1-二硫化钼纳米结构

1-二硫化钼纳米结构
1-二硫化钼纳米结构

1-二硫化钼纳米结构

石墨烯-二硫化钼二维复合材料在光电子

器件上的应用研究进展

1.石墨烯介绍

石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。

石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。

2.二硫化钼的认识

过渡金属层状二元化合物(MX2)因具有良好的光、电、润、滑、催化等性能一直备受关注,二硫化钼便是其中的典型代表之一[1]。二硫化钼是具有银灰色光泽的黑色粉末,与石墨烯相似,属于六方晶系,不溶于水、稀酸和浓硫酸,但溶于热硫酸,在其他酸、碱、溶剂、石油、合成润滑剂中不溶解[2]。MoS2的晶体结构有三种:1T 形、2H 形、3R 形,1T-MoS2和 3R-MoS2属于亚稳态,常

态下存在的是 2H-MoS

2,天然的 2H-MoS

2

晶体是典型的层状结构[1]。

二硫化钼三种晶体结构二硫化钼屮单层二硫化钼由三层原子层构成,上下两层均为硫原子层,中间一层为钼原子层,钼原子层被两层硫原子层所夹形成类“三明治”结构。这种结构使得层内存在较强的共价键,层间则存在较弱的范德力。S原子暴露在MoS2晶体表面,对金属表面产生较强的吸附作用。多层二硫化钼由若干单层二硫化钼组成,层间距大约为0.65 nm。

二硫化钼的晶体结构(a)侧视图(b)和俯视图(c)

2.1 二硫化钼的性质

二硫化钼是一种典型的二维层状材料,层状二硫化钼是辉钼矿的主要成分,

是一种灰黑色的固体粉末,无特殊气味,呈金属光泽莫氏硬度为1.0-1.5,熔点为1185 ℃,1600 ℃开始分解,产物为硫和金属钼。常温下二硫化钼性质较为稳定,不溶于水、酸、碱和有机溶剂,具有良好的化学和热稳定性,因此,常被用来做为固体润滑剂。

纳米的MoS2性能优良,与普通MoS2相比,纳米MoS2在性能和应用上更胜一筹,克服了普通粒度与比表面积的限制。随着粒径的变小,比表面积增大,吸附力增强,反应活性提高,随之使其在润滑添加剂、催化、光电、各种复合材料等方面的性能有很大的提高。

a) 各向异性:由于二硫化钼。有类似于石墨的层状结构,所以展现出来高度各项异性。其作为半导体材料时,垂直于片层方向比平行片层方向的电阻率高1000 倍。当在它层间插入有机化合物时,它的各向异性表现的更为明显。

b) 光电性能:二硫化钼特殊的三明治夹层结构和能带结构,决定了其特殊的光电性质,如光吸收、荧光发射、高的电子迁移率等。二硫化钼存在 1.29~1.90 eV 的能带隙,克服了石墨烯零带隙的缺陷,因而在光电器件领域有更广阔的应用前景。Du等人用重堆积法成功制备的MoS2材料,将其用作锂离子电池正极材料,研究了其电化学性能,结果显示二硫化钼材料具有较大的比容量及良好的循环性能,且其容量高达800mAhg-1,这表明二硫化钼是一种很好的锂离子电池正极材料,能在实际中得到广泛应用。单层纳米二硫化钼表现出良好的发光性,被广泛用于光电子器件。

类石墨烯二硫化钼在热、电、光、力学等方面的性质及其在光电子器件领域的潜在应用引起了科研人员的广泛关注。然而,一般的化学、物理法难以制备出具有层状结构的类石墨烯二硫化钼,高质量材料的可控制备是影响和制约类石墨烯二硫化钼长远发展的关键所在。目前可以采用的方法主要有:微机械力剥离法、锂离子插层法、液相超声法等“自上而下”的剥离法(如图2所示),以及高温热分解、气相沉积、水热法等“自下而上”的合成法。在“自上而下”的制备方法中,微机械力剥离法以其操作相对简便且剥离程度高是目前应用最为成熟的方法,它能到单层二硫化钼且剥离产物具有较高的载流子迁移率,一般多用于制作场效应晶体管;缺点是制备规模小和可重复性较差。锂离子插层法是目前剥离效率最高的方法,它适用范围广,多用于二次电池和发光二极管;缺点是耗时、制备条件严格,且去除锂离子极易导致类石墨烯二硫化钼的聚集。液相超声法则是最新发展出来的方法,它以操作简单、制备条件相对宽松而正被广泛应用于光电子器件;然而它的剥离程度和剥离效率均低于前两种方法,且产物中单层二硫化钼的含量较低。“自下而上”的合成法,可能是由于二硫化钼材料结构的高热和化学稳定性,其研究还处在初级阶段,尚存在制备成本高、工艺控制复杂等问题,而且通过合成法获得类石墨烯二硫化钼的纯度和光、电性质等仍逊色于剥离法。但是“自下而上”合成法具有方法、手段、底物等各方面的可控性及多样性,很具发展潜力,通过不断创新和优化制备条件,有望实现大面积、高质量类石

4.类石墨烯二硫化钼的表征和光物理性质

4.1 结构表征

结构表征类石墨烯二硫化钼特殊的二维层状结构是其特殊性能的根本原因,因此其研究的首要问题是找到能够准确、高效地表征二维层状结构的方法,这不仅可以判断类石墨烯二硫化钼的制备成功与否,而且有助于更好地探索类石墨烯二硫化钼的性质与材料结构的关系,促进其实际应用。

二维层状结构最直观的表征方法是各类显微手段,包括原子力显微镜(AFM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等.AFM是鉴别类石墨烯二硫化钼层数最直接的方法,它通过扫描测量样品表面得到的高度差即可判断剥离的程度(见图3a,74若扫描得到的高度差为1.0nm左右,即可判断是单层二硫化钼)。通过SEM和TEM测量边缘褶皱也能粗略判断类石墨烯二硫化钼的剥离程度(见图3(b,c),65,67单层褶皱表明剥离得到的是单层二硫化钼).此外,广泛用于石墨烯结构表征的拉曼(Raman)光谱法也是表征类石墨烯二硫化钼的有力工具,拉曼光谱法不仅表征快速、准确,而且不会破坏样品的晶体结构,通过直接测量面内振动模式E12g和面外振动模式A1g 的拉曼位移便可判断类石墨烯二硫化钼的剥离程度和效果:75例如单层二硫化钼的E12g和A1g间的位移差为16-18cm-1 ;双层二硫化钼的E12g和A1g间的位移差为21cm-1 ;三层二硫化钼的E12g和A1g 间的位移差为23cm-1 (如图3d所示)。

4.2光物理性质

类石墨烯二硫化钼具有特殊的“三明治”夹心二维层状结构和特殊的能带结构,因此拥有特殊的光物理性质,如光吸收、荧光(PL)发射等.研究这些特殊的光物理性质,对于制作基于类石墨烯二硫化钼的光电器件非常重要。

4.2.1光吸收

二硫化钼的光吸收性质与其自身的厚度密切相关:块状二硫化钼是间接带隙半导体,没有特征吸收峰;而类石墨烯二硫化钼是直接带隙半导体,其特征吸收峰在紫外吸收光谱上位于620和670nm附近,对应于能带图1b中A、B两种从导带到价带的竖直跃迁方式(见图4a)。

3.2.2 荧光

类石墨烯二硫化钼的荧光现象最早于2010年由Wang等76发现.当块状二硫化钼被剥离至薄层时,会出现荧光且荧光强度与二硫化钼的层数成反比。他们采用微机械力法剥离二硫化钼并选取532nm 波长的激光激发类石墨烯二硫化钼,结果成功采光现,如2011年Eda 等用锂离子插层法剥离二硫化钼,退火处理之后也成功采集到类似的荧光发射光。

5.类石墨烯二硫化钼在光电子器件上的应用

二硫化钼常温下为黑色固体粉末,有金属光泽,熔点1185°C,密度为4.8g·cm-3,莫氏硬度1.0-1.5,具有抗磁性和半导体性质。二硫化钼晶体属于六方晶系,晶体结构主要为八面体结构和三棱柱结构。二硫

化钼具有优异的润滑性能,常用于润滑机械轴承以减小摩擦和磨损,拥有“高级固体润滑油王”的美誉。78-80然而,当二硫化钼的厚度薄到一定程度形成类石墨烯二硫化钼时,却表现出独特的光电半导体性质,和石墨烯一样在光电器件领域有着广泛的应用前景。

5.1场效应晶体管

场效应晶体管(FET)是现代微电子技术中重要的一类器件,它主要靠改变电场来影响半导体材料的导电性能。类石墨烯二硫化钼是直接带隙半导体,22故可用来制作大开关电流比、高载流子迁移率和低耗能的FET.51,85 Kis等16先用微机械剥离法得到单层二硫化钼,随后转移单层二硫化钼到具有270nm厚SiO2的硅基片上,再利用电子束刻蚀法制作50nm厚的金电极,接着让器件于200°C下退火以减小电阻,最后用原子层积法(atomiclayerdeposition,ALD)制作30nm厚的二氧化铪(HfO2)作为栅极介电层(见图6),发现器件的阈值电压在-4V,开/关电流比达到108,电子迁移率达到217cm2·V-1 ·s-1. Iwasa等53先采用微机械力法剥离得到类石墨烯二硫化钼,之后转移二硫化钼到透明的氧化铝基底上,再利用电子束刻蚀法制作Ti/Au电极,并选用离子液体作为栅极从而最终形成电双层双极性场效应晶体管。与二氧化铪作为栅极介电层的晶体管显示n型半导体性质不同,电双层晶体管既显示p型又显示n型性质。这种晶体管的开/关电流比达到200,其中空穴载流子迁移率高达86cm2·V-1·s-1,是电子载流子迁移率的两倍.。Wang等86报道了以双层二硫化钼作为导电通道的场效应晶体管的制作过程。具体制作步骤如下:首先用微机械力剥离法得到双层

二硫化钼,随后转移双层二硫化钼至掺有285nmSiO2的硅基片上,再利用电子束刻蚀法制作Ti/Au电极并选取Al和Pd作为两个栅极从而最终整合成含正(增加模式)、负(衰减模式)阈值电压的晶体管。结果,器件的开/关电流比达到107,开态电流密度达到23μA·μm-1.最近,Im等87报道了掺杂聚(偏二氟乙烯-三氟乙烯)(P(VDF-TrFE))的类石墨烯二硫化钼(1-3层)作为场效应晶体管的导电通道,阴极Al作为场效应晶体管的栅极,结果器件的开/关电流比达到105,电子迁移率达到220cm2·V-1 ·s-1。

5.2传感器

类石墨烯二硫化钼由于其独特的电子性质、较大的比表面积和二维层状结构等原因有利于气体分子的吸附,从而在气体传感器方面拥有应用前景。传统的金属氧化物传感器不仅对氧化、还原性气体敏感,而且工作温度高(350°C以上).88Colbow等89通过从单层二硫化钼悬浊液中沉积二硫化钼到铝基底而成功制作出高敏感的氢气传感器.Zhang等55利用微机械力剥离法成功制备出1-4层的类石墨烯二硫化钼并分别制作场效应晶体管器件来检测一氧化氮(NO)气体的浓度。检测浓度范围为0.3×10-6-2×10-6(体积分数),检测效果稳定性好、灵敏度高(如图7所示);并且发现2层的二硫化钼效果最好。最近,Zhang等90又用锂离子插层法制备出的类石墨烯二硫化钼作为活性通道、还原氧化石墨烯(rGO)作为源、漏极,制成柔性薄膜晶体管阵列来检测毒性气体NO2的浓度:该器件结构简单、柔性可旋涂,而且可重复性好、气体敏感度高;晶体管的气体敏感度随二硫化钼厚度的

增加而降低,这是因为二硫化钼薄膜厚度的增加会降低二硫化钼通道的比表面积,从而最终降低气体的敏感性。他们发现二硫化钼薄膜的最优厚度是4nm,NO2的浓度检测范围为0.5×10-6-5×10-6(体积分数)。

类石墨烯二硫化钼除可用作气体传感器之外,还能用作光传感器.Salardenne等91曾用Ni基底得到类石墨烯二硫化钼薄膜,经沉积、退火后发现具有良好的光敏感性。Zhang等92用单层二硫化钼制作光晶体管并用于光检测,发现器件中光电流的产生只取决于入射光的强度且光电流的产生和湮灭在50ms内便可完成转换过程,且光检测的波长范围可通过使用不同厚度的类石墨烯二硫化钼来调控。93Im 等94分别用单层和双层二硫化钼制作成光晶体管来作光检测器,发现单层和双层二硫化钼光晶体管能有效检测绿光,而三层二硫化钼制作的光晶体管则适合检测红光.Kim等95通过制作类石墨烯二硫化钼的薄膜晶体管的光检测器,发现多层二硫化钼因相对更窄的能隙(1.3eV)和更宽的光谱反应范围而比单层二硫化钼的光检测性能更佳,其光谱探测范围横跨紫外区-近红外区。

5.3有机发光二极管、存储器等方面

有机发光二极管(OLED)具有自发光、广视角、低耗能、全彩色等优点,在平板显示、固态照明等领域具有广阔的应用前景。96和被广泛应用于OLED空穴注入材料的三氧化钼一样,类石墨烯二硫化钼也可以作为OLED的空穴注入层和主体材料.Friend等60,62,100报道了将类石墨烯二硫化钼用作OLED阳极的空穴注入层(见图8(a,b)),

在结构为ITO/MoS2/MoO3/PFO/Ca/Al(PFO:polyfluorene)的器件中,经过二硫化钼修饰的阳极导致器件具有较好的性能:启亮电压为2.4V;3V时亮度达到1000cd·m-2.Frey等63报道了类石墨烯二硫化钼用作OLED中的主体材料:在蓝光磷光器件ITO/HIL/(MoS2/PFO)/Ca/Ag中,PFO作为客体材料,类石墨烯二硫化钼则作为器件的主体材料,100°C退火后器件能在空气中稳定7h。

类石墨烯二硫化钼还因独特的能带结构和量子限域效应而成为一种适用于存储器件的电荷俘获材料.Zhang等101通过将二硫化钼粉末置于聚乙烯基吡咯烷酮(PVP)和乙醇的混合溶液中超声,结果得到MoS2-PVP的纳米复合物并成功制作闪存型(flash)存储器件,其中开/关电流比达到100(见图8(c,d))。

6总结

类石墨烯二硫化钼因其独特的微观结构和理、化性质,在克服零带隙石墨烯的缺点同时依然具有石墨烯的很多优点,从而在二次电池、场效应晶体管、传感器、电致发光、电存储等众多领域拥有广阔的应用前景。但是具有二维层状纳米结构类石墨烯二硫化钼的研究还有很多理论和应用的基本科学问题需要解决:首先就其制备方法来看,不论常用的微机械力剥离法、离子插层、液相超声法等为主的“自上而下”的剥离法,还是以高温热分解等为代表的“自下而上”的合成法都有待完善,如何改进类石墨烯二硫化钼的制备方法以期实现制备工艺简单、制备效率高、可重复性好及批量化生产仍然是当前的研究重点;就结构表征和光物理性质研究方面来看,找到一种快速、准确且

不破坏样品结构的表征手段具有重要意义,有关类石墨烯二硫化钼吸收、荧光发射等现象的深层原因仍有待进一步探究和完善;就在光电子器件方面的应用来看,类石墨烯二硫化钼不仅可应用于二次电池、场效应晶体管、传感器等领域,而且在有机发光二极管、电存储等领域前景光明,然而相应的器件结构和性能仍有待优化和提高。由于目前基于硅半导体微纳电子器件的制作已接近理论极限,而类石墨烯二硫化钼却由于自身优势极有可能在未来取代硅半导体材料,因此这一领域的研究方兴未艾。

1 二硫化钼纳米结构

石墨烯-二硫化钼二维复合材料在光电子 器件上的应用研究进展 1.石墨烯介绍 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 2.二硫化钼的认识 过渡金属层状二元化合物(MX2)因具有良好的光、电、润、滑、催化等性

晶体缺陷习题与答案

晶体缺陷习题与答案 1 解释以下基本概念 肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。 2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。 3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。(1)分析该位错环各段位错的结构类型。(2)求各段位错线所受的力的大小及方向。(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 4 面心立方晶体中,在(111)面上的单位位错]101[2a b =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈ (G 切变 模量,γ层错能)。 5 已知单位位错]011[2a 能与肖克莱不全位错]112[6 a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错? 6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。 (1)]001[]111[]111[2 2a a a →+ (2)]211[]112[]110[662a a a +→ (3)]111[]111[]112[263a a a →+ 7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移

纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展 摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。对未来纳米MoS2在润滑材料中的应用与研究进行了展望。关键词:纳米MoS2;润滑材料;摩擦 The research progress of molybdenum disulfide nanoparticles(MoS2) in lubrication materials Abstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed. Key words: nano-MoS2; lubrication materials; friction 0 引言 二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。故MoS2粘结固体润滑膜是真空机械润滑的首选润滑材料[1]。从MoS2基固体润滑涂层的发展来看,自1946年美国的NASA路易斯宇航中心开发出第一种含MoS2的有机粘结固体润滑膜以后,20世纪60年代初期,美国就制定了航空飞行器使用的热固化二硫化钼基固体润滑涂层军用标准[2]。我国研制的耐辐射性较好的PI、PPS、EM-1、EMR[3]等二硫化钼基固体润滑涂层,因其性能独特,在航空航天领域的极端工况下及某些民用机械设备上获得了成功的应用[4,5]。近年来研究发现,纳米MoS2比微米MoS2具有更优异的润滑性能[6]。研究纳米MoS2润滑材料对航空及工业生产等具有重要的实际意义。 1 MoS2的润滑性状 如图1[7],MoS2具有层状结构,其晶体为六方晶系。MoS2的润滑作用取决于其晶体结构,层与层间的S原子结合力(范德华力)较弱,故易于滑动而表现出很好的减摩作用。另一方面,Mo原子与S原子间的离子键赋于MoS2润滑膜较

二晶体结构缺陷

1、说明下列符号的含义: V Na,V Na’,V Cl?,.(V Na’V Cl?),CaK?,CaCa,Cai?? 2、写出下列缺陷反应式: (1)NaCl溶入CaCl2中形成空位型固溶体; (2)CaCl2溶人NaC1中形成空位型固溶体; (3)NaCl形成肖脱基缺陷; (4)AgI形成弗仑克尔缺陷(Ag+进入间隙)。 3、MgO的密度是3.58克/厘米3,其晶格参数是0.42nm,计算单位晶胞MgO的肖脱基缺陷数。 4、(a)MgO晶体中,肖脱基缺陷的生成能为6eV,计算在25℃和1600℃时热缺陷的浓度。 (b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。 5、MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体在1000K和1500K的缺陷浓度。 6、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。 7、非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周围氧气的分压,非化学计量化合物Fe1-X O及Zn1+X O的密度将发生怎么样的变化?增大还是减小?为什么? 8、对于刃位错和螺位错,区别其位错线方向、柏氏矢量和位错运动方向的特点。 9、图2.1是晶体二维图形,内含有一个正刃位错和一个负刃位错。 (a)围绕两个位错柏格斯回路,最后得柏格斯矢量若干? (b)围绕每个位错分别作柏氏回路,其结果又怎样? 10、有两个相同符号的刃位错,在同一滑移面上相遇,它们将是排斥还是吸引? 11、晶界对位错的运动将发生怎么样的影响?能预计吗? 12、晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描述吗? 13、试述影响置换型固溶体的固溶度的条件。

第二章 晶体结构与晶体缺陷

2-1 (a )MgO 具有NaCl 结构。根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占有的空间分数(堆积系数)。 (b )计算MgO 的密度。 解:(a )MgO 具有NaCl 型结构,即属面心立方,每个晶胞中含有4个Mg 2+和4个O 2-,故Mg 所占有体积为: 2233MgO Mg O 334 4()34 4(0.0720.140) 3 0.0522nm V R R ππ+- ?+?+=== 因为Mg 2+和O 2-离子在面心立方的棱边上接触: 22Mg O 2()20.0720.1400.424nm a R R +-++==()=() 堆积系数=%=)(=5.68424.00522 .033 MgO a V (b ) 37233 )10424.0(1002.6) 0.163.24(4·0MgO -???+?= = a N M n D =3.51g/cm 3 2-2 Si 和Al 原子的相对质量非常接近(分别为28.09和26.98),但SiO 2和Al 2O 3的密度相差很大(分别为2.65g/cm 3和3.96g/cm 3)。试计算SiO 2和Al 2O 3的堆积密度,并用晶体结构及鲍林规则说明密度相差大的原因。 解: 首先计算SiO 2堆积系数。每cm 3中含SiO 2分子数为: 3223 22343223 2322223 2.65SiO /cm 2.6410/cm (28.0932.0)/(6.0310) Si /cm 2.6410/cm O /cm 2.64102 5.2810/cm +-?+?????= =个=个==个 每cm 3 中Si 4+ 和O 2- 所占体积为: 2-32273 Si432273 O 4 /cm 2.6410(0.02610)3 0.001954 /cm 5.2810(0.13810)3 0.5809V V ππ-+-????????==== Si 2O 3晶体中离子堆积系数=000195+0.5809=0.5829或58.29% Al 2O 3堆积系数计算如下:

1-二硫化钼纳米结构

1-二硫化钼纳米结构

石墨烯-二硫化钼二维复合材料在光电子 器件上的应用研究进展 1.石墨烯介绍 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 2.二硫化钼的认识

【CN110070920A】一种含单层二硫化钼结构的半导体器件仿真方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910308935.9 (22)申请日 2019.04.17 (71)申请人 南京邮电大学 地址 210000 江苏省南京市鼓楼区新模范 马路66号 (72)发明人 江斌 渠开放 吉娜 李桂华  王伟  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 柏尚春 (51)Int.Cl. G16C 10/00(2019.01) (54)发明名称一种含单层二硫化钼结构的半导体器件仿真方法(57)摘要本发明公开了一种含单层二硫化钼结构的半导体器件仿真方法,包括以下步骤:(1)从原子层面对单层二硫化钼进行二维材料结构建模;(2)计算单层二硫化钼材料的材料特性;(3)计算单层二硫化钼材料的哈密顿量导入紧束缚模型,得到带有紧束缚哈密顿参数的矩阵;(4)建立半导体器件模型,将含有紧束缚哈密顿参数的矩阵导入半导体器件模型来计算含单层二硫化钼结构的半导体器件的电学特性和输运特性。该仿真系统从二硫化钼的原子层面开始计算,将二维二硫化钼材料使用紧束缚哈密顿矩阵来表示,从而带入进行器件层面的计算,得到含有单层二硫化 钼结构的半导体器件的电学特性和输运特性。权利要求书2页 说明书5页 附图3页CN 110070920 A 2019.07.30 C N 110070920 A

1.一种含单层二硫化钼结构的半导体器件仿真方法,其特征在于,包括以下步骤: (1)从原子层面对单层二硫化钼进行二维材料结构建模; (2)计算单层二硫化钼材料的材料特性,所述材料特性包括材料的能带和态密度; (3)计算单层二硫化钼材料的紧束缚哈密顿量,根据二硫化钼材料中各原子轨道的能带贡献得到原子间的紧束缚参数,计算带有紧束缚哈密顿参数的矩阵; (4)建立半导体器件模型,将含有紧束缚哈密顿参数的矩阵导入该模型来计算含单层二硫化钼结构的半导体器件的电学特性和输运特性。 2.根据权利要求1所述的含单层二硫化钼结构的半导体器件仿真方法,其特征在于:步骤(1)中所述的单层二硫化钼结构模型,具体包括三个原子平面,中间的Mo原子平面将两个六角边平面的S原子隔开,相邻层与层之间依靠微弱的范德华力结合。 3.根据权利要求1所述的含单层二硫化钼结构的半导体器件仿真方法,其特征在于:步骤(2)包括以下过程: (1)构建二硫化钼原胞; (2)对原胞进行弛豫求解使得结构优化至原子最低能量体系; (3)原子最低能量体系进行自洽迭代求解薛定谔方程; (4)在自洽求解基础上固定K点,利用非自洽算法对价电子波函数进行调制,通过调制后的波函数对应的能量得到能带结构和态密度。 4.根据权利要求1所述的含单层二硫化钼结构的半导体器件仿真方法,其特征在于:步骤(3)包括以下过程: (1)将单层二硫化钼材料的紧束缚哈密顿量表示为: 其中[H 0]表示单位原胞的哈密顿量,[H m ]表示单元格与其第m个相邻单元格之间的相互作用所产生的哈密顿量,表示从一个单元格指向其第m个相邻单元格的向量, n表示单层二硫化钼材料的轨道数,表示波矢; (2)将二硫化钼材料单位原胞的紧束缚哈密顿矩阵表示为:其中,和h Mo/Mo 分别表示S原子和S原子、Mo原子和Mo原子之间的相互作用所对应的哈密顿量,而h S/Mo 或者h Mo/S 表示S原子和Mo原子之间的相互作用所对应的哈密顿量; (3)将单层二硫化钼材料的各原子轨道的能带贡献代入紧束缚哈密顿矩阵计算得到对应原子与原子之间的紧束缚参数,设置二硫化钼材料的高对称点附近有较大的权重,则含 有紧束缚哈密顿[H]参数的矩阵S(p)为: 权 利 要 求 书1/2页2CN 110070920 A

第一章 晶体结构与晶体中的缺陷

第一章晶体结构与晶体中的缺陷 一、名词解释 1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷; 3.刃位错与螺位错;4.固溶体;5.非化学计量化合物: 二、填空与选择 2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。 3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。 4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一) 5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。这种以Al3+取代Si4+的现象,称为。( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代)) 6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构) 7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英) 8.晶体结构中的热缺陷有和二类。 9.CaO掺杂到ZrO2中,其中置换了。由于电中性的要求,在上述置换同时产生一个空位。以上置换过程可用方程式表示。10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。 11.晶体线缺陷中,位错线与和垂直的是位错;位错线与二者平行的是位错。

晶体结构和晶体缺陷

第一部分晶体结构和晶体缺陷 1.原子的负电性的定义和物理意义是什么? 2.共价键的定义和特点是什么? 3.金刚石结构为什么要提出杂化轨道的概念? 4.V、VI、VII族元素仅靠共价键能否形成三维晶体? 5.晶体结构,空间点阵,基元,B格子、单式格子和复式格子之间的关系和区别。 6.W-S元胞的主要优点,缺点各是什么? 7.配位数的定义是什么? 8.晶体中有哪几种密堆积,密堆积的配位数是多少? 9.晶向指数,晶面指数是如何定义的? 10.点对称操作的基本操作是哪几个? 11.群的定义是什么?讨论晶体结构时引入群的目的是什么? 12.晶体结构、B格子、所属群之间的关系如何? 13.七种晶系和十四种B格子是根据什么划分的? 14.肖特基缺陷、费仑克尔缺陷、点缺陷、色心、F心是如何定义的? 15.棱(刃)位错和螺位错分别与位错线的关系如何? 16.位错线的定义和特征如何? 17.影响晶体中杂质替位几率的主要因素有哪些? 18.晶体中原子空位扩散系数D与哪些因素有关? 19.解理面是面指数低的晶面还是面指数高的晶面?为什么? 20.为什么要提出布拉菲格子的概念? 21.对六角晶系的晶面指数和晶向指数使用四指标表示有什么利弊? 第二部分倒格子 1.倒格子基矢是如何定义的? 2. 正、倒格子之间有哪些关系? 3.原子散射因子是如何表示的,它的物理意义如何? 4. 几何结构因子是如何表示的,它的物理意义如何? 5. 几何结构因子S h与哪些元素有关? 6.衍射极大的必要条件如何? 7.什么叫消光条件? 8.反射球是在哪个空间画的,反射球能起到什么作用,如何画反射球? 9.常用的X光衍射方法有哪几种,各有什么基本特点? 10.为什么要使用“倒空间”的概念?

晶体结构及缺陷

晶体结构与晶体中的缺陷 17、Li 2O 的结构是O2-作面心立方堆积,Li +占据所有四面体空隙位置,氧离子半径为0.132nm 。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li +半径比较,说明此时O 2-能否互相接触。 (2)根据离子半径数据求晶胞参数。 (3)求Li 2O 的密度。 解:(1)如图2-2是一个四面体空隙,O 为四面体中心位置。 -++=r r AO ,-=r BC 2, -=r CE 3, 3/323/2-==r CE CG 3/62-=r AG , OGC ?∽EFC ?,CF EF CG OG //=,6/6/-=?=r CG CF EF OG 2/6-=-=r OG AG AO ,301.0)12/6(=-=-=--+r r AO r 查表知Li r + +=0.68>0.301,∴O 2-不能互相接触; (2)体对角线=a 3=4(r ++r -),a=4.665;(3)ρ=m/V=1.963g/cm 3 图2-2 四面体空隙 28、下列硅酸盐矿物各属何种结构类型: Mg 2[SiO 4],K[AISi 3O 8],CaMg[Si 2O 6], Mg 3[Si 4O 10](OH)2,Ca 2Al[AlSiO 7]。 解:岛状;架状;单链;层状(复网);组群(双四面体)。 23、石棉矿如透闪石Ca 2Mg 5[Si 4O 11](OH)2具有纤维状结晶习性,而滑石Mg 2[Si 4O 10](OH)2却具有片状结晶习性,试解释之。 解:透闪石双链结构,链内的Si-O 键要比链5的Ca-O 、Mg-O 键强很多,所以很容易沿链间结合力较弱处劈裂成为纤维状;滑石复网层结构,复网层由两个 [SiO4]层和中间的水镁石层结构构成,复网层与复网层之间靠教弱的分之间作用力联系,因分子间力弱,所以易沿分子间力联系处解理成片状。 24、石墨、滑石和高岭石具有层状结构,说明它们结构的区别及由此引起的性质上的差异。

第三章 晶体结构缺陷

第三章晶体结构缺陷 【例3-1】写出MgO形成肖特基缺陷的反应方程式。 【解】MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为: 该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为: 【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。 【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为: 【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。 【例3-3】写出NaF加入YF3中的缺陷反应方程式。 【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F -离子位于基质晶体中F-离子的位置上。按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。反应方程式为: 可以验证该方程式符合上述3个原则。 再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:

此方程亦满足上述3个原则。当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。 【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。 【解】以正离子为基准,缺陷反应方程式为: 以负离子为基准,则缺陷反应方程式为: 这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。 【提示】通过上述2个实例,可以得出2条基本规律: (1)低价正离子占据高价正离子位置时,该位置带有负电荷。为了保持电中性,会产生负离子空位或间隙正离子。 (2)高价正离子占据低价正离子位置时,该位置带有正电荷。为了保持电中性,会产生正离子空位或间隙负离子。 【例3-5】TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。 【解】非化学计量缺陷的形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质和压力下到达平衡。该过程的缺陷反应可用 或 方程式表示,晶体中的氧以电中性的氧分子的形式从TiO2中逸出,同时在晶体中产生带正电荷的氧空位和与其符号相反的带负电荷的来保持电中性,方程两边总有效电荷都等于零。可以看成是Ti4+被还原为Ti3+,三价Ti占据了四价Ti的位置,因而带一个单位有效负电荷。而二个Ti3+替代了二个Ti4+,

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

第二章 晶格振动和晶格缺陷

第二章 晶格振动和晶格缺陷 上一章里,把组成晶体的原子或离子看成是固定不动的,都处在其平衡位置上。实际晶体中的原子却是不停地在其平衡位置附近做热振动的,并且随着温度的升高,振动会不断加剧。这种热振动也称晶格振动,它会破坏晶格的周期性,在晶格中造成缺陷,从而对半导体的性质产生重要影响。实际三维晶体中原子的振动现象很复杂,我们只分析一维晶体(单原子和双原子链)的振动,然后将所得到的规律和结论推广到三维晶体中。 §2-1 一维均匀线的振动 为研究一维原子链的振动,首先复习一下一维均匀线中弹性波(纵波)的传播现象。设均匀线的质量密度为ρ,弹性模量为K ,又设线上每一点只能沿线本身的方向运动,如图2-1所示。 若在线段x ?上施加一作用力,它将引起x 点的纵向位移u (x )。此时在x 处的 相对伸长,即形变为x u x e ??=)(,在x x ?+处的形变则为x x u x e x x e ???+=?+22)()(。 因此在线元x ?上的作用力 []x x u K x e x x e K F x ???=-?+=?22)()( (2-1) 此作用力还可表示为线元质量x ?ρ乘上加速度22t u ??,即 22t u x F x ???=?ρ (2-2) 从而有 22t u ??=22 222x u x u K ??=??υρ (2-3) 式中,ρ υK = 是弹性波的传播速度(声波速度),与振动频率无关。(2-3)式 称线性振动方程,其解为具有如下形式的简谐波 [ ])(e x p ),(t qx i A t x u ω-= (2-4) 式中,A 为振幅,πνω2=为角频率,ν为振动频率,λ π 2=q 为波矢(波数 λ 1 π2?), λνυ=为波速,从而有 q υλπυπνω===/22 (2-5)

晶体结构缺陷习题答案

第二章晶体结构缺陷 1.(错)位错属于线缺陷,因为它的晶格畸变区是一条几何线。 2.(错)螺型位错的柏氏失量与其位错线垂直,刃型位错的柏氏失量与其位错线是平行。 3. (错)肖特基缺陷是由于外来原子进入晶体而产生的缺陷。 4.(错)弗伦克尔缺陷是由于外来原子进入晶体而产生的缺陷。 二选择题 1.非化学剂量化合物Zn1+x O中存在 A 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 2. 非化学计量化合物UO2+x中存在 C 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 3.非化学剂量化合物TiO2-x中存在 D 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 4.螺型位错的位错线是 A 。 A. 曲线 B. 直线 C. 折线 D. 环形线 5.非化学剂量化合物ZnO1-x中存在 D 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 6. 非化学计量化合物UO2+x中存在 C 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 三、名词解释 1. 弗仑克尔缺陷 原子离开其平衡位置二进入附近的间隙位置,在原来位置上留下空位所形成的缺陷,特点是填隙原子与空位总是成对出现。 2.固溶体: 物种数:凡在固体条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一、均匀的晶态固体称为固溶体。

四、解答题 1.完成下列缺陷方程式,并且写出相应的化学式 (1)NaCl 溶入CaCl 2中形成空位型固溶体; (2)CaCl 2溶人NaC1中形成空位型固溶体; 解:(1)NaCl Na Ca ’+ Cl Cl + V Cl · Ca 1-x Na x Cl 2-x (2)CaCl 2 Ca Na · + 2Cl Cl + V Na ’ Na 1-2x Ca X Cl 2完成下列缺陷方程式,并且写出相应的化学式(6分) (1)M gCl 2固溶在LiCl 晶体中形成填隙型 Li 1-x Mg x Cl 1+x (2) SrO 固溶在Li 2O 晶体中形成空位型 Li 2-2x Sr x O 3.写出下列缺陷反应式 ①.NaCl 形成肖脱基缺陷。 ②.AgI 形成弗伦克尔缺陷(Ag +进入间隙)。 ③KCl 溶入CaCl 2中形成空位型固溶体。 解:1、O→VNa ′+VCl˙ 2、Ag Ag+Vi →A g i ˙+V Ag′ ③ KCl K Ca ’+ Cl Cl + V Cl · Ca 1-x K x Cl 2-x 4 对于MgO 、Al 2O 3和Cr 2O 3,其正、负离子半径比分别为,和。Al 2O 3和Cr 2O 3形成连续固溶体。(4分) (a )这个结果可能吗为什么 (b )试预计,在MgO -Cr 2O 3系统中的固溶度是有限还是很大的为什么 答(a )可能,Al 2O 3和Cr 2O 3的正离子半径之比小于15%。晶体结构又相同。 所以可能 O Li Li O Li O V Sr S SrO +'+??→??. 2)(Cl i Li LiCl Cl Cl Mg S MgCl ++?? →??')(.2

晶体结构缺陷

56 第二章 晶体结构缺陷 我们在讨论晶体结构时,是将晶体看成无限大,并且构成晶体的每个粒子(原子、分子或离子)都是在自己应有的位置上,这样的理想结构中,每个结点上都有相应的粒子,没有空着的结点,也没有多余的粒子,非常规则地呈周期性排列。实际晶体是这样的吗?测试表明,与理想晶体相比,实际晶体中会有正常位置空着或空隙位置填进一个额外质点,或杂质进入晶体结构中等等不正常情况,热力学计算表明,这些结构中对理想晶体偏离的晶体才是稳定的,而理想晶体实际上是不存在的。结构上对理想晶体的偏移被称为晶体缺陷。 实际晶体或多或少地存在着缺陷,这些缺陷的存在自然会对晶体的性质产生或大或小的影响。晶体缺陷不仅会影响晶体的物理和化学性质,而且还会影响发生在晶体中的过程,如扩散、烧结、化学反应性等。因而掌握晶体缺陷的知识是掌握材料科学的基础。 晶体的结构缺陷主要类型如表2—1所示。这些缺陷类型,在无机非金属材料中最基本和最重要的是点缺陷,也是本章的重点。 表2—1 晶体结构缺陷的主要类型 2.1 点缺陷 研究晶体的缺陷,就是要讨论缺陷的产生、 缺陷类型、浓度大小及对各种性质的影响。60 年代,F .A .Kroger 和H .J .Vink 建立了比较 完整的缺陷研究理论——缺陷化学理论,主要 用于研究晶体内的点缺陷。点缺陷是一种热力 学可逆缺陷,即它在晶体中的浓度是热力学参 数(温度、压力等)的函数,因此可以用化学 热力学的方法来研究晶体中点缺陷的平衡问 题,这就是缺陷化学的理论基础。点缺陷理论 的适用范围有一定限度,当缺陷浓度超过某一 临界值(大约在0.1原子%左右)时,由于缺陷的 相互作用,会导致广泛缺陷(缺陷簇等)的生 成,甚至会形成超结构和分离的中间相。但大多数情况下,对许多无机晶体,即使在高温 下点缺陷的浓度也不会超过上述极限。 缺陷化学的基本假设:将晶体看作稀溶液,将缺陷看成溶质,用热力学的方法研究各种缺陷在一定条件下的平衡。也就是将缺陷看作是一种化学物质,它们可以参与化学反应——准化学反应,一定条件下,这种反应达到平衡状态。 2.1.1 点缺陷的类型 点缺陷主要是原子缺陷和电子缺陷,其中原子缺陷可以分为三种类型: (1)空位:在有序的理想晶体中应该被原子占据的格点,现在却空着。 (2)填隙原子:在理想晶体中原子不应占有的那些位置叫做填隙(或间隙)位置,处于填隙(或间隙)位置上的原子就叫填隙(或间隙)原子。 (3)取代原子:一种晶体格点上占据的是另一种原子。如AB 化合物晶体中,A 原子占据了B 格点的位置,或B 原子占据了A 格点位置(也称错位原子);或外来原子(杂质原子)占据在A

相关文档
最新文档