系统的研究。20世纪80年代以来,随着计算机技术的发展,该方法在油气井生产系统设计及生产动态预测中得到了广泛应用。 节点分析的对象是油藏至地面分离器的整个油气井生产系统,其基本思想是在某部位设置节点,将油气井系统隔离为相对独立的子系统,以压力和流量的变化关系为主要线索,把由节点隔离的各流动过程的数学模型有序地联系起来,以确定系统的流量。 节点分析的实质是计算机程序化的单井动态模型。借助于它可以帮助人们理解油气井生产系统中各个可控制参数与环境因素对整个生产系统产量的影响和变化关系,从而寻求优化油气井生产系统特性的途径。 本节以自喷井为例,讲述节点分析的基本概念、方法及其应用。 一、基本概念和分析步骤 1.油井生产系统 油井生产系统是指从油层到地面油气分离器这一整个水力学系统。由于各油田的地层特性、完井方式、举升工艺及地面集输工艺的差异较大,使得油井生产系统因井而异,互不相同。图2-1给出了一个较完整的自喷井生产系统及各流动过程的压力损失。对系统各组成部分的压力损失是节点分析的一个核心内容。 2.节点 在油井生产系统中,节点(node)是一个位置的概念。对于图2-1所示的自喷井系统,至少可以确定图示中的8个节点,对其它举升方式还会有不同的节点位置。节点可分为普通节点和函数节点两类。 1) 普通节点 一般指两段不同流动过程的衔接点,如图2-1所示的井口3,井底6以及系统的起、止点(地层边界8、分离器1)均属普通节点。在这类节点处不产生与流量有关的压降。 2)函数节点 具有限流作用的装置也可作为节点,如图2-1所示,地面油嘴2、井下安全阀4、井下油嘴5和完井段7。由于这类装置在局部会产生一定压降,其压降的大小为流量的函数?,故称为函数节点(function node)。函数节点所产生的压降可用适当的公式计算。p= )q(f 3)解节点 应用节点分析方法时,通常要选定一个节点,将整个系统划分为流入节点和流出节点两个部分进行求解。所选用的这个使问题获得解决的节点称为求解节点(solution node),简称解节点或求解点。

气举采油原理及油井举升系统设计方法

第二节气举采油原理及油井举升系统设计方法 一、教学目的 了解气举采油的基本原理、熟悉气举阀的工作原理以及气举的启动过程,掌握气举设计中注气量和注气点的确定方法。二、教学重点、难点 教学重点: 1、气举采油基本原理及气举的启动过程; 2、气举设计方法 教学难点: 1、气举启动过程; 2、气举设计中注气点和注气量的确定; 3、作图法确定气举阀的分布。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的图形和动画。 四、教学内容 本节主要介绍五个方面的问题: 1.气举采油原理. 2.气举启动. 3.气举阀. 4.气举设计. 5.气举井试井. (一)气举采油原理

当地层供给的能量不足以把原油从井底举升到地面时,油井就停止自喷。为了使油井继续出油,人为地把气体(天然气或空气)压入井底,使原油喷出地面,这种采油方法称为气举采油法。 1、发展阶段: Brown将气举的发展归纳为下列各个阶段: (1)1864年以前:在实验室进行一或两项实际应用可能性试验。 (2)1864-1900年:用压缩空气举升井内流体,压缩空气注入环空或油管。 (3)1900-1920年:海湾沿岸出现“租用”热。例如美国的斯宾德脱普油田当时曾采用空气气举采油。 (4)1920-1929年:利用天然气进行垂直气举。例如美国俄克拉荷马州的塞米诺尔油田。 (5)1929-1945年:游动凡尔出现很大进展,生产率和配产效率的提高促进了游动凡尔的发展。 (6)1946-1967年:压力操纵凡尔的发展使其实际取代了所有其它类型的气举凡尔。 2、气举采油的优点和局限性 ①优点 a、气举井井下设备的一次性投资低,维修工作量小。 b、能延长油田开采期限,增加油井产量。 c、大多数气举装置不受开采流体中腐蚀性物质和高温的影响。 d、井下无摩擦件,均适宜于含砂、含蜡和高含水的井。

气举采油方法概述.

气举采油方法概述 学号:0803030103 姓名:徐贵萍 摘要;为了我们以后在学习采油工程的时候,对他有进一步的认识,特别是我们现在所学的气举采油方法的介绍。虽然上次已经做过类似的作业,但是经过了一个月的学习,我相信了解的知识会更全面一些,再加上我这次的工作也做了许多。最后得出,即使是气举采油,也有许多的不同! 关键词;气举采油;举升方法;气举阀;柱塞气举;腔室气举 前言;气举采油法时人工举升方法里面最常用的一类举升方法,随着油田的不断开发,地层能量逐渐消耗,油井最终会停止自喷。由于地层的地质特点,有的油井一开始就不能自喷,而这些井只能用气举法和抽油法。对于气举法,我国主要研究的是柱塞气举法,柱塞气举是通过在油管柱内上下循环运动的柱塞把地层产液举出地面的人工举升方法。 一气举采油的特点 气举采油是人工举升法的一种,它是通过向油套环空(或油管)注入高压气体,用以降低井筒液体的密度,在井底流动压力的作用下,将液体排出井口。同时,注入气在井筒上升过程中,体积逐渐增大,气体的膨胀功对液体也产生携带作用。因此,气举采油是油井停喷后用人工方法使其恢复自喷的一种机械采油方式,亦可作为油井自喷生产的能量补充。 气举采油具有以下特点: (1)举升度高,举升深度可达3600m 以上。 (2)产液量适应范围广,可适应不同产液量的油井。 (3)适用于斜井、定向井。 (4)特别适用于高气油比井。 (5)适应于液体中有腐蚀介质的井和出砂井。 (6)操作管理简单,改变工作制度灵活。 (7)一次性投资高,主要是建压缩机站费用,但由于气举井的维护费用少,其综合生产成本相对其他机械采油方式较低。 (8)必须有充足的气源,主要是天然气,注氮气成本高。 (9)适用于一个油田或一个区块集中生产,不适宜分散开采。 (10)安全性较其他采油方式差。 气举采油虽然具有上述特点,但由于我国油田缺乏充足的气源,加上建设费用高,因此,没有得到大面积推广,目前仅在中原、吐哈、塔里木等高气池比、油藏深的油田上使用。 二气举采油原理 气举法是指地层尚有一定能量,能够把油气驱动到井底,但地层供给的能量不足以把原油从井底举升到地面上时,需要人为地把气体注入井底,将原油举升出地面的人工举升采油方式。它的举升原理和自喷井相似,是通过向油套环空注入高压气体,并通过油管上的多组气举阀在不同压力、不同井段时让一部分气体迸入油管,用以降低井筒中液体的密度,在井底流动压力的作用下,将液体排出井口。同时,注入的高压气体在井筒上升的过程中,体积逐渐增大,气体的膨胀功对液体也产生携带作用。气举适用于油井供液能力较强、地层渗透率高的油井。海上采油、深井、斜井、含砂井、含气井和含有腐蚀性成分而不宜用其他人工举升采油方式开采的油井,都可采用气举采油。 三气举采油必备条件

自喷与气举采油

第二章自喷与气举采油 一、名词解释: 1、自喷:油层能量充足时,利用油层本身的能量就能将油举升到地面的方式称为自喷。 2、嘴流:对自喷井,原油流到井口后还有通过油嘴的流动。 3、采油方法:将流到井底的原油采到地面上所采用的方法,其中包括自喷采油法和人工举升两大类。 4、自喷采油法:利用油层自身的能量使油喷到地面的方法。 5、分层开采:在多油层条件下,为充分发挥各油层的生产能力,调整层间矛盾,而对各小层分别控制开采。可分为单管分采与多管分采两种井下管柱结构。 6、节点系统分析:简称节点分析。是指通过生产系统中各影响因素对节点处流入流出动态的敏感性分析,进行综合评价,实现目标产量并优化生产系统。 7、普通节点:节点本身不产生于流量相关的压力损失。 8、函数节点:压力不连续的节点称为函数节点,流体通过该节点时,会产生与流量相关的压力损失。 9、临界流动:流体的流速达到压力波在流体介质中的传播速度即声波速度时的流动状态。 10、气举采油:依靠从地面注入井内的高压气体,使井筒内气液混合物密度降低,而将原油举升到地面的方法。 11、气举阀打开压力:对于套压控制阀,指在实际工作条件下,打开阀所需的注气压力; 12、试验架打开压力:确定了气举阀的打开压力和关闭压力,就须在室内调试装置上把气举阀调节在某一打开压力,此压力相当于井下该气举阀所需的打开压力。 13、气举阀关闭压力:使气举阀关闭的就地(气举阀深度处)油压或套压。 14、转移压力:允许从较低的气举阀注气的压力,以实现从上一级阀转移到当前阀。 15、过阀压差:气体经过阀孔节流会产生压力损失,阀上、下游压差称为过阀压差。 16、老化处理:将阀置于老化器中,密闭加压,模拟井下承压加至2.987MPa,保持15min。 17、恒温处理:氮气压力受温度的影响很敏感,故调试过程中,需恒温以提高调试精度。 一、叙述题 1、人工举升或机械采油的方法是什么? 答案要点:当油层能量低不能自喷生产时,则需要利用一定的机械设备给井底的油流补充能量,从而将油采到地面。 2、采油树的主要作用是什么? 答案要点:井内全部油管柱重量;密封油、套管之间的环形空间;控制和调节油井的生产;录取油、套压力资料,测试,清蜡等日常管理;保证各项作业施工的顺利进行。 3、自喷井管理的基本内容是什么 答案要点:○1管好生产压差;○2取全取准资料;○3保证油井正常生产。 4、续气举设计所需基本参数有哪些? 答案要点:地层参数(包括地层压力、油藏温度、油井流入动态);井筒及生产条件(包括井深、油套管尺寸、地面管线尺寸、井口压力、分离器压力、注气设备能力、含水、生产气油比);PVT性质(包括油气水的高压物性参数) 5、注水开发过程中合理的工作制度是什么? 答案要点:○1保证较高的采油速度;○2保证注采平衡;○3保证注采指数稳定;○4证无水采油期长;○5应能充分利用地层能量,又不破坏地层结构;○6流饱压差合理 6、自喷井分层开采的原因是什么? 答案要点:多油层只用一个油嘴难以控制各小层,难使各小层均合理生产。因此在多油

气举采油原理及装置

气举采油原理及装置 一气举采油的特点及工作方式 (一)气举采油的特点 气举采油是人工举升法的一种,它是通过向油套环空(或油管)注入高压气体,用以降低井筒液体的密度,在井底流动压力的作用下,将液体排出井口。同时,注入气在井筒上升过程中,体积逐渐增大,气体的膨胀功对液体也产生携带作用。因此,气举采油是油井停喷后用人工方法使其恢复自喷的一种机械采油方式,亦可作为油井自喷生产的能量补充。 气举采油具有以下特点: (1)举升度高,举升深度可达3600m 以上。 (2)产液量适应范围广,可适应不同产液量的油井。 (3)适用于斜井、定向井。 (4)特别适用于高气油比井。 (5)适应于液体中有腐蚀介质的井和出砂井。 (6)操作管理简单,改变工作制度灵活。 (7)一次性投资高,主要是建压缩机站费用,但由于气举井的维护费用少,其综合生产成本相对其他机械采油方式较低。 (8)必须有充足的气源,主要是天然气,注氮气成本高。 (9)适用于一个油田或一个区块集中生产,不适宜分散开采。

(10)安全性较其他采油方式差。 气举采油虽然具有上述特点,但由于我国油田缺乏充足的气源,加上建设费用高,因此,没有得到大面积推广,目前仅在中原、吐哈、塔里木等高气池比、油藏深 的油田上使用。 (二)气举采油方式 气举采油主要有连续气举和间歇气举两种方式,其中间歇气举又包括常规式 间 歇气举、柱塞气举、腔室气举等。 1.连续气举 连续气举是气举采油最常用的方式,连续气举的举升原理和自喷井相似,它是通过油套环空(或油管)将高压气注入到井筒,并通过油管上的气举阀进入油管(或油套环空),用以降低液柱作用在井底的压力,当油管流动压力低于井底流动压力时,液体就被举升到井口。连续气举适用于油井供液能力强、地层渗 透率较高的油井。 2.间歇气举 间歇气举是通过在地面周期性地向井筒内注入高压气体,注入气通过大孔径气举阀迅速进入油管,在油管内形成气塞将液体推到地面。间歇气举主要应用于井底压力低、产液指数低,或产液指数高、井底压力低的井,对于这类油井,采

相关文档
最新文档