基于物联网的智能大棚灌溉系统的设计

基于物联网的智能大棚灌溉系统的设计
基于物联网的智能大棚灌溉系统的设计

基于物联网的智能大棚灌溉系统的设计

【摘要】本文对智能大棚的灌溉系统进行了研究,提出了基于物联网的智能大棚灌溉系统的自动控制,利用各种传感器采集信息传送到C8051F340从机,从机通过Can控制器和Can收发器,传到总线,总线再通过Can控制器和Can 收发器传到到主机,将数据信息通过以太网输送到上位机,采集的信息与数据库里的参数进行比较,实现上位机控制下位机,根据温度,湿度等配置控制配置营养液进行自动灌溉。

【关键词】C8051F340;can;物联网;cp2200

物联网就是“物物相连的互联网”,通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。我国是农业大国,人口众多,对粮食蔬菜等农作物需求巨大,随着农村大量劳动力流向城市,农村劳动力长远看会出现短缺,而我国农业灌溉中大多还是采用传统的灌溉方式,不仅耗人力而且水资源也是浪费,传统的灌溉还有不及时,效率低,灌溉量不精确等问题。本文提出了智能大棚灌溉系统的设计,研究了通过传感器检测来判定是否灌溉,灌溉是否完成,充分考虑关照,温湿度等对需求量的影响,并考虑到不同季节不同作物需水量的不同,通过水位监测判定是否灌溉完成,通过vc界面选择不同季节,不同作物,通过传感器检测到的环境参数与上位机数据库中的标准参数比较,判定是否要进行灌溉,灌溉量是多少,由上位机传达命令到下位机控制执行机构工作,进行浇水灌溉,达到最佳的灌溉效果。

1.总体设计

1.1 总体框图

如图1所示,由C8051F340构成网络节点,传感器采集的信息输入到这些从机,从机通过can总线传递给主机C8051F340,主控机汇总消息,传输到网络然后传到上位机电脑,采集的数据信息与上位机中数据库内的标准参数比较,分析,优化,最后上位机发出控制命令控制下位机工作。

1.2 下位机框图

下位机(如图2)由C8051F340单片机和采集装置、执行机构组成。其中C8051F340单片机是核心,起控制作用;采集装置由一些传感器构成。灌溉时要考虑光照,空气温湿度故检测装置有光照传感器和温湿度传感器,灌溉是否完成需要水位监测;执行机构有通风装置,灌溉装置和加温装置,在灌溉时需要通风,而冬天东风温室大棚内温度会低,故要进行加热升温,当需要灌溉时,单片机从机接收指令,控制执行机构动作,实现灌溉。

2.硬件设计

C8051F340是美国Silabs公司生产的与标准8051兼容的高速单片机,它具有速度高,功耗低,有丰富的外围设备,片内还集成了数据采集和控制所常用的模拟部件、其他数字外设和功能部件,是完全集成的混合信号系统及芯片。

2.1 传感器与单片机的连接

如图3,温湿度传感器选用SHT11,这是瑞士Sensirion公司生产的具有二线串行接口的单片全校准数字式新型相对湿度和温度传感器,可用来测量相对湿度、温度等,分辨率高。光传感器选用TSC2561,它是TAOS公司推出的一种

智能化灌溉系统的设计与实现

智能化灌溉系统的设计与实现 O 引言 我国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能灌溉系统在这种背景下应运而生了。智能灌溉系统不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。基于传感器技术的智能灌溉系统是我国发展高效农业和精细农业的必由之路。智能灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 我国北方各省水资源缺乏,然而多年来使用传统方式为植株浇水不仅效率低、成本高而且浪费十分来重。对于大面积种植的棉田实现精准灌溉,不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低生产的成本。 由传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实际动态管理。采用传感器来监测土壤的墒情,实现灌溉管理的自动化。高效农业和精细农业要求我们必须提高水资源的利用率。要真正实现水资源的高效,仅凭单项节水灌溉技术是不可能解决的。必须将水源开发、输配水、灌水技术和降雨、蒸发、土壤墒情以及农作物需水规律等方面做统一考虑。做到降雨、灌溉水、土壤水和地下水联合调用,实现按期、按需、按量自动供水。如何利用有限的水资源,走“节水农业”已经成为农业生产获得最佳的效益和持续稳定发展的增长点。因此使用自来水发电的智能灌溉系统,控制喷灌和微灌系统,能有效地减少田间灌水过程中的渗漏和蒸发损失。现有的灌溉系统都要外接电源,存在一定的安全隐患且较麻烦。本系统可在无供电条件的地区使用,其最大优点为节水、节能、节约劳动力。 1 设计目标与实现方案描述 针对现有的智能化灌溉系统都需要外加电源供电,存在一定安全隐患,而且现有的自动灌溉装置的程序一般固化在系统的程序存储器内,只能简单地设置灌溉时间及循环时间,不能灵活根据季节不同自动调节等缺点,该系统将小型直流发电机接上风叶至于密封特制的盒子中,用水流带动风叶旋转来发电,再将电能储存到蓄电池中以给监控电路和电磁阀供电。该装置是以湿敏电阻和光敏电阻检测信号,自来水发电用作供电的一种无需外接电源的自动灌溉装置。该装置监控电路由信号采集部分,灌溉控制部分,电源部分,执行部分4部分组成。如图1所示。 1.1 信号采集部分 1.1.1 土壤湿度检测 采用硅湿敏电阻作为检测土壤湿度的传感器,它在25℃时响应时间小于5 s,检测土壤含水量范围为O~100%。 当湿敏传感器插入土壤时,由于土壤含水量不同,使得湿敏传感器的阻值也不同。通过湿敏电阻和IC1NE555判断湿度强弱,如果是土壤较干燥,湿敏电阻阻值较大,NE555翻转,输出高电平(约为电源电压)。 调整时,将湿敏电阻插入水内,调Rp1使NE555的3脚输出为12 V,然后将湿敏电阻从水中取出并擦干,调Rp1使输出0 V,这样反复调节多次即可达到要求。 1.1.2 日光强弱检测 通过光敏电阻和NE555判断光线是否强烈,如果是中午光线较强烈,IC2 NE555的3脚输

智能灌溉系统的研究与设计综述

毕业设计(论文)题目智能灌溉系统的研究与设计 教学点 专业 年级 姓名 指导教师 定稿日期:2011 年6月1 日

摘要 本系统系统通过选择合适的传感器将对土壤中含水量以及空气湿度等重要物理量进行采集,通过信号及采集部分将其转化为数字信号,交给单片机系统进行处理,通过智能控制部分,在需要时驱动相关外设,进行自动精确定位地灌溉。具体流程图如下: 工作过程流程图

关键字:智能控制精确定位密封湿度传感器差动放大顺序通电 液晶显示 机械设计部分 整体的机构形式如下所述: 水由出水口接入,经过水泵增压后,经过导水软管,最后从管的另一端喷射出来。机械臂主要由导水软管,套筒,舵机,步进电机和与电机配合的传动装置组成。套筒下端固结有加工上锥齿的圆环,电机通过锥齿轮传动,带动套筒转动。舵机固定在套筒上,当套筒旋转时,舵机也随套筒旋转。导水软管穿过套筒与固定在套筒上端的舵机相固结,当舵机臂摆动时导水软管喷头处完成竖直方向的调整,以使喷出的水能够调整远近。而套筒转动则实现了喷水方向的调整。这样,通过水平旋转及竖直摆动,实现了喷灌的精确定位。考虑到水对电机、齿轮传动部分的腐蚀影响,电机及其与套筒的传动部分通过密封箱密封,导线引出,连接到控制电路部分及电源部分,以实现对机械系统的电力输入及控制。机械臂通过套筒下端深埋入土壤进行固定。这种方案是我们经过多次调整最后确定出来的。下图为我们用机械仿真软件pro/engineer制作的图形(具体见附图)

我们的创新体现在我们的设计过程当中。在喷口的设计中,由于市场上所售的喷头多利用水压将水达到某个固定位置,因此不能实现喷灌位置的可调性要求。因此喷管管口需要重新设计。在喷头处,我们曾试验过多个方案。其中一个就是拟定用钢管作导水管,将水直接引到喷头,而喷头处设计成喷口可以转动的形式,通过增加一个电机并通过细杆与喷头处连实现竖直方向的转动,水平方向的转动还是靠另一个电动机带动套筒来实现(具体见附proe仿真图)。但是这种设计有两个问题我们没能解决。第一个问题就是密封的问题,喷口转动时对其密封要求较高,且此处水压较高,更增加密封难度。第二个问题就是底部的电机如何使上部的喷头进行竖直方向的摆动。此处传动距离较长,增加材料势必增加水平转动电机的负载,且此电机好密封,极易漏水烧毁电机。于是我们直接采用了接导水软管的方法。导水软管是用一种软橡皮材料做成的,我们在进行试验时,一端接从水泵流过的水,一端穿过套筒固定在舵机上,有较好的弹性,使灌溉机械臂在转动时,水管不会产生较大的阻力矩,也不会发生塑性变形影响使用。这种形式的优点是结构简单,使用方便,一根管足以解决喷头出的设计问题。缺点是电机带动套筒的转角不能持续朝一个方向转动,否则水管会打结使水流不通,且从水管浇灌到地面的水流呈柱状,对地面冲击较大。软管长期拉伸压缩会造成水管脱胶,碎裂等问题。 在实际设计计算中,需进行软管的拉压的疲劳强度的校核,及齿轮传动的校核计算。通过查机械设计的手册可以计算出所需的材料及其他要求。 在进行设计的过程中,我们查阅了上市的喷头的基本的工作原理,对其有了初步的了解。在进行结构设计得过程中,我们查阅了相关的机械原理、机械设计方面的书籍,增长了我们

三维可视化智能物联网管理平台设计

三维可视化智能物联网管理平台 技术方案 二〇一二年八月

目录 一、概述 (3) 1.1项目背景 (3) 1.2建设系统的意义 (4) 1.3设计依据和参考资料 (5) 二、系统特点 (5) 三、设计原则 (6) 3.1可靠性 (6) 3.2先进性与合理性 (6) 3.3开发性 (6) 3.4可扩展性 (6) 四、系统总体构架 (6) 4.1系统整体框图 (6) 4.2系统研究内容 (7) 五、系统组成 (8) 5.1软件组成 (8) 5.2 硬件组成 (9) 5.3 软件功能 (10) 5.4 开发环境 (14) 5.5 系统报价 (14)

一、概述 1.1项目背景 物联网是指通过信息传感设备,按照约定的协议,把需要联网的物品与网络连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪监控和管理的一种网络,它是在网络基础上的延伸和扩展应用。物联网是被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。有业内专家认为物联网一方面可以提高经济效益,大大节约成本,另一方面可以为全球经济的复苏提供技术动力。 目前,美国、加拿大、欧盟、日本、韩国等都在投入巨资深入研究探索物联网,并启动了以物联网为基础的“智慧地球”、“U-Japan”、“U-Korea”、“物联网行动计划”等国家性区域战略规划。 我国把发展物联网已经提到国家的战略高度,它不但是信息技术发展到一定阶段的升级需要,同时也是实现国家产业结构调整,推动产业转型升级的一次重要契机。2010年9月,《国务院关于加快培育和发展战略性新兴产业的决定》发布,新一代信息技术、节能环保、新能源等七个产业被列为中国的战略性新兴产业,将在今后加快推进,其中物联网技术作为新一代信息技术的重要组成部分,更是在近一年里受到政府、企业和科研机构的大力支持。 当前,世界各国的物联网基本都处于技术研究与试验阶段,物联网相关技术研究还处于起步发展阶段,在物联网基础研究和技术开发等方面还面临许多挑战。物联网涉及到的关键技术领域很多,包括RFID识别技术、泛在传感技术与纳米嵌入技术、IPV6地址技术以及等。从软件的角度来看,物联网软件技术研究方面也是处于起步阶段,尤其是基础软件的研究均处于探索阶段。 面对物联网所带来的大数据量、数据时效性高、安全与隐私性要求高等挑战,人们也在不断地探索亲的解决办法。在物联网系统中,由于传感器节点及采样数据的异构性,基础软件显得尤为重要。物联网基础软件不仅屏蔽了各类传感器硬件及数据的差异,实现了物联网节点及数据的统一处理,而且实现了海量物联网节点之间的协同工作,从而大大简化了物联网应用程序的开发。我们以动态位置感知类应用为例,相关的传感器可以包括GPS传感器、RFID传感器、手机定

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

智能农业灌溉系统方案设计

智能农业灌溉系统方案设计 托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。 智能农业灌溉系统 背景

灌溉造成水资源浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。 HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 智能农业灌溉系统整体方案图 结构 系统结构

智能节水灌溉系统的设计原理及使用方法

智能节水灌溉系统的设计原理及使用方法 智能节水灌溉系统也叫智能农业物联网精细农业自控系统,是托普云农物联网为保证农业作物需水量的前提下,实现节约用水而提出的一整套解决方案。智能节水灌溉系统简单的说就是农业灌溉不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;智能节水灌溉系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。 一、智能节水灌溉系统的功能设计 智能节水灌溉系统要实现上述功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能节水灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向

技术密集型转变奠定了重要的基础。 智能节水灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能节水灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能节水灌溉系统。 二、智能节水灌溉系统的设计背景 灌溉造成水资源大量浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能节水灌溉系统则可有效地控制水流量,达到节水目的。HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能节水灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 三、智能节水灌溉系统工作原理 灌溉系统工作时,湿度传感器采集土壤里的干湿度信号,检测到的湿度信号

基于物联网技术的智能化综合管理系统

基于物联网技术的智能化综合 管理系统 设计方案 蓝色慧通(北京)科技集团有限公司 2020年7月6日

目录 一、项目背景 (3) 1.1项目背景 (3) 1.2设计目标 (3) 1.3设计依据 (4) 1.4设计原则 (5) 二、项目介绍 (6) 2.1、项目概述 (6) 2.2、对于安防报警数据的管理管控 (6) 2.3、对于环境数据的管理管控 (8) 2.4、针对消防报警的管理管控 (9) 2.5、对于结构体的数据监测 (9) 三、系统介绍 (10) 3.1、系统概述 (10) 3.2系统功能介绍 (11) 3.3系统拓扑图 (13) 3.4主要设备介绍 (13) 3.41、智能化综合管理平台 (13) 3.42、视频管理功能 (19) 3.43、LRRS无线专网基站 (21) 3.44、LRRS无线智能监测终端 (22) 3.45、LRRS无线手持终端 (23) 3.46、LRRS无线应急按钮 (25) 3.47、LRRS门禁开启关闭状态监测终端 (26) 3.48、LRRS无线智能控制终端 (27) 3.49、防爆型激光对射周界报警设备 (28) 3.410、温湿度传感器 (29) 3.411、烟雾报警设备 (30) 3.412、漏电传感器 (31)

3.413、高精度倾角传感器 (32) 3.414、三合一消防栓管道压力监测终端 (33)

一、项目背景 1.1项目背景 随着5G时代的到来及窄带物联网技术的出现,对于传统的智能化行业带来巨大的冲击,随着技术的不断完善及下游生态产品的不断出现,不仅改善人们的生活,还能给行业带来巨大的变革与创新,推动了经济快速发展。据市场研究机构Gartner预测,到2020年全球物联网终端数量将达到260亿,销售收入将达到3000亿美元,带动经济总量将超过1.9万亿美元。在国内,物联网也成为“中国制造2025”战略规划的重要组成部分。 而对于智能化行业而言引入最新的物联网技术,提高生产及生活安全和效率尤为重要,目前传统的智能化系统一般存在以下两个问题,第一,建设时间较长,技术较为老旧,后续维保费用持续增加,第二,系统未采用最新的架构设计,每种系统均配有大量的控制主机及辅助软件,造成集成性差,通讯回路重复建设和运维费用高等问题,而且日趋严重,急需找到一种新的方式实现一体化集中管控,从而降低投入建设成本,缓解运维人员工作强度。 随着科技的不断发展,基于窄带物联网技术智能化系统逐步成为一种新的趋势,解决了老旧系统对信号线及电源线的过度依赖性,实现了远距离低功耗的探测目的,此次物联网智能化综合管理系统,紧密融合窄带物联网技术,结合智能化行业现状,从根本上解决老旧系统存在的一些问题,实现了传统系统的一体化整合,不仅一次性投资金额减少,后期的维护维保费用也得到了降低,使用过程中更加稳定可靠,故障排查更加简便易懂。 1.2设计目标 该系统设计要求充分利用的最新的物联网技术及无线窄带数据组网技术,采用一个平台,一套通信回路,多种前端数据监测设备的模式,将智能化领域中的安防报警、智慧消防、环境监测、智能巡检、建筑安全等(传感器)融合到一个平台进行集中管理管控,针对上述系统传统的厂家均是开通系统软件平台接

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

灌溉系统设计

灌溉系统设计 草坪喷灌系统简介 (Introduction of Turf Irrigation System) 灌溉是弥补自然降水在数量上的不足与时空上的不均、保证适时适量地满足草坪生长所需水分的重要措施。以往的草坪绿化工程,很多没有配套完整的灌溉系统,灌水时只能采用大水漫灌或人工洒水。不但造成水的浪费,而且往往由于不能及时灌水、过量灌水或灌水不足,难以控制灌水均匀度,对草坪的正常生长产生不良影响。随着城镇建设的不断发展,城市人口大量集中,工业和生活用水迅速增加,旅游、休闲、运动场及居民小区等各种绿地面积越来越大,城市供水的紧张状况日益突出。传统的地面大水漫灌已不能满足现代草坪灌溉的要求,采用高效的灌水方式势在必行。 喷灌,以其节水、节能、省工和灌水质量高等优点,越来越被人们所认识。近年来草坪喷灌发展很快,有逐步取代人工地面灌溉的趋势。 一、草坪喷灌的特点 喷灌系统的设计和管理必须适应草坪的特点,才能满足其需水要求,保证正常生长。 1.喷灌设备的安装不能影响草坪的维护作业。草坪需要经常性的修剪、植保、施肥等,这些作业往往由机械完成。因此,除应选择草坪专用埋藏式喷头外,同时需精心施工,使之避免与草坪上的机械作业发生矛盾。 2.设备选型和管网布置应适应草坪的种植方式。由于景观的需要,园林绿化中草坪的种植地块很多不是规则的形状,如高尔夫球场,且有时同一工程中的不同地块呈零星分布,增加了喷灌系统中设备选型和管网布置的难度。 3.灌水管理应与草坪病害防治结合起来。很多草坪病害,特别是真菌类病害与草坪叶面和土壤湿度关系密切。在灌水管理中,制定合理的灌溉制度,包括灌水周期、灌水时间、灌水延续时间等,对控制草坪病害十分重要。 4.喷灌系统在满足草坪需水要求的同时,需充分注意景观和环境效果。精心设计的喷灌系统,通过正确选择喷头和进行喷点的布置,不仅能满足草坪需水,而且在灌水时可以形成水动景观效果。 二、喷灌系统的组成 一个完整的喷灌系统一般由喷头、管网、首部和水源组成。 1.喷头:喷头用于将水分散成水滴,如同降雨一般比较均匀地喷洒在草坪种植区域。 2.管网:其作用是将压力水输送并分配到所需灌溉的草坪种植区域。由不同管径的管道组成,分干管、支管、毛管等,通过各种相应的管件、阀门等设备将各级管道连接成完整的管网系统。现代灌溉系统的管网多采用施工方便、水力学性能良好且不会锈蚀的塑料管道,如PVC管、PE管等。同时,应根据需要在管网中安装必要的安全装置,如进排气阀、限压阀、泄水阀等。

基于单片机的节水灌溉自动控制系统设计

本科生毕业设计 摘要 自动控制节水灌溉技术代表了农业现代化的发展状况,灌溉系统自动化水平比较低下是制约我国高效农业发展的主要原因。本文就此问题研究了基于单片机的节水灌溉自动控制系统,系统对土壤湿度进行监控,并按照农作物的要求进行适时适量的灌水,其核心部分是单片机控制部分,主要对灌溉控制技术以及系统的硬件设计,软件编程各个部分进行深入的研究。 控制部分以单片机为核心,研制了一种基于单片机的节水灌溉自动控制系统。介绍了系统总体结构、单片机系统主机电路、数据采集处理电路、I/O口的扩展电路。为了进行大规模灌溉工程的监控,采用分布式控制模式,以提高控制系统的可靠性、降低系统的成本。 该套基于单片机控制的节水灌溉自动控制系统造成本低,体积小、安装方便、抗干扰性强、运行可靠,相比其他控制方式来说,性价比高,更易形成产品,便于推广应用。这是我国灌溉自动控制技术的一种新尝试,为目前农业在较低生产力水平的状况下,向智能化、市场化方向发展开辟了一条新途径。 关键词: AT89C51单片机;湿度传感器;A/D转换;采样;芯片 1

本科生毕业设计 ABSTRACT The level of auto-control water-saving irrigation technology reflects the development condition of agriculture modernization.The low automatic level of irrigation system is the main reason that prevented our agriculture’s development.As to this condition,this paper mainly studies the water-saving irrigation system that controlled by MCU.This system can supervise humidity.it can irrigate to the demand of the farm crops with right amunt of water at well time.The control part that consists of MCU is its core.Research work had been carried on irrigation control technology,hardware and software program and so . The control that consists of MCU is its core.A set of automatic water-saving system which is controlled by sing-chip controller have been developed in this paper.The overall structure of system、the main circuit of the MCU system、data-collecting circuit、I/O expanding circuit are all the designed.For monitoring large-scale irrigation system,we use distributional control model to enhance stability of the system de reduce the cost. It is small,easy to fit,a strong capability to resist interfere and low-cost.So the control system is more economic compared to other control system such as thuter system and all these demonstrate this production is adept to be popularized.This work is a fresh attempt to bring our agriculture into an advanced stage,which now is relative to be backward greenhouse control technique,especially on the aspect of nutrient liquid supplying when crops cultivated on tissue. Key words: AT89C51 MCU; Humidity Sensor; A/D transform; Sampling; Chip 2

基于PLC控制技术的农业自动灌溉系统设计

基于PLC控制技术的农业自动灌溉系统设计摘要: 水是一切生命过程中不可替代的基本要素,水资源是国民经济和社会发展的重要基础资源。我国是世界上13个贫水国之一,人均水资源占有量2300立方米,只有世界人均水平的1/4,居世界第109位。而且时空分布很不均匀,南多北少,东多西少;夏秋多,冬春少;占国土面积50%以上的华北、西北、东北地区的水资源量仅占全国总量的20%左右。近年来,随着人口增加、经济发展和城市化水平的提高,水资源供需矛盾日益尖锐,农业干旱缺水和水资源短缺已成为我国经济和社会发展的重要制约因素,而且加剧了生态环境的恶化。按现状用水量统计,全国中等干旱年缺水358亿立方米,其中农业灌溉缺水300亿立方米。20世纪90年代以来,我国农业年均受旱面积达2000万公顷以上,全国660多个城市中有一半以上发生水危机,北方河流断流的问题日益突出,缺水已从北方蔓延到南方的许多地区。由于地表水资源不足导致地下水超采,全国区域性地下水降落漏斗面积已达8.2万平方公里。 发达国家的农业用水比重一般为总用水量的50%左右。目前,我国农业用水比重已从1980年的88%下降到目前的70%左右,今后还会继续下降,农业干旱缺水的局面不可逆转。北方地区水资源开发利用程度已经很高,开源的潜力不大。南方还有一些开发潜力,但主要集中在西南地区。 我国农业灌溉用水量大,灌溉效率低下和用水浪费的问题普遍存在。目前全国灌溉水利用率约为43%,单方水粮食生产率只有10公斤左右,大大低于发达国家灌溉水利用率70-80%、单方水粮食生产率2.0公斤以上的水平。通过采用现代节水灌溉技术改造传统灌溉农业,实现适时适量的“精细灌溉”,具有重要的现实意义和深远的历史意义。在灌溉系统合理地推广自动化控制,不仅可以提高资源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。 本次设计是采用PLC控制多路不同的土壤湿度,浇灌的开启和停止完全由土壤的湿度信号控制,能使土壤的湿度值保持在作物生长所需要的最佳范围之内。这样既有利于作物的生长,又能节约宝贵的水资源。 关键词:自动浇灌; PLC; 湿度传感器;农业自动灌溉系统

相关文档
最新文档