扫描电镜SEM简介-文字版

扫描电镜SEM简介-文字版
扫描电镜SEM简介-文字版

扫描电镜SEM制样步骤

扫描电镜S E M制样步 骤 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

扫描电镜观察制样步骤 固定: 1、用灭菌镊子挑出少量的的样品(碳粒/碳毡),放入 5ml 的离心管中, 2、加入2.5%戊二醛, 加量为淹没碳粒/碳毡样品为宜,室温固定1小时 3、置于 4℃冰箱中固定12小时。 冲洗: 用 0.2mol pH 7.4的磷酸缓冲溶液冲洗 3 次,每次 10 分钟。每次冲洗时先用注射器缓慢吸走上一步骤的冲洗液。Or 离心 脱水: 分别用浓度为30%, 50%,75%,90%, 95%, 100% v/v 的乙醇进行脱水,每次10分钟, 干燥: 将样品放在离心管里,置入干燥器中干燥 12 小时。粘样:用双面胶将样品观察面向上粘贴在扫描电镜铜板上 预处理好的样品放入干净离心管中待检。 SEM上机测样--测定条件参数设置 分子克隆实验指南第三版,1568页: 25度下0.1mol/L磷酸钾缓冲液的配制; 先配0.1mol/L K2HPO4,0.1mol/L KH2PO4 配PH7.4,100ml磷酸钾缓冲液需: 0.1mol/L K2HPO4,80.2ml 0.1mol/L KH2PO4,19.8ml 混合即是,不用酸碱调PH。 参考文献: DOI:?10.1021/es902165y Microbial fuel cell?based on Klebsiella pneumoniae biofilm Selecting?anode-respiring bacteria based on?anode?potential: phylogenetic, electrochemical, and?microscopic?characterization A severe reduction in the cytochrome C content of?Geobacter sulfurreducens?eliminates its capacity for extracellular electron transfer 2

TEM和SEM的异同比较分析以及环境扫描电镜场知识交流

TEM和SEM的异同比较分析以及环境扫描电镜,场发射电镜与传统电镜相比较的技术特点和应用 xrd是x射线衍射,可以分析物相,SEM是扫描电镜,主要是观察显微组织,TEM是透射电镜,主要观察超限微结构。AES 是指能谱,主要分析浓度分布。STM扫描隧道显微镜,也是观察超微结构的。AFM是原子力显微镜,主要是观察表面形貌用的。 TEM: 透射电子显微镜(英语:Transmission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2μm、光学显微镜下无法看清的结构,又称“亚显微结构”。TEM是德国科学家Ruskahe和Knoll在前人Garbor和Busch的基础上于1932年发明的。 编辑本段成像原理透射电子显微镜的成像原理可分为三种情况:

吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理TEM透射电镜 。衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。相位像:当样品薄至100A以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。 编辑本段组件电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。聚光镜:将电子束聚集,可用于控制照明强度和孔径角。样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热 、冷却等设备。物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。 编辑本段应用透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。 电子束和固体样品表面作用时的物理现象 一、背射电子 背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。 弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图 背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。 二、二次电子 二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。

扫描电镜SEM

扫描电镜SEM

————————————————————————————————作者:————————————————————————————————日期:

扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X 射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上 扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。

电子束和固体样品表面作用时的物理现象 一、背射电子 背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。 弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图

SEM扫描电子显微镜知识要点

扫描电子显微镜知识A—Z / SEM的构造 扫描电子显微镜(Scanning Electron Microscope:SEM)是观察样品表面的装 置。用很细的电子束(称为电子探针)照射样品时,从样品表面会激发二次电子,在电子探针进行二维扫描时,通过检测二次电子形成一幅图像,就能够观察样品的表面形貌。 SEM的构造 装置的结构 SEM由形成电子探针的电子光学系 统、装载样品用的样品台、检测二次电 子的二次电子检测器、观察图像的显示 系统及进行各种操作的操作系统等构 成(图1),电子光学系统由用于形成电 子探针的电子枪、聚光镜、物镜和控制 电子探针进行扫描的扫描线圈等构成, 电子光学系统(镜筒内部)以及样品周 围的空间为真空状态。 图1 SEM的基本结构

图2 电子枪的构造图 电子枪 电子枪是电子束的产生系统,图2是热发射电子枪的构造图。将细(0.1 mm左右)钨丝做成的灯丝(阴极)进行高温加热(2800K左右)后,会发射热电子,此时给相向设置的金属板(阳极)加以正高圧(1~30kV),热电子会汇集成电 子束流向阳极,若在阳极中央开一个孔,电子束会通过这个孔流出,在阴极和阳极之间,设置电极并加以负电圧,能够调整电子束的电流量,在这个电极(被称 为韦氏极)的作用下,电子束被细聚焦,最细之处被称为交叉点(Crossover),成为实际的光源(电子源),其直径为15~20μm。 以上说明的是最常用的热发射电子枪,此外还有场发射电子枪和肖特基发射电子枪等。热发射电子枪的阴极除使用钨丝外,还使用单晶六硼化镧(LaB6),LaB6由于活性很强,所以需要在高真空中工作。

透镜的构造 电子显微镜一般采用利用磁铁作用的磁透镜。当 绕成线圈状的电线被通入直流电后,会产生旋转 对称的磁场,对电子束来说起着透镜的作用。由 于制作强磁透镜(短焦距的透镜)需要增加磁力 线的密度,如图3所示,线圈的周围套有铁壳(轭 铁),磁力线从狭窄的开口中漏洩出来,开口处被 称作磁极片(极靴),经精度极高的机械加工而成。 磁透镜的强度能随通入线圈的电流改变而改变, 这是光学透镜所不具备的特长。 图3 磁透镜的构造 SEM的景深 在观察有纵深感的样品时,如果近处聚焦了,远处就离焦。在这种情况下,远、 近图像模糊圈大,叫做景深大,如果远、近图像模糊圈小,叫做景深小。图8 如所示,电子探针的平行度高(孔径角小),即使焦点变化很大,图像也保持聚 焦,如果电子探针有一定的角度(孔径角大),焦点即使变化很小,图像离焦也 很严重。象光学显微镜不使用电子探针时,从样品方向看到的物镜角度(孔径角) 小景深则大,角度大景深则小。另一方面,即便是图像模糊,在倍率低的时候 感觉不到,但在倍率增大的时候能够发现,也就是说,景深也随放大倍率的变 化而改变。 图9 SEM和光学显微镜的景深图8 电子探针孔径角和景深

扫描电镜SEM制样步骤

扫描电镜观察制样步骤 固定: 1、用灭菌镊子挑出少量的的样品(碳粒/碳毡),放入5ml 的离心管中, 2、加入2.5%戊二醛, 加量为淹没碳粒/碳毡样品为宜,室温固定1小时 3、置于4℃冰箱中固定12小时。 冲洗: 用0.2mol pH 7.4的磷酸缓冲溶液冲洗3 次,每次10 分钟。每次冲洗时先用注射器缓慢吸走上一步骤的冲洗液。Or 离心 脱水: 分别用浓度为30%,50%,75%,90%, 95%, 100% v/v 的乙醇进行脱水,每次10分钟, 干燥: 将样品放在离心管里,置入干燥器中干燥12 小时。粘样:用双面胶将样品观察面向上粘贴在扫描电镜铜板上 预处理好的样品放入干净离心管中待检。 SEM上机测样--测定条件参数设置 分子克隆实验指南第三版,1568页: 25度下0.1mol/L磷酸钾缓冲液的配制; 先配0.1mol/L K2HPO4,0.1mol/L KH2PO4 配PH7.4,100ml磷酸钾缓冲液需: 0.1mol/L K2HPO4,80.2ml 0.1mol/L KH2PO4,19.8ml 混合即是,不用酸碱调PH。 参考文献: DOI: 10.1021/es902165y Microbial fuel cell based on Klebsiella pneumoniae biofilm Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer

扫描电镜SEM

扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)就是介于透射电镜与光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点就是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察与微区成分分析,因此它就是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就就是利用聚焦得非常细的高能电子束在试样 上扫描,激发出各种物理信息。通过对这些信息的接受、放大与显示成像,获得对就是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。

电子束与固体样品表面作用时的物理现象 一、背射电子 背射电子就是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子与非弹性背反射电子。 弹性背反射电子就是指倍样品中原子与反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子就是入射电子与核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上瞧,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图

背反射电子产额与二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。 二、二次电子 二次电子就是指背入射电子轰击出来的核外电子。由于原子核与外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。 二次电子来自表面5-10nm的区域,能量为0-50eV。它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。由于它发自试样表层,入射电子还没有被多次反射,因此产生二次电子的面积与入射电子的照射面积没有多大区别,所以二次电子的分辨率较高,一般可达到5-10nm。扫描电镜的分辨率一般就就是二次电子分辨率。 二次电子产额随原子序数的变化不大,它主要取决与表面形貌。 三、特征X射线

相关文档
最新文档