二极管及其应用电路--笔记整理

二极管及其应用电路--笔记整理
二极管及其应用电路--笔记整理

半导体二极管及其应用电路

1.半导体的特性

自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。

2.半导体的共价键结构

在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。

当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。

由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

3.杂质半导体

1) N型半导体(电子半导体):在纯净的半导体硅(或锗)中掺入微量五价元素(如磷)后,就可成为N型半导体。在这种半导体中,自由电子数远大于空穴数,导电以电子为主,故此类半导体亦称电子型半导体。

2) P型半导体(空穴半导体):在硅(或锗)的晶体内掺入少量三价元素杂质,如硼(或铟)等。硼原子只有3个价电子,它与周围硅原子组成共价键时,因缺少一个电子,在晶体中便产生一个空穴。这个空穴与本征激发产生的空穴都是载流子,具有导电性能。在P型半导体中,空穴数远远大于自由电子数,空穴为多数载流子(简称“多子”),自由电子为少数载流子(简称“少子”)。导电以空穴为主,故此类半导体又称为空穴型半导体。空穴得到电子带正电。

4. PN结及其单向导电特性

4.1. PN 结的形成

在一块完整的晶片上,通过一定的掺杂工艺,一边形成P型半导体,另一边形成N型半导体。在交界面两侧形成一个带异性电荷的离子层,称为空间电荷区,并产生内电场,其方向是从N区指向P区,内电场的建立阻碍了多数载流子的扩散运动,随着内电场的加强,多子的扩散运动逐步减弱,直至停止,使交界面形成一个稳定的特殊的薄层,即PN结。因为在空间电荷区内多数载流子已扩散到对方并复合掉了,或者说消耗尽了,因此空间电荷区又称为耗尽层。

4.2. PN结的单向导电特性

在PN结两端外加电压,称为给PN结以偏置电压。

4.2.1) PN结正向偏置:给PN结加正向偏置电压,即P区(空穴)接

电源正极,N区(电子)接电源负极,此时称PN结为正向偏置(简称正偏),由于外加电源产生的外电场的方向与PN结产生的内电场方向相反,削弱了内电场,使PN结变薄,有利于两区多数载流子向对方扩散,形成正向电流,此时PN结处于正向导通状态。

4.2.2) PN结反向偏置:给PN结加反向偏置电压,即N区接电源正极,P 区接电源负极,称PN结反向偏置(简称反偏), 由于外加电场与内电场的方向一致,因而加强了内电场,使PN结加宽,阻碍了多子的扩散运动。在外电场的作用下,只有少数载流子形成的很微弱的电流,称为反向电流。

综上所述,PN结具有单向导电性,即加正向电压时导通,加反向电压时截止。正偏时是多数载流子载流导电,反偏时是少数载流子载流导电。所以,正偏电流大,反偏电流小,PN结显示出单向电性。特别是要重点说明,反偏时少数载流子反向通过PN结是很容易的,甚至比正偏时多数载流子正向通过PN结还要容易。为什么呢?大家知道PN结内部存在有一个因多数载流子相互扩散而产生的内电场,而内电场的作用方向(N—P)总是阻碍多数载流子的正向通过,所以,多数载流子正向通过PN结时就需要克服内电场的作用,需要约0.7伏的外加电压,这是PN结正向导通的门电压。而反偏时,内电场在电源作用下会被加强也就是PN结加厚,少数载流子反向通过PN结时,内电场作用方向和少

数载流子通过PN结的方向一致,也就是说此时的内电场对于少数载流

子的反向通过不仅不会有阻碍作用,甚至还会有帮助作用。这就导致了以上我们所说的结论:反偏时少数载流子反向通过PN结是很容易的,

甚至比正偏时多数载流子正向通过PN结还要容易。这个结论可以很好

解释三极管在饱和状态下,集电极电位很低甚至会接近或稍低于基极电位,集电结处于零偏置,但仍然会有较大的集电结的反向电流Ic产生。

5. 半导体二极管的结构、符号及类型

5.1.结构符号:二极管的结构外形及在电路中的文字符号如图5.1

所示,在图5.1(b)所示电路符号中,箭头指向为正向导通电流方向。

5.2.类型

5.2.1)按材料分:有硅二极管,锗二极管和砷化镓二极管等。

5.2.2)按结构分:根据PN结面积大小,有点接触型(PN结面积小,

用于检波和变频等高频电路)、面接触型二极管(PN结面

积大,用于工频大电流整流电路)、平面型二极管(用于集

成电路制造工艺中,PN结面积可大可小,用于高频整流和

开关电路中)。

5.2.3)按用途分:有整流、稳压、开关、发光、光电、变

容、阻尼等二极管。

5.2.4)按封装形式分:有塑封及金属封等二极管

5.2.5)按功率分:有大功率、中功率及小功率等二极管

6. 半导体二极管的命名方法

半导体器件的型号由五个部分组成,如图5.3所示。其型号组成部分的符号及其意义如图。如2AP9,“2”表示电极数为2,“A”表示N型锗材

料,“P”表示普通管,“9”表示序号。

7. 半导体二极管的伏安特性

半导体二极管的核心是PN结,它的特性就是PN结的特性——单向导电性。常利用伏(电压)安(电流)特性曲线来形象地描述二极管的单向导电性。

若以电压为横坐标,电流为纵坐标,用作图法把电压、电流的对应值用平滑的曲线连接起来,就构成二极管的伏安特性曲线,如图5.4所示(图中虚线为锗管的伏安特性,实线为硅管的伏安特性)。

图7.0下面对二极管伏安特性曲线加以说明。

7.1. 正向特性

二极管两端加正向电压时(P区接正,N区接负),就产生正向电流,当正向电压较小时,正向电流极小(几乎为零),这一部分称为死区如图5.4中OA(OA′)段。相应的A(A′)点的电压称为死区电压或门槛电压(也称阈值电压),硅管约为0.5V,锗管约为0.1V。

二极管上的电压也不会再升高了二极管正向导通时,要特别注意它的正向电流不能超过最大值,否则将烧坏PN结。

7.2. 反向特性

二极管两端加上反向电压时(N区接正,P区接负),在开始很大范围内,二极管相当于非常大的电阻,反向电流很小,且不随反向电压而变化。此时的电流称之为反向饱和电流I R,见图5.4中OC(OC′)段。

7.3. 反向击穿特性

二极管反向电压加到一定数值时,反向电流急剧增大,这种现象称为反向击穿。此时对应的电压称为反向击穿电压,用UBR表示,如图5.4中PN结的反向击穿从机理上说分:齐纳击穿和雪崩击穿,一般对于反压小于4V的击穿称为齐纳击穿,反压大于7V的称为雪崩击穿。

7.4. 二极管的两种模型

7.4.1理想模型:做开关管用

7.4.2恒压降模型:二极管正偏时两端电压基本固定。

7.5. 半导体二极管的主要参数

7.5.1. 最大整流电流I F :二极管长期连续工作时,允许通过二极管的最大整流电流的平均值。

7.5.2. 最大反向工作电压 U BM:二极管反向电流急剧增加时对应的反向电压值称为反向击穿电压U BR ,为安全计,在实际工作时,最大反向工作电压U BM 一般只按反向击穿电压U BR 的一半计算。

即:正偏电流不能超I F ,反偏电压不能超U BM 。

7.5.3. 反向饱和电流 I R :硅二极管的反向电流一半在纳安(nA)级;锗二极管在(uA)级。

7.5.4. 正向压降U F :在规定的正向电流下,二极管的正向电压降。硅二极管约为0.6~0.8V;锗二极管约为0.2~0.3V。

7.5.5. 动态电阻Rd :反应了二极管正向特性曲线斜率的倒数。显然,Rd与工作电流的大小有关,即:Rd=电压的变化Ud除以电流Id的变化。

7.6二极管的温度特性

由于二极管的核心是一个PN结,它的导电性能与温度有关,温度升高时二极管正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。

温度对二极管的性能有较大的影响,温度升高时,反向电流将呈指数规律增加:如硅二极管温度每增加8摄氏度,反向电流将约增加一倍;锗二极管温度每增加12摄氏度,反向电流将约增加一倍。

另外,温度升高时,二极管的正向压降将减小,每增加1摄氏度,正向压降U F约减小2Mv,即具有负温度系数。

8. 二极管的识别方法

二极管的识别很简单,小功率二极管的N 极(负极),在二极管外表大多采用一种色圈(负极)标出来,有些二极管也用二极管专用符号来表示P 极(正极)或N 极(负极),也有采用符号标志

为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。

发光二极管的正负极判别:(1)由于发光二极管的导通电压一般为1.7V以上, 万用表R*10K档由于使用的15V电池,能把有的发光管点亮。(2)用眼睛来观察发光二极管,可以发现内部的两个电极一大一小。一般来说,电极较小、个头较矮的一个是发光二极管的正极,电极较大的一个是它的负极。若是新买来脚较长的一个是正极。

9. 二极管的简易测试

将指针万用表置于R×100或R×1k(Ω)档。(R×1档电流太大,用

R×10k(Ω)档电压太高,都易损坏管子)。如图5.6所示,。测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

图5.6 万用表简易测试二极管示意图 (a)电阻小;(b)电阻大

5.8 二极管使用注意事项

5.8.1) 二极管应按照用途、参数及使用环境选择。

5.8.2) 使用二极管时,正、负极不可接反。通过二极管的电流,承受的反向电压及环境温度等都不应超过手册中所规定的极限值。

5.8.3) 更换二极管时,应用同类型或高一级的代替。

5.8.4) 二极管的引线弯曲处距离外壳端面应不小于2mm,以免造成引线折断或外壳破裂。

5.8.5)点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。

5.9二极管常见应用电路

5.9.1.. 单相半波整流电路(整流电路的任务时把交流电压转变为直流脉动电压)

5.9.1.1)电路的组成及工作原理:通过二极管把交流电变为

直流电,即只让交流电的正半周(或负半周)通过,再用电容器滤波形成平滑的直流由于流过负载的电流。如图Io和加在负载两端的电压Uo只有半个周期的正弦波,故称半波整流。

图5.9.1单相半波整流电路

(a) 电路图;(b)波形图

5.9.1.2)负载上的直流电压和直流电流

直流电压是指一个周期内脉动电压的平均值:

因而流过负载R L上的直流电流则为:

5.9.1.3)整流二极管参数

由图5.9.1(a)可知,流过整流二极管的平均电流I V与流过负载的

电流相等,即

当二极管截止时,它承受的反向峰值电压U RM是变压器次级

电压的最大值,即

5.9.2.单相桥式整流电路

5.9.2.1)电路的组成及工作原理

桥式整流电路由变压器和四个二极管组成。

如图5.9.2.1-A单相桥式整流电路a.b.c三种画法所示

由图5.9.2.1-A可见,四个二极管接成了桥式,在四个顶点中,相同极性接在一起的一对顶点接向直流负载R L,不同极性接在一起的一对顶点接向交流电源。

输出波形如图5.9.2.1-B桥式整流电路输出全波形图c所示,单相桥式

电路的电流通路图a&b所示: (a)u2正半周时 (b)u2负半周时。

图5.9.2.1-B桥式整流电路输出波形图&单相桥式电路的电流通路

5.9.2.2)负载上的直流电压和直流电流

由上述分析可知,桥式整流负载电压和电流是半波整流的两

倍。

5.9.2.3)整流二极管的参数

在桥式整流电路中,因为二极管V1、V3和V2、V4在电源电压变

化一周内是轮流导通的,所以流过每个二极管的电流都等于负载电流的一半,即

从图5.9.2.1-B可知,每个二极管在截止时承受的反向峰值电压为:

桥式整流电路与半波整流电路相比,电源利用率提高了1倍,同时输出电压波动小,因此桥式整流电路得到了广泛应用。电路的缺点是二极管用得较多,电路连接复杂,容易出错,为了解决这一问题,生产厂家常将整流二极管集成在一起构成桥堆,内部结构及外形如图5.9.1所示。

图5.9.1桥堆内部结构及外形图 (a)半桥堆;(b)全桥堆

使用一个“全桥”或连接两个“半桥”,就可代替四只二极管与电源变压器相连,组成桥式整流电路,非常方便。选用时,应注意桥堆的额定工作电流和允许的最高反向工作电压应符合整流电路的要求。

5.9.2 滤波电路:常见的电路形式如图5.9.2所示

5.9.2 各种滤波电路

5.9.2.1.电容滤波电路

1)电路组成及工作原理

图5.9.2.1-A(a)为单相半波整流电容滤波电路,它由电容C和负载

R L并联组成。

图5.9.2 -A 半波整流电容滤波电路及波形

其工作原理如下:当u2的正半周开始时,若u2>uC(电容两端电

压),整流二极管V因正向偏置而导通,电容C被充电:由于充电回路电阻很小,因而充电很快,uC和u2变化同步。当ωt=π/2时,u2达到峰值,C两端的电压也近似充至 u2值。

在桥式整流电路中加电容进行滤波器与半波整流滤波电路工作

原理是一样的,不同点是在u2全周期内,电路中总有二极管导通,所以u2对电容C充电两次,电容器向负载放电的时间缩短,输出电压更加平滑,平均电压值也自然升高。这里不再赘述。桥式整流电容滤波电路及波形如图5.9.2-B所示。

图5.9.2-B 2)负载上电压的计算:

(半波)

(桥式、全波)

3) 元件选择

(a) 电容选择: 滤波电容C的大小取决于放电回路的时间常数,

RLC愈大, 输出电压脉动就愈小, 通常取RLC为脉动电压中最低次谐波周期的3~5倍, 即

(桥式、全波)

(半波)

(b) 整流二极管的选择:正向平均电流为

(半波)

(桥式)

4) 电容滤波的特点:电容滤波电路结构简单、输出电压高、脉动小。但在接通电源的瞬间,将产生强大的充电电流,这种电流称为“浪涌电流”;同时,因负载电流太大,电容器放电的速度加快,会使负载电压变得不够平稳,所以电容滤波电路只适用于负载电流较小的场合。

5.9.2.2.电感滤波电路

电感线圈L和负载的串联电路,同样具有滤波作用,电路如图5.9.2.2所示。

图5.9.2.2 桥式整流电感滤波电路及波形 (a)电路;(b)波形

整流滤波输出的电压,可以看成由直流分量和交流分量叠加而成。因电感线圈的直流电阻很小,交流电抗很大(通直阻交),故直流分量顺利通过,交流分量将全部降到电感线圈上,这样在负载RL得到比较平滑的直流电压。

电感滤波电路的输出电压为:

5.10 特殊二极管

前面主要讨论了普通二极管,另外还有一些特殊用途的二极管,如稳压二极管、发光二极管、光电二极管和变容二极管等,现介绍如下。

5.10.1.稳压二极管

5.10.1.1)稳压二极管的稳压原理:它是应用在反向击穿区的特殊硅二极管。反向工作时,两端的反向电流发生了很大变化,但稳压二极管两端的电压却不变。稳压二极管的特点就是工作在反向击穿区,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。二极管在电路中的符号为“VD”或“D”,稳压二极管的符号为“ZD” 。

5.10.1.2)故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这三种故障中,前一种故障表现出电源电压升高;后两种故障表现为电源电压变低到零伏或输出不稳定。

5.10.1.3)稳压二极管的工作特性:稳压二极管简称稳压管,它的

特性曲线和符号如图5.10.1.1所示。

图5.10.1.1稳压二极管的特性曲线和符号 (a)伏安特性曲线;(b)符号

5.10.1.4)稳压二极管的主要参数

(a)稳定电压U Z。稳定电压U Z即反向击穿电压。

(b)稳定电流I Z。稳定电流I Z是指稳压管工作至稳压状态时流过的电流。当稳压管稳定电流小于最小稳定电流I Z min时,没有稳定作用;大于最大稳定电流I Z max时,管子因过流而损坏。

5.10.1.5)稳压二极管的应用

稳压二极管在工作时应反接,并串入一只电阻。电阻的作用一是其限流作用,以保护稳压管;其次是当输入电压或负载电流变化时,通过该电阻上得电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。

5.10.2.发光二极管

发光二极管与普通二极管一样,也是由PN结构成的,同样具有单向导电性,但在正向导通时能发光,所以它是一种把电能转换成光能的半导体器件。即有正向电流流过时,发出一定波长范围的光,目前的发光管可以发出从红外到可见波段的光。电路符号如图5.10.2所示。

图5.10.2 发光二极管电路符号

a)普通发光二极管

普通发光二极管工作在正偏状态。检测发光二极管,一般用万用表R×10k(Ω)挡,方法和普通二极管一样,一般正向电阻15kΩ左右,反向电阻为无穷大。

b)红外线发光二极管

红外线发光二极管工作在正偏状态。用万用表R×1k(Ω)挡检测,若正向阻值在30kΩ左右,反向为无穷大,则表明正常,否则红外线发光二极管性能变差或损坏。

c)激光二极管

根据内部构造和原理,判断激光二极管好坏的方法是通过测试激光二极管的正、反向电阻来确定好坏。若正向电阻为20~30kΩ,反向电

阻为无穷大,说明正常,否则,要么激光二极管老化,要么损坏。

5.10.3.光电二极管

光电二极管工作在反偏状态,反向电流随光照强度的增加而上升。它的管壳上有一个玻璃窗口,以便接受光照。光电二极管的检测方法和普通二极管的一样,通常正向电阻为几千欧,反向电阻为无穷大。否则光电二极管质量变差或损坏。当受到光线照射时,反向电阻显著变化,正向电阻不变。

图5.10.3 光电二极管电路符号

5.10.4.变容二极管

变容二极管是利用PN结电容可变原理:二极管内部 “PN 结”的结电容能随外加反向电压的变化而变化,专门设计出来的一种特殊二极管。

变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。在工作状态,它仍工作在反向偏置状态(电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化)。它的压控特性曲线和电路符号如图5.10.4所示。

(a)电路符号;(b)压控特性曲线

邱关源《电路》笔记和课后习题(含考研真题)详解-第十二章至第十三章【圣才出品】

第12章三相电路 12.1复习笔记 一、对称三相电源 如图12-1-1所示,由同频率、等幅值、相位互差120°的三个正弦电压源连接成的电源被称为对称三相电源。对称三相电源有星形(Y)和三角形(△)两种。这3个电源依次称为A相、B相和C相,它们的电压瞬时表达式及相量如表12-1-1所示。

图12-1-1

表12-1-1电压时域及相量表示 二、三相电路的线电压(电流)与相电压(电流)的关系 三相系统中,流经输电线中的电流称为线电流;电源端或是负载端各输电线线端之间的电压都称为线电压;三相电源和三相负载中每一相的电压、电流称为相电压和相电流。 三相系统中的线电压和相电压、线电流和相电流之间的关系都与连接方式有关,如表12-1-2所示。 表12-1-2线电压(电流)与相电压(电流)的关系

三、对称三相电路的分析计算 计算的一般步骤:①将△形电源和负载均变成Y形;②用短路线连接所有中性点,画出一相等效电路进行计算;③根据对称性推算其他两相电压和电流。 图12-1-2(a)的一相等效电路如图(b)所示。

图12-1-2 四、三相电路的功率 1.三相电路的功率计算 有功功率:P=P A +P B +P C 。 无功功率:Q=Q A +Q B +Q C 。 视在功率: 2 2Q P S +=若负载对称,则有A P P p p 33cos 3cos l l P P U I U I ??===A P P p p 33sin 3sin l l Q Q U I U I ??===

22 3l l S U I P Q ==+式中,φp 是指每相负载的阻抗角;对称三相电路的其他计算完全可以用正弦电流电路的相量分析方法。 2.三相电路有功功率的测量 三相电路有功功率测量的三表法和两表法,如图12-1-3所示。

完整版二极管7种应用电路详解

极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它 在电路中的应用 第一反应是整流, 对二极管的其他特性和应用了解不多, 认识上也认为掌握了二极管的 单向导电特性,就能分析二极管参与的各种电路, 实际上这样的想法是错误的, 而且在某种程度上是害 了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析, 许多二极管电路无法用单向导电 特性来解释其工作原理。 二极管除单向导电特性外, 还有许多特性,很多的电路中并不是利用单向导电特性就能分析二 极管所构成电 路的工作原理, 而需要掌握二极管更多的特性才能正确分析这些电路, 例如二极管构成的 简易直流稳压电路,二极管构成的温度补偿电路等。 941二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中, 由于电路简单,成本低,所以 应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是 0.6V 左右,对锗二极管而言是 0.2V 左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的 VD1、VD2和VD3 是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1 ?电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难 了。 关于这一电路的分析思路主要说明如下。 (1) 从电路中可以看出 3只二极管串联,根据串联电路特性可知, 这3只二极管如果导通会同时导通, 如果截止 会同时截止。 (2) 根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还 是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在 VD1正极通过电阻 R1接电路中 的直流工作电压+V , VD3的负极接地,这样在 3只串联二极管上加有足够大的正向直流电压。由此分 析可知,3只二 极管VD1、VD2和VD3是在直流工作电压+V 作用下导通的。 (3) 从电路中还可以看出,3只二极管上没有加入交流信号电压, 因为在VD1正极即电路中的 A 点与 地之间接 有大容量电容 C1,将A 点的任何交流电压旁路到地端。 2 ?二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定 了电路中A 点的直流电压。 众所周知,二极管内部是一个 PN 结的结构,PN 结除单向导电特性之外还有许多特性,其中 !£ mime i-yAn^Of

二极管及其应用电路--笔记整理

半导体二极管及其应用电路 1.半导体的特性 自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。 2.半导体的共价键结构 在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。 当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。 由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

邱关源电路教材重点分析兼复习纲要-武汉大学电路

第一章电路模型和电路定律,第二章电阻电路的等效变换,第三章电阻电路的一般分析,第四章电路定理。这四章是电路理论的基础,全部都考,都要认真看,打好电路基础。 第一章1-2电流和电压的参考方向要注意哈,个人认为搞清楚方向是解电路最重要的一步了,老师出题,喜欢把教材上常规的一些方向标号给标反,这样子,很多式子就得自己重推,这也是考验你学习能力的方式,不是死学,比如变压器那章,方向如果标反,式子是怎样,需要自己推导一遍。 第二章都要认真看。 第三章3-1 电路的图。图论是一门很重要的学科,电路的图要好好理解,因为写电路的矩阵方程是考试重点,也是送分题,而矩阵方程是以电路图论为基础的。 第四章4-7对偶原理。自己看一下,懂得什么意思就行了。其他小节都是重点,特别是特勒跟和互易。这几年真题第一题都考这个知识点。 第五章含有运算放大器的电阻电路。这个知识点是武大电路考试内容,一定要懂,虚短和虚断在题目中是怎么用的,多做几个这章的题就很清楚了。5-2 比例电路的分析。这一节真题其实不怎么常见,跟第三节应该是一个内容,还是好好看一下吧。 第六章储能元件。亲,这是电路基础知识,老老实实认真看吧。清楚C和L的能量计算哦。 第七章一阶电路和二阶电路的时域分析。一阶电路的都是重点,二阶电路的时域分析,其实不怎么重要,建议前期看一下,从来没有出现过真性二阶电路让考生用时域法解的,当然不是不可以解,只是解微分方程有点坑爹,而且基本上大家都是要背下来那么多种情况的解。所以,这章的课后习题中,二阶的题用时域解的就不用做了,一般后面考试都是用运算法解。 7-1 7-2 7-3 7-4 都是重点,每年都考。好好看。 7-5,7-6,两节,看一下即可,其实也不难懂,只是很难记。 7-7,7-8很重要,主要就是涉及到阶跃和冲激两个函数的定义和应用,是重点。 7-9,卷积积分,这个方法很有用,也不难懂,不过我没看过也不会用也不会做,每次遇到题目都是死算,建议好好研究下卷积。 7-10 状态方程,这个是重点,这几年必考,一般不超过三个变量,让你写状态方程。 7-11 这节是前面的一些总结,好好看看,邱书特点就是细致,知识容易看懂。 第八章相量法正弦稳态电路分析的基础。扎实掌握。计算开始复习的时候最好是自己知道复数运算,而且要多练练。其实现在计算器是可以直接进行复数和相量复合运算的,至于考试时候能不能用这种高级的,我不知道。。。自己问考点,自己决定。后期可能会说一下计算器的选择,前期打基础,还是好好掌握土包子计算器怎么快速复数相量运算吧。 第九章正弦稳态电路分析。老老实实扎扎实实的掌握好。不算综合在其他题目中的部分,这个知识点,每年考两个题,30分左右。9-6节是要好好掌握的哈。每个习题都要认真做。 第十章含有耦合电感的电路。全部是重点,每年必考。每个习题认真做,这章中,很有意思的一个东西就是耦合电感不消耗有功,但是转移有功,这个地方考了几次了噢,自己注

邱关源《电路》笔记及课后习题(均匀传输线)【圣才出品】

第18章均匀传输线 18.1 复习笔记 分布参数电路元件构成的电路称为分布参数电路。当电路的长度l与电压、电流的波长λ可以相比时,电路就必须视为分布参数电路。 分布参数电路的分析方法是将传输线分为无限多个无穷小尺寸的集总参数单元电路,每个单元电路均遵循电路的基本规律,然后将各个单元电路级联,去逼近真实情况,所以各单元电路的电压和电流既是时间的函数,又是距离的函数。 一、均匀传输线的微分方程 若沿传输线的固有参数分布处处相同,则称为均匀传输线。 方程如表18-1-1所示。 表18-1-1

二、均匀传输线方程的正弦稳态解(1)已知始端电压U?1和电流I?1 或

x为距始端的距离。 (2)已知终端电压U?2和电流I?2 或 x为距终端的距离。 三、均匀传输线上的行波及负载效应 正向行波、反向行波及行波速度如表18-1-2所示。

表18-1-2 均匀传输线的负载效应如表18-1-3所示。 表18-1-3 四、无损耗均匀传输线的特性 表18-1-4

18.2 课后习题详解 18-1 一对架空传输线的原参数是L0=2.89×10-3H/km,C0=3.85×10-9F/km,R0=0.3Ω/km,G0=0。试求当工作频率为50Hz时的特性阻抗Z c,传播常数γ、相位速度υφ和波长λ。如果频率为104Hz,重求上述各参数。 解:(1)当f=50Hz时 Z0=R0+jωL0=0.3+j0.908=0.9562∠71.715°Ω/km Y0=G0+jωC0=j100π×3.85×10-9=j1.2095×10-6S/km

即α=0.171×10-3Np/km,β=1.062×10-3rad/km。 υφ=ω/β=100π/(1.062×10-3)=2.958×105km/s λ=υφ/f=2.958×105/50=5.916×103km (2)当f=104Hz时 Z0=R0+jωL0=0.3+j181.584=181.58∠81.91°Ω/km Y0=G0+jωC0=j2π×104×3.85×10-9=j2.419×10-4S/km 即α=1.731×10-4Np/km,β=20.958×10-2rad/km。 υφ=ω/β=2π×104/(20.958×10-2)=2.998×105km/s λ=υφ/f=2.998×105/104=29.98km 18-2 一同轴电缆的原参数为:R0=7Ω/km,L0=0.3mH/km,C0=0.2μF/km,G0=

“断路法”分析二极管电路工作状态-4-例-文章-基础课-模拟电

“断路法”分析二极管电路工作状态-4-例-文章-基础课-模拟电

————————————————————————————————作者:————————————————————————————————日期:

二级管不是线性元什,对其构成的鼙流、限幅、续流保护、低压稳压、门电路等电路进行分忻时可以采用二极管的理想模型( 正向导通时视为短路,反向截止时视为开路) 或恒压降馍型( 止向导通时视为恒压源,反向截止时视为开路) ,还可以采用折线模型( 正向导通时视为恒压源串联一小电阻,反向截止时视为开路) 。不管采用哪种等效模型,关键在于分忻出二极管在电路中的上作状态到底处于正向导通还是处于反向截止.当电路中有多个二极管或有交流信号时二极管的工作状态并不能很直观地判断出来。 本文所述“断路法”能快速判断出二极管的工作状态,其核心思想是先将昕有二极管从电路中断开,分折这种情况下各二极管的正向压降:例如,理想模犁时正向压降大于零时二极管导通,否则截止。若电路中有多个二极管,断路时正向压降最高的二极管优先导通,再把已分忻出导通的二圾管放回电路,重新分忻其他二圾管断路时的正向压降( 依旧遵循正向压降最高的优先导通) ,直到所有二极管状态分析完。对有交流信号时二极管的工作状态,同样的分析过程要用在

不同的电压值范围。下面以几个例题来说明该方法的陵用( 二极管工作状态分析采用理想模型) 。 【例1] 判断图1 中二极管的状态并求P 点电位。 图1 是只有一个_ 二极管的情况。按“断路法”进行分析,先将二极管从电路中断开,断开后,左(N) 、右(P) 各自构成独立的回路。N 点电位为2k Ω电阻上的压降加5k Ω电阻上的压降: VN=-10x2 /20 十15x5 /30=1 .5(V) ;P 点电位为10k

邱关源电路笔记1-7章

第一章电路模型和电路定律 1.实际电路:有电工设备和电气器件按预期目的连接构成的电流的通路。 功能:a.能量的传输、分配与转换 b.信息的传递、控制与处理 共性:建立在同一电路理论基础上 2.电路模型:反应实际电路部件的主要电磁性质的理想元件 5种基本的理想电路元件: 电阻元件:表示消耗电能的元件 电感元件:表示产生磁场,储存磁场能量的元件 电容元件:表示产生的电场,储存电场能量的元件 电压源和电流源:表示将其他形式的能量转变成电能的元件 3.u, i关联参考方向 p = ui表示元件吸收的功率 P>0 吸收正功率(吸收) P<0 吸收负功率(发出) 4.u, i非关联参考方向 p = ui表示元件发出的功率 P>0 发出正功率(发出) P<0 发出负功率(吸收) 注:对一完整的电路,发出的功率=消耗的功率 a.分析电路前必须选定电压和点流的参考方向 b.参考方向一经选定,必须在图中相应位置标注(包括方向和符号) c.参考方向不同时,其表达式相差一负号,但电压、电流的实际方向不变 5.理想电压源和理想电流源 理想电压源:其两端电压总能保持定值或一定的时间函数,其值与流过它的电流i无关的元件叫理想电压源。 理想电压源的电压、电流关系:

a.电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、 大小无关 b.通过电压源的电流由电源及外电路共同决定 理想电流源:其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u无关的元件叫理想电流源。 理想电流源的电压、电流关系: a.电流源的输出电流由电源本身决定,与外电路无关;与它的两端电压的 方向、大小无关 b.电流源两端的电压由电源及外电路共同决定 6.受控电源(非独立电源):电压或电流大小和方向不是给定的时间函数,而是受电路中某处的电压或电流控制的电源称为受控电源 7.基尔霍夫定律 基尔霍夫电压定律(KCL):在集总参数电路中,任意时刻,对任一结点流出(或流入)该节点电流的代数和为零 基尔霍夫电压定律(KVL):在集总参数电路中,任意时刻,沿任一回路,所有支路电压的代数和恒等于零 注:a.kcl是对支路电流的线性约束,kvl是对回路电压的线性约束。 b.kcl、kvl与组成支路的元件性质及参数无关 c.kcl表明在每一结点上电荷是守恒的;kvl是能量守恒的具体体现(电压与 路径无关) d.kcl、kvl只适用于集总参数电路 第二章电阻电路的等效变换 1.两端电路等效概念:两个两端电路,端口具有相同的电压,电流关系 2. 等效电路是对外等效,对内不等效。 3. 星型-----三角型变换:记住P39页公式,特例:若三个电阻相等(对称),则有三角型电阻是星型电阻的3倍。 4. 一般情况下多个电流源不能串联,多个电压源不能并联。 5.输入电阻计算方法: a.如果一端口内部仅含电阻,则应用电阻的串、并联和△-Y变换等方法求它的等效电阻 b.对含有受控源和电阻的二端电路,用端口电压,电流法术输入电阻,即在端口 加电压源,求得电流,或在端口外加电流源,求得电压,得其比值 6.实际电压模型 注:实际电压源也不允许短路。因其内阻小,若短路,电流很大,可能烧毁电源。

邱关源《电路》笔记及课后习题(电路方程的矩阵形式)【圣才出品】

第15章电路方程的矩阵形式 15.1 复习笔记 一、割集 1.定义及条件 割集是连通图G的一个支路集合,满足两个条件:①移去集合中的所有支路,结点保留,原连通图分离为两个部分;②仅保留集合中的任何一条支路,图仍为连通图。 图15-1-1 如图15-1-1所示,其中割集有:(a,d,f),(a,e,b),(b,c,f),(d,e,c),(b,e,d,f),(a,e,c,f),(a,b,c,d)。 非割集有:(a,d,e),(a,e,b,c)。 2.割集的特点 (1)选定连通图的一个树,则与树对应的任何连支集合不能构成一个割集;

(2)连通图的每一条树支与一些相应的连支可以构成一个割集; (3)单树支割集(基本割集)是由树的一条树支与相应的一些连支所构成的割集; (4)对于一个具有n个结点和b条支路的连通图,其树支数为(n-1),因此将有(n -1)个单树支割集,称为基本割集组; (5)n个结点的连通图,独立割集为(n-1),独立割集不一定是单树支割集; (6)连通图G可以有许多不同的树,可选出许多基本割集组。 二、关联矩阵、回路矩阵、割集矩阵 1.关联矩阵A:结点-支路关系矩阵 A矩阵的一行对应于一个除参考结点以外的独立结点,一列对应于一条支路,为(n-1)×b阶矩阵,n为结点数,b为支路数,任一元素a jk定义为 注:A每一列对应于一条支路,每一列中只有两个非零元素,即+1和-1;A的行不是彼此独立的,A的任一行必能从其他(n-1)行导出。 2.回路矩阵B:回路-支路关联矩阵 设一个回路由某些支路组成,则称这些支路与该回路关联,支路与回路的关联性质可以用回路矩阵B描述。若有向图的独立回路数为l,支路数为b,则该有向图的回路矩阵是一个(l×b)的矩阵。B中的行对应于一个回路,列对应于支路,任一元素b jk定义为

二极管7种应用电路详解

二极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明

邱关源《电路》笔记及课后习题(电阻电路的一般分析)【圣才出品】

第3章电阻电路的一般分析 3.1 复习笔记 一、电路图论的基本概念 1.图(G) 图(G)是具有给定连接关系的结点和支路的集合,其中每条支路的两端都连到相应的结点上,允许孤立结点的存在,没有结点的支路不能称为图。 路径:从G的一个结点出发,依次通过图的支路和结点(每一支路和结点只通过一次),到达另一个结点(或回到原出发点),这种子图称为路径。 连通图:当G的任意两结点都是连通的,称G为连通图。 有向图:赋予支路方向的图称为有向图。 2.树(T) 满足下列三个条件的子图,称为G的一棵树:①连通的;②包含G的全部结点;③本身没有回路。 树支与连支:属于树的支路称为树支;不属于树的支路称为连支。 基本回路:对于G的任意一个树,有且只有一条连支回路,这种回路称为单连支回路或基本回路。 树支数:对于有n个结点,b条支路的连通图,树支数=n-1。 推论:连枝数=b-n+1;基本回路数=连支数=b-n+1。

二、KCL和KVL的独立方程数 KCL的独立方程数:对一个具有n个结点的电路而言,其中任意的(n-1)个结点的KCL方程是独立的。 KVL的独立方程数:对一个具有n个结点和b条支路的电路而言,其KVL的独立方程数为(b-n+1)。 三、电路的分析方法 1.支路电流法 (1)支路电流法是以b个支路电流为变量列写b个方程,并直接求解。 其方程的一般形式为 (2)支路电流法解题步骤 ①标出各支路电流的方向; ②依据KCL列写(n-1)个独立的结点方程; ③选取(b-n+1)个独立回路,标出回路绕行方向,列写KVL方程。 注:①独立结点选择方法:n个结点中去掉一个,其余结点都是独立的;②独立回路选择方法:先确定一个树,再确定单连支回路(基本回路),仅含唯一的连支,其余为树支。 2.网孔电流法 (1)网孔是最简单的回路,即不含任何支路的回路。网孔数=独立回路数=b-n+1。

红外二极管感应电路分析

红外二极管感应电路分析 一、电路功能概述 红外二极管感应电路可以实现用手靠近红外发射管和红外接收管时,蜂鸣器发声,LED灯点亮,手移开后立即停止发声、LED灯熄灭,灵敏度非常高。该电路设计思路来源于银行自动开门关门的生活场景,人走进银行,门自动打开,离开后门自动关闭。或者说来源于肯德基等高档餐厅的水龙头,当手放在水龙头下,水自动流出,离开后水自动关闭。该电路应用的生活场景非常多,是电路设计人员必须掌握的一种电路。 特别注意,本电路制作成功后,必须调试后才能达到相应的效果,只有掌握了红外感应电路的工作原理后才能调试好相关的参数,所以工作原理是学习重点。 二、电路原理图 三、原理图工作原理 红外感应电路的设计采用模拟电路中的电阻分压取样电路、红外二极管感应电路、三极管电路、运算比较器组成的电压比较电路等相关知识点,请制作者务必学习。 红外感应电路由以红外发射管VD1、红外接收管VD2为核心的红外感应电路,以可调电阻RP1、通用运算放大器LM358为核心的取样比较电路,以三极管9012 VT1、VT2、蜂鸣器HA1、发光二极管LED1为核心元件的声音输出、显示电路构成。

通上5V电源,红外发射管VD1导通,发出红外光(眼睛是看不见的),如果此时没有用手挡住光,则红外接收管VD2没有接受到红外光,红外接收管VD2仍然处于反向截止状态。红外接收管VD2负极的电压仍然为高电平,并送到LM358的3脚。 LM358的2脚的电压取决于可调电阻RP1,只要调节可调电阻RP1到合适的时候(用万用表测量LM358的2脚的电压大概为左右),就能保证LM358的3 脚的电压大于LM358的2脚的电压,根据比较器的工作原理,当V+ > V-的时候, LM358的1脚就会输出高电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2截止,蜂鸣器HA1不发声,发光二极管LED1熄灭。 当用手靠近红外发射管VD1时,将红外光档住并反射到红外接收管VD2上,红外接收管VD2接受到红外光,立刻导通,使得红外接收管VD2负极的电压急速下降,该电压送到LM358的3脚上。 LM358的3脚电压下降到低于2脚的电压,根据比较器的工作原理,V+ < V-的时候, LM358的1脚就会输出低电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2导通蜂鸣器HA1发声,发光二极管LED1点亮。 通过以上调试步骤,可以实现当手移动到红外发射管VD1和红外接收管VD2的上面时,蜂鸣器发声,发光二极管点亮。当手离开红外发射管VD1和红外接收管VD2的上面时,蜂鸣器停止发声,发光二极管熄灭,产生了感应手的效果。 四、组装及调试技巧 请根据红外二极管感应电路的原理图和PCB布局图(如下图),按照红外发射电路、红外接收电路、电压取样电路、电压比较电路、报警电路、LED显示电路的顺序安装。安装前一定要学习红外感应电路工作原理,并熟记电路原理 图, 以便正确安装。

邱关源《电路》笔记及课后习题(电路的频率响应)【圣才出品】

第11章电路的频率响应 11.1 复习笔记 一、网络函数 在线性正弦稳态网络中,当只有一个独立激励源作用时,网络中某一输出端口处的响应(电压或电流)与输入端口的响应之比,称为该响应的网络函数。数学表达式如下 1.驱动点函数 如图11-1-1所示。 激励是电流源,响应是电压,此时的网络函数:H(jω)=U?(jω)/I?(jω),称为驱动点阻抗; 激励是电压源,响应是电流,此时的网络函数:H(jω)=I?(jω)/U?(jω),称为驱动点导纳。

图11-1-1 2.转移函数(传递函数) 如图11-1-2所示。 转移导纳:H(jω)=I?2(jω)/U?1(jω); 转移阻抗:H(jω)=U?2(jω)/I?1(jω); 转移电压比:H(jω)=U?2(jω)/U?1((jω); 转移电流比:H(jω)=I?2(jω)/I?1(jω); 注:①H(jω)不仅和输入、输出变量的类型有关,还与网络的结构、参数值以及端口对的相互位置有关,但和输入、输出幅值无关,因此网络函数是网络性质的一种体现; ②H(jω)是一个复数,它的频率特性分为两个部分:幅频特性,模与频率的关系,即|H(jω)|~ω,对应有幅频特性曲线;相频特性,幅角与频率的关系,即φ(jω)~ω,对应有相频特性曲线。 图11-1-2 3.网络函数H(s)与频率特性H(jω)的关系

二、RLC串联谐振 当R、L、C串联电路中出现端口电压与电流同相位或等效阻抗为一纯电阻时称电路发生串联谐振。RLC串联谐振电路如图11-1-3(a)所示。 图11-1-3(a) 1.谐振条件 RLC串联电路的阻抗Z(jω)=R+j(X L-X C)=R+j[ωL-1/(ωC)],X(jω)=ωL-1/(ωC),φ(jω)=arctan[X(jω)/R],频率特性如图11-1-3(b)和(c)所示。当X L=X C时,发生谐振,此时谐振频率

邱关源电路第五版课堂笔记-参考模板

1、已知:4C 正电荷由a 点均匀移动至b 点电场力做功8J ,由b 点移动到c 点电场力做功为12J , ① 若以b 点为参考点,求a 、b 、c 点的电位和电压U ab 、U bc ; ② 若以c 点为参考点,再求以上各值。 解: 2、求图示电路中各方框所代表的元件吸收或产生的功率。 已知: U 1=1V , U 2= -3V ,U 3=8V , U 4= -4V , U 5=7V , U 6= -3V ,I 1=2A, I 2=1A,,I 3= -1A 解: ) (发出W 221111=?==I U P ) (发出W 62)3(122-=?-==I U P (吸收) W 1628133=?==I U P (吸收) W 3)1()3(366=-?-==I U P ) (发出W 7)1(7355-=-?==I U P )(发出W 41)4(244-=?-==I U P c =b ?V 24 8===q W ab a ?V 34 12-=-=-==q W q W bc cb c ?V 202=-=-=b a ab U ??V 3)3(0=--=-=c b bc U ??

3、求:电压U 2. 解: A i 23 61==V i u 4610 6512-=+-=+-=u 161

4、求电流 I 解: 5、求电压 U 解: 6、求开路电压 U 3A 0)10(10101=--+I A 21-=I A 31211-=--=-=I I 10A 7310=-=I 0 24=-+I U V 1041442=-=-=I U

解: 7、计算图示电路中各支路的电压和电流 解: 8、求:I 1,I 4,U 4. A 518902==i A 105153=-=i V 60106633=?==i u V 30334==i u A 5.74304==i A 5.25.7105=-=i i 5 Ω A 15 5102 =+=I V 2225532222-=-=?-+=I I I I U A 15111651==i V 90156612=?==i u

电路板中常用7大类二极管

电路板中常用7大类二极管 一、肖特基二极管 肖特基二极管,即肖特基势垒二极(SchottkyBarrierDiode,缩写成SBD)的简称。肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管。 它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。

二、变容二极管 变容二极管又称"可变电抗二极管",是利用pN结反偏时结电容大小随外加电压而变化的特性制成的。反偏电压增大时结电容减小、反之结电容增大,变容二极管的电容量一般较小,其最大值为几十皮法到几百皮法,最大区容与最小电容之比约为5:1。它主要在高频电路中用作自动调谐、调频、调相等,例如在电视接收机的调谐回路中作可变电容。变容二极管属于反偏压二极管,改变其PN结上的反向偏压,即可改变PN结电容量。反向偏压与结电容之间的关系是非线性的,变容二极管的电容值与反向偏压值的关系: (a) 反向偏压增加,造成电容减少; (b) 反向偏压减少,造成电容增加。 电容误差范围是一个规定的变容二极管的电容量范围。数据表将显示最小值、标称值及最大值,这些经常绘在图上。

邱关源《电路》笔记及课后习题(电路定理)【圣才出品】

第4章电路定理 4.1 复习笔记 一、叠加定理 叠加定理:在线性电路中,任一支路的电流或电压,等于每一独立电源单独作用于电路时在该支路所产生的电流或电压的代数和。 应用方法:给出电路中变量的参考方向;画出各独立源单独作用时的等效电路;在等效电路中求出相应的待求电压电流变量或中间变量;运用叠加定理求出原电路中的待求电压电流变量。 注:①该定理只适用于线性电路;②计算元件的功率时不可应用叠加的方法;③在各个独立电源单独作用时,不作用的电压源短路,不作用的电流源开路;各分电路在叠加计算时电压和电流的参考方向可取为与原电路相同方向,取代数和时注意各分量的正负号。 二、替代定理 给定任意一个线性电阻电路,如果第j条支路的电压u j和电流i j已知,那么这条支路就可以用一个具有电压等于u j的独立电压源,或者一个具有电流等于i j的独立电流源来代替,替代后的电路中的全部电压和电流均将保持原值,如图4-1-1所示。

图4-1-1 三、戴维宁定理和诺顿定理 1.一个线性含源一端口网络如图4-1-2(a)所示,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代,这一等效电路称为戴维宁等效电路,如图4-1-2(b)所示。电压源的电压等于该一端口网络的开路电压u oc,而电阻等于该一端口网络中所有独立源为零值时的等效电阻R eq。 图4-1-2 2.一个线性含源一端口网络N,可以等效为一个电流源和电阻的并联组合,这样的等效电路称为诺顿等效电路,如图4-1-2(c)所示。电流源的电流等于该网络N的短路电流i sc,并联电阻R eq等于该网络中所有独立源为零值时所得网络N0的等效电阻R eq。

光敏二极管应用电路

二极管应用电路 图4-1是采用光敏二极管的最简单的光检测电路,图(a)是二极管输出端为开路方式,其输出电压随入射光量的对数呈线性变化,但容易受温度变化的影响。图(b)是二级管输出端为短路方式.输出电流随入射光量的对数呈线性变化. 一般采用输出端短路的工作方式。然而,这两种电路都是光电二极管单个使用,其输出电压(或电流)非常小,一般要与晶体管或 IC等放大器组合使用。 图4-1 最简单的光检测电路 图4-2是无偏置电路实例、其中图(a)接高阻抗负载?图(b)接低阻抗负载。负载阻抗越高其特性越接近输出端开路方式,负载阻抗越低则越接近输出端短路方式。然而因二级管都是单个使用,所以输出信号极小?一般需要接放大电路。 图4-£无偏置电路 图4-3是反向偏置电路实例。光敏二极管加反向偏置,则响应速度可提高几倍以上。图 4-3(a)是接有较大负载电阻的电路. 图4-3(b)是接有较小负载电阻的电路。图4-3(n)所示电路的输出电压比图4-3(b)所示电路大,但响应特性不如图4-3(b)。图4-3(b)所示电路的输出电压比图4-3(a)小,但响应速度比图4-3(a)快。它们的响应特性都比无偏置电路好,但暗电流 比无偏置电路大。

(b) 图43 反向偏置电路 图4-4是光敏二极管与晶体管组合应用电路实例。图 4-4(a)为典型的集电极输出电路形 式,而图4-4(b)为典型的发射极输出电路形式。 集电极输出电路适用于脉冲入射光电路,输出信号与输入信号的相位相反,输出信号 一般较大。而发射极输出电路适用于模拟信号电路,电阻 RB 可以减小暗电流,输出信号与 输入信号的相位相同,输出信号一般较小。 图4-4与晶体管组合应用电路 图4-5是光敏二极管 VD 与运放A 组合应用实例.团4-5(a)为无偏置方式,图 4-5(b)为 反向偏置方式。 无偏置电路可以用于测量宽范围的入射光, 例如照度计等,但响应特性比不上反向偏置 的电路,可用反馈电阻Rf 调整输出电压,如果Rf 用对数二极管替代. 的电压。反向偏置电路的响应速度快?输出信号与输入信号同相位。 VD Vo 5-15V VD -L 5 ?15V T Et, R E 3. 3Mfl 12V V T Vo 2- 2kD 则可以输出对数压缩 4. 7kfi %

二极管7种应用电路详解

许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是左右,对锗二极管而言是左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中之一是二极管导通后其管压降基本不变,对于常用的硅二极管而言导通后正极与负极之间的电压降为。 根据二极管的这一特性,可以很方便地分析由普通二极管构成的简易直流稳压电路工作原理。3只二极管导通之后,每只二极管的管压降是,那么3只串联之后的直流电压降是×3=。 3.故障检测方法 检测这一电路中的3只二极管最为有效的方法是测量二极管上的直流电压,如图9-41所示是测量时接线示意图。如果测量直流电压结果是左右,说明3只二极管工作正常;如果测量直流电压结果是0V,要测量直流工作电压+V是否正常和电阻R1是否开路,与3只二极管无关,因为3只二极管同时击穿的可能性较小;如果测量直流电压结果大于,检查3只二极管中有一只开路故障。

稳压二极管原理电路及应用

` 稳压二极管原理电路及应用 引言 二极管因用途不同而种类繁多。稳压二极管是其中的一种。我们知道晶体二极管具有单向导电的性能。正向连接时是导电的(在电路中,二极管的正极接电源的正极,二极管的负极接电源的负极),反向连接是不导电的,只有很小很小的漏电流。但是如果给某些特定二极管反向电压逐渐加大到某一数值,二极管就会被击穿,这时二极管又开始反向导电。随着导电电流逐渐增大(只要电流不是增加到损坏二极管的程度),二极管两端的电压却基本上保持不变,几乎恒定在二极管击穿的电压数值上。这就是二极管的反向击穿特性。利用这个特性,人们制成稳压二极管[1]。由于这种反向击穿特性能起稳压作用,所以在电路中稳压二极管必须反向连接,就是二极管的正极接电源的负极,二极管的负极接电源的正极。 1.稳压二极管的原理及电路 1.1稳压管的特性 稳压管的伏安特性曲线如图l所示。由图可见,反向电压在一定围变化时,反向电流很小;当反向电压增高到击穿电压时,反向电流突然剧增,即稳压管反向击穿;此后,虽然电流在很大围变化,但稳压管两端的电压变化很小,这一特性便可用来稳压。稳压管与其他二极管不同的是,其反向击穿是可逆的。当反向电压去掉后,稳压管又恢复正常状态但是,如果反向电流超过允许值,稳压管的PN结也会因过热而损坏。由于硅管的热稳定性比锗管好,因此一般都用硅管做稳压二极管,例如2CW系列和2DW系列都是硅稳压二极管[2] 图1 硅稳压二极管伏安特性和符号 1.2 稳压管的主要参数 1.2.1 稳定电压U: 稳压管反向击穿后稳定工作时的电压值称为稳定电压,如2CW13型为5V一6.5V,具有温度补偿作用的2DW7A型稳压管为5.8V一6.6V。对于某只稳压管,其U是这个围的某一Z确定数值。因此在使用时,具体数值需要实际测试。 1.2.2 稳定电流I Z文档Word

邱关源《电路》(第5版)笔记和课后习题(含考研真题)详解

目 录第1章 电路模型和电路定律 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解 第2章 电阻电路的等效变换 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解 第3章 电阻电路的一般分析 3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解 第4章 电路定理 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解 第5章 含有运算放大器的电阻电路 5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解 第6章 储能元件 6.1 复习笔记 6.2 课后习题详解 6.3 名校考研真题详解 第7章 一阶电路和二阶电路的时域分析 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解 第8章 相量法

8.2 课后习题详解 8.3 名校考研真题详解 第9章 正弦稳态电路的分析 9.1 复习笔记 9.2 课后习题详解 9.3 名校考研真题详解 第10章 含有耦合电感的电路 10.1 复习笔记 10.2 课后习题详解 10.3 名校考研真题详解 第11章 电路的频率响应 11.1 复习笔记 11.2 课后习题详解 11.3 名校考研真题详解 第12章 三相电路 12.1 复习笔记 12.2 课后习题详解 12.3 名校考研真题详解 第13章 非正弦周期电流电路和信号的频谱13.1 复习笔记 13.2 课后习题详解 13.3 名校考研真题详解 第14章 线性动态电路的复频域分析 14.1 复习笔记 14.2 课后习题详解 14.3 名校考研真题详解 第15章 电路方程的矩阵形式 15.1 复习笔记 15.2 课后习题详解 15.3 名校考研真题详解 第16章 二端口网络

相关文档
最新文档