航空发动机基础知识

航空发动机基础知识
航空发动机基础知识

航空发动机基础知识

航空发动机基础知识

涡轮喷气发动机的诞生

涡轮喷气发动机的诞生

二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。

这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。

早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。

涡轮喷气发动机的原理

涡轮喷气发动机的原理

涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。

涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。

工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。

压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。

随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。

高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。

从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。

涡喷发动机剖视示意图涡喷发动机剖视示意图

国产涡喷国产涡喷--7涡轮喷气发动机及剖视图涡轮喷气发动机及剖视图

涡轮喷气发动机的优缺点

涡轮喷气发动机的优缺点

这类发动机具有加速快、设计简便等优点,是较早实用化的喷气发动机类型。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。

涡轮风扇喷气发动机的诞生

涡轮风扇喷气发动机的诞生

二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。

实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机

实用化的阶段。

50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了实用的JT3D。

1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。

涡轮风扇喷气发动机的原理

涡轮风扇喷气发动机的原理

涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前

温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。

涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

加力式涡扇发动机

加力式涡扇发动机

不加力式涡扇发动机

不加力式涡扇发动机

涡轮风扇喷气发动机的优缺点

涡轮风扇喷气发动机的优缺点

如前所述,涡扇发动机效率高,油耗低,飞机的航程就远。但涡扇发动机技术复杂,尤其是如何将风扇吸入的气流正确的分配给外涵道和内涵道,是极大的技术难题。因此只有少数国家能研制出涡轮风扇发动机,中国至今未有批量实用化的国产涡扇发动机。涡扇发动机价格相对高昂,不适于要求价格低廉的航空器使用。

冲压喷气发动机

冲压喷气发动机

早在1913年,法国工程

师雷恩·洛兰就提出了冲压

喷气发动机的设计,并获得

专利。但当时没有相应的助

推手段和相应材料,只停留

在纸面上。1928年,德国人

保罗·施米特开始设计冲压

式喷气发动机。最初研制出

的冲压发动机寿命短、振动

大,根本无法在载人飞机上使用。于是1934年时,施米特和G·马德林提出了以冲压发动机为动力的“飞行炸弹”,于1939年完成了原型。后来这一设计就产生了纳粹德国的V-1巡航导弹。此外纳粹德国还曾试图将冲压喷气发动机用在战斗机上。1941年,特劳恩飞机实验所主任、物理学家欧根·森格尔博士在吕内堡野外进行了该类型发动机的试验,但最终未能产生具有实用意义的发动机型号。

二战后冲压发动机得到了极大的发展,为多种的无人机、导弹等采用。

冲压喷气发动机的原理

冲压喷气发动机的原理

冲压喷气发动机的核心在于“冲压”两字。冲压发动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。燃烧后温度为2000一2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。因此,冲压发动机的推力与进气速度有关。以3倍音速进气时,在地面产生的静推力可高达2OO千牛。

冲压喷气发动机目前分为亚音速、超音速、高超音速三类。亚音速冲压发动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。马赫数小于O.5时一般无法工作。超音速冲压发动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。用航空煤油或烃类作为燃料。推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹。高超音速冲压

发动机使用碳氢燃料或液氢燃料,是一种新颖的发动机,飞行马赫数高达5~16。目前尚处于研制阶段。前两类发动机统称为亚音速冲压发动机,最后一种称为超音速冲压发动机。

冲压喷气发动机与其他推进方式结合后,衍生了多种有特色的发动机,如火箭/冲压组合发动机、整体式火箭冲压发动机等。下图为火箭/冲压组合发动机原理图:

冲压喷气发动机的优缺点

冲压喷气发动机的优缺点

冲压发动机的优势在于构造简单、重量轻、体积小、推重比大、成本低。简单的说就是一个带燃油喷嘴和和点火装置的筒子。因此常用于无人机、靶机、导弹等低成本或一次性的飞行器。同时由于推重比远大于其他类型的喷气发动机,非常适合驱动高超音速飞行器,如空天飞机、先进反舰导弹等。

但冲压发动机没有压气机,就不能在地面静止情况下启动,所以不适合作为普通飞机的动力装置。通常的解决方法是增加一个助推器,使飞行器获得一定的飞行速度,然后再启动冲压发动机。最常见

的助推器为火箭发动机。此外也可由其他飞行器挂载仅装有冲压发动机的飞行器,飞行到一定速度后,再将仅用冲压发动机的飞行器投放。

轮轴发动机

轮轴发动机

涡轮轴发动机的诞生

涡轮轴发动机的诞生

涡轮轴发动机首次正式试飞是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。

在1950年时,透博梅卡(Turbomeca)公司研制成“阿都斯特

-1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),成为世界上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生产的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。

涡轮轴发动机的原理

涡轮轴发动机的原理

涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而其他形式的涡轮喷气发动机一般没有自由涡轮。

涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,产生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机内,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。

涡轮轴发动机剖视示意图

参照涡轮风扇发动机理论,涡轮轴发动机带动的旋翼的直径应该越大越好。因为同一个的核心发动机,所配合的旋翼直径越大,在旋翼上所产生的升力就越大。但能量转换过程总是有损耗的,旋翼限于材料品质也不可能太大,所以旋翼的直径是有限制的。以目前的水平计算,旋翼驱动的空气流量一般是涡轮轴发动机内空气流量的500到1000倍。

直升机飞得没有固定翼飞机快,最大平飞速度通常在350千米/小时以下,因此涡轮轴发动机的进气口设计也较为灵活。通常把内流进气道设计为收敛形,驱使气流在收敛时加速流动,令流场更加均匀。进口唇边呈流线形,适合亚音速流线要求,避免气流分离,保证压气机的稳定工作。此外,由于直升机飞得离地面较近,一般必需去除进

气中杂质,通常都有粒子分离器。粒子分离器可以与进气道设计成一体。分离器设计为一定螺旋形状,利用惯性力场,使进气中的砂粒因为质量较大,在弯道处获得较大的惯性力,被甩出主气流之外,通过分流排出进气道之外。

尽管涡轮轴发动机排气能量不高,但对于敌方红外探测装置来说仍然是相当客观的目标。发动机排气是直升机主要热辐射源之一。作战直升机必须减小自身热辐射强度,要采用红外抑制技术。一方面,要设法降低发动机外露热部件的表面温度,更重要的是,要将外界冷空气引入并混合到高温徘气热流中,从而降低温度,冲淡二氧化氯的浓度,降低红外特征。先进的红外抑制技术通常将排气装置、冷却空气道以及发动机的安装位置作为完整、有效的系统进行设计制造。

我们知道,压气机包括分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轮轴发动机从纯轴流式开始,发展了单级离心、双级离心到轴流与离心混装一起的组合式压气机,历经多次变革。目前涡轮轴发动机一般采用若干级轴流加一级离心构成组合压气机,兼有两者的优点。国产涡轴-6、 涡轴-8发动机为1级轴流加1级离心构成的组合压气机;“黑鹰”直升机上的T700发动机采用5级轴流加1级离心压气机。压气机部件主要包括进气导流器、压气机转子、压气机静子及防喘装置等。压气机转子是一个高速旋转的组合件,轴流式转子叶片呈叶栅排列安装在工作叶轮周围,离心式转子 叶片则呈辐射形状铸在叶轮外部。压气机静子

由压气机壳体和静止叶片组成。转子旋转时,通过转子叶片迫使空气向后流动,不仅加速了空气,而且使空气受到压缩,转子叶片后面的空气压强大于前面的压强。气流离开转子叶片后,进入起扩压作用的静子叶片。在静子叶片的通道,空气流速降低、压强升高,得到进一步压缩。一个转子加一个静子称为一级。衡量空气经过压气机被压缩的程度,常用压缩后与压缩前的压强之比,即增压比来表示。

涡轮轴发动机的优缺点

涡轮轴发动机的优缺点

直升机最初使用活塞式发动机,现在仍有大量采用。涡轮轴发动机与之相比,由于具有涡轮喷气发动机的特性,其功率大,重量轻,功率重量比一般在2.5以上。目前涡轮轴发动机可产生高达6000甚至10000马力的功率,活塞发动机几乎不能做到。涡轮轴发动机的耗油率虽然略高于活塞式发动机,但其使用的航空煤油要比活塞发动机用的汽油便宜。涡轮轴发动机的缺点主要在于,制造相对困难,初始成本也较高。此外,直升机旋翼的转速较低,涡轮轴发动机需要很重很大的减速齿轮系统进行传动,有时其重量竟占动力系统总重量一半以上。而活塞发动机本身转速较低,传动系统相对简单。对于一些普及型或超小型的直升机来说,使用活塞发动机仍然是较好的选择。

航空发动机强度复习题(参考答案)

航空发动机构造及强度复习题(参考答案) 一、 基本概念 1. 转子叶片的弯矩补偿 适当地设计叶片各截面重心的连线,即改变离心力弯矩,使其与气体力弯矩方向相反,互相抵消,使合成弯矩适当减小,甚至为零,称为弯矩补偿。 2. 罩量 通常将叶片各截面的重心相对于z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 3. 轮盘的局部安全系数与总安全系数 局部安全系数是在轮盘工作温度与工作时数下材料的持久强度极限t T σ,与计算轮盘应力中最大周向应力或径向应力之比值。0.2~5.1/max ≥=σσt T K 总安全系数是由轮盘在工作条件下达到破裂或变形达到不允许的程度时的转速c n ,与工作的最大转速m ax n 之比值。max /n n K c d = 4. 轮盘的破裂转速 随着转速的提高,轮盘负荷不断增加,在高应力区首先产生塑性变形并逐渐扩大, 使应力趋于均匀,直至整个轮盘都产生塑性变形,并导致轮盘破裂,此时对应的转速称为破裂转速。 5. 转子叶片的静频与动频 静止着的叶片的自振频率称为静频; 旋转着的叶片的自振频率称为动频;由于离心力的作用,叶片弯曲刚度增加,自振频率较静频高。 6. 尾流激振 气流通过发动机内流道时,在内部障碍物后(如燃烧室后)造成气流周向不均匀,从而对后面转子叶片形成激振。 7. 转子的自位作用 转子在超临界状态下工作时,其挠度与偏心距是反向的,即轮盘质心位于轴挠曲线的内侧,不平衡离心力相应减小,使轴挠度急剧减小,并逐渐趋于偏心距e ,称为“自位”作用。

8. 静不平衡与静不平衡度 由不平衡力引起的不平衡称为静不平衡;静不平衡度是指静不平衡的程度,用质量与偏心矩的乘积me 表示,常用单位为cm g ?。 9. 动不平衡与动不平衡度 由不平衡力矩引起的不平衡称为动不平衡;动不平衡度是指动不平衡的程度,用me 表示,常用单位是cm g ?。 10. 动平衡 动平衡就是把转子放在动平衡机床上进行旋转,通过在指定位置上添加配重,以消除不平衡力矩。 11. 挠性转子与刚性转子 轴的刚性相对于支承的刚度很小的转子系统称为挠性转子;转子的刚性相对于支承的刚性很大的转子称为刚性转子。 12. 转子的临界转速 转子在转速增加到某些特定转速时,转子的挠度会明显增大,当转速超过该转速时,挠度又明显减小,这种特定的转速称为转子的临界转速,是转子的固有特性。 13. 涡动 转轴既要绕其本身轴线旋转,同时,该轴又带动着轮盘绕两轴承中心的连线旋转,这种复合运动的总称为涡动。 14. 自转与公转(进动) 轮盘绕轴旋转称为自转;挠曲的轴线绕轴承连线旋转称为公转或进动。 15. 转子的同步正涡动与同步反涡动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动; 16. 转子的协调正进动与协调反进动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动,对应的进动称为协调正进动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动,对应的进动称为协调反进动。 17. 持久条件疲劳极限 规定一个足够的循环次数L N ,以确定L N 下的“持久疲劳极限”,称为“持久条件疲劳极限”。

航空发动机基本术语

1 喘振压气机的一类气动失稳现象,由于气流分离导致的增压能力的丧失,产生周期性的倒流、解除分离、正常流动、分离、再倒流的循环过程。可通过中间级放气、双转子自动防喘、可调静子叶片和导向叶片、采用处理机匣等方法来防喘。 2 痒振进气道处于深度超临界状态下,通道中的附面层与正激波相互作用形成的分离区具有强烈的脉动性质,其压力表现为高频周期性变化,从而引起管道中激波的高频振荡,这种不稳定流动现象称为痒振。 4 质量附加涡扇发动机将从热机中获取的有效能分配给了更多的工作介质,参与产生推力工质增多,因此推力增大;“同参数”使涡扇发动机在相同热效率条件下降低了排气速度,减小了余速损失,具有更高的推进效率,因此提高了总效率,降低了耗油率;B越大,速度越低、推力越大。 5 余速损失绝对坐标系中气流以绝对速度(C9﹣C0)排出发动机所带走的能量称为“余速损失”。 yusun 6 能量分配原则为减少气流掺混引起的损失,在混合室进口两股气流总压应大致相等,即Pt5II=Pt5,风扇压比的选择要遵循能量最佳分配原则。 7 同参数“同参数”的不同类型发动机具有相同的热力循环和理想循环功,总增压比和涡轮前温度相同,且具有相同的空气流量和燃油流量。 8 推力矢量能够控制排出气流的方向使推力方向变化的尾喷管称为推力矢量尾喷管。目前通常是通过机械方法使喷管管道转向以控制推力方向的。 shiliang 9 几何可调几何可调尾喷管指尾喷管喉道面积可调节,由此来改变气流在涡轮和尾喷管中膨胀比的分配,即改变压气机和涡轮的共同工作点,实现对整个发动机工作状态的控制,带加力的发动机必须几何可调。 10 共同工作各部件组合成整台发动机,部件间的相互作用和影响称为“共同工作”,共同工作条件:质量流量平衡;压气机与涡轮功率平衡;压气机与涡轮物理转速相等;压力平衡。压气机特性图上满足共同工作方程的点组成共同工作线。 gongzuoxian 11 调节规律被控制参数随飞行条件、油门位置、大气条件的变化规律称为控制规律(或调节规律)。有效的控制能最大限度发挥性能潜力和最有利使用发动机,满足飞机在不同飞行条件下的要求。 13 自动防喘即双转子自动防喘机理。当相似转速下降时,引起高、低压压气机与高、低压涡轮之间的功率不相平衡,自动调整各自的转速,使气动三角形近似保持与设计状态相似,消除了叶背的分离,因此防止喘振发生。 14 流量系数流量系数指自由流管面积与进气道进口面积之比,主要用来评价进气道的流通能力。 liuliang 15 临界压比当尾喷管出口反压等于外界大气压,出口气流速度等于声速时,称为尾喷管的临界状态,此时的出口总压与外界大气压力之比为临界压比,约等于1.85。 16 推力流经发动机的气流受到力的作用产生加速度,气流必定产生一个大小相等、方向相反的反作用力作用于发动机,该反作用力即发动机推力。其中推进飞机向前运动,

航空发动机故障诊断技术综述

航空发动机故障诊断技术综述 作者:王英, 沙云东, WANG Ying, SHA Yun-dong 作者单位:沈阳航空工业学院飞行器动力与能源工程学院,辽宁,沈阳,110034 刊名: 沈阳航空工业学院学报 英文刊名:JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期):2007,24(2) 被引用次数:7次 参考文献(12条) 1.钟秉林;黄仁机械故障诊断学 1997 2.李庆杰PW4000发动机振动故障研究[学位论文] 2005 3.胡守仁;余少波;戴葵神经网络导论 1993 4.翟红春;王珍发小波变换在航空发动机故障诊断的应用[期刊论文]-中国民航学院学报 2001(04) 5.苏厚军;杨家军;王润卿基于小波分析的信号检测研究与应用[期刊论文]-武汉理工大学学报 2005(01) 6.龙兵;宋立辉航天器故障诊断技术回顾与展望[期刊论文]-导弹与航天运载技术 2003(03) 7.尚建亮飞机地面空调车齿轮箱的故障诊断[学位论文] 2002 8.吴伟力小波分析理论及其在航空发动机机械故障诊断中的应用[学位论文] 2000 9.张永峰飞行试验中航空发动机振动监测[学位论文] 2003 10.江磊;江凡基于小波神经网络的旋转机械故障诊断[期刊论文]-汽轮机技术 2004(03) 11.张兆宁小波分析、模糊理论及神经网络在电力系统综合自动化中的应用研究[学位论文] 2002 12.Dimitrios Moshoua;Ivo Hostens Dynamic muscle fatigue detection using self-organizing maps 2005(05) 本文读者也读过(10条) 1.欧阳运芳.沈勇.马婧小波神经网络在航空发动机故障诊断中的应用[期刊论文]-航空科学技术2009(6) 2.陈思兵.汤宇红.童万军基于小波和球结构支持向量机的航空发动机故障诊断[期刊论文]-航空科学技术2008(5) 3.马建仓.叶佳佳.MA Jian-cang.YE Jia-jia基于小波包分析的航空发动机故障诊断[期刊论文]-计算机仿真2010,27(2) 4.郑波.朱新宇.ZHENG Bo.ZHU Xin-yu航空发动机故障诊断技术研究[期刊论文]-航空发动机2010,36(2) 5.丁平.白杰基于RBF神经网络的航空发动机故障诊断[期刊论文]-中国民航大学学报2007,25(z1) 6.李华强.费逸伟航空发动机故障诊断技术及其发展[期刊论文]-航空维修与工程2007(5) 7.可成河.巩孟祥.宋文兴.Ke Chenghe.Gong Mengxiang.Song Wenxing某型发动机整机振动故障诊断分析[期刊论文]-航空发动机2007,33(1) 8.马婷婷.郭迎清.Ma Tingting.Guo Yingqing基于离散小波变换的某型航空发动机故障诊断研究[期刊论文]-计算机测量与控制2010,18(2) 9.江龙平.徐可君.隋育松航空发动机故障诊断技术[期刊论文]-航空科学技术2002(2) 10.瞿红春.王珍发小波变换在航空发动机故障诊断中的应用[期刊论文]-中国民航学院学报2001,19(4) 引证文献(7条) 1.徐涛.张勇基于CLIPS的某型航空发动机故障诊断专家系统知识库构建[期刊论文]-电脑知识与技术 2013(14) 2.陈景明.蒋东翔.徐洪志基于模型的双转子-支撑系统快速故障识别方法[期刊论文]-航空动力学报 2013(12) 3.王古常.鲍传美.郑幸.孙烨无人机发动机野外试车系统的研制[期刊论文]-计算机测量与控制 2010(6)

航空发动机基础知识

航空发动机基础知识 航空发动机基础知识 涡轮喷气发动机的诞生 涡轮喷气发动机的诞生 二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。 这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。 涡轮喷气发动机的原理 涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。 随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

2016新编航空发动机控制系统的研究目的与发展

2016新编航空发动机控制系统的研究目的与发展航空发动机控制系统的研究目的与发展 目录 1.1(课题研究的目的和要求...................................................................... . (1) 1.2(航空发动机控制系统的发展...................................................................... (2) 1.2.1(经典控制理论和现代控制理论在发动机控制中的应用 (2) 1.2.2(航空推进系统机械液压式控制器和数字式电子控制器 (4) 1.2.3(航空推进系统各部分独立控制与综合控 制 (6) 1.3.航空发动机控制系统的基本类 型 ..................................................................... .. (6) 1.3.1.机械液压式控制系 统 ..................................................................... . (7)

1.3. 2.数字式电子控制系 统 ..................................................................... . (7) 1.1(课题研究的目的和要求 航空发动机的工作过程是一个非常复杂的气动热力过程,随着环境条件和工作状态(如最大、巡航、加力及减速等)的变化,它要给飞机提供所需的时变推力和力矩,对这样一个复杂且多变的过程,如不加以控制,航空发动机是根本不能工作的。例如:某发动机在地面最大状态工作时,需油量是每小时2400kg;在15km高空、马赫数Ma为0.8时只有每小时500kg,需油量变化达5倍。若对供油量不加以控制,则发动机在飞机升高过程中,将发生严重的超温、超转,会使发动机严重损坏。因此,发动机控制的目的就是使其在任何环境条件和任何工作状态下都能稳定、可靠地运行,并且充分发挥其性能效益。 概括来说,航空发动机对控制的基本要求有: (1) 在各种工作状态及飞行条件下,能最大限度地发挥动 力装置的潜力,能有效的使用动力装置,以满足飞机 1 航空发动机控制系统的研究目的与发展 对动力装置的要求。具体来说,就是在最大状态下, 要能发出最大推力,以满足飞机起飞、爬高的要求; 在巡航状态下,耗油率要小,以满足经济性要求(即 飞机的航程要大);慢车状态时则要求转速尽可能的 小,但又能保证发动机连续稳定的工作。 (2) 过渡过程(启动、加速、减速、加力启动等)的调节 时间尽可能地短,但又要保证动力装置能稳定、可靠

航空发动机基础研究专业说明

航空发动机基础研究专业说明 本次调研针对航空发动机7个基础研究专业开展,包括系统与总体、气动燃烧与传热、结构强度与振动、试验与测试、控制系统与成附件、材料、制造与工艺等。 一、系统与总体 包括航空发动机、辅助动力、燃气轮机和直升机传动系统的综合设计、飞发一体化、总体性能、系统集成以及信息化等技术领域(具体包括需求分析、技术经济性设计、技术状态管理、整机匹配设计、热力循环设计、隐身设计、仿真技术、机械系统设计、整机热管理和信息化技术等)。 二、气动燃烧与传热 包括航空发动机、辅助动力及燃气轮机相关产品中部件/系统相关的气动、燃烧与传热、噪音等领域(具体包括气动热力性能设计、通流及匹配设计、气动弹性与稳定性设计、气热固耦合设计与分析、供油/雾化/掺混及点火设计、空气系统设计、冷却设计及热分析技术、热防护设计和防冰系统设计等)。 三、结构强度与振动 包括航空发动机、辅助动力、燃气轮机和直升机传动系统的总体、系统和部件相关的结构设计、强度与寿命、振动控制、适航、可靠性等领域(具体包括总体结构布局与匹配设计技术、承力系统设计技术、重量分配与控制技术、结构变形协调与控制技术、外部结构设计技术、振动设计与抑制技术等)。 四、试验与测试 包括航空发动机、辅助动力、燃气轮机和直升机传动系统的整机、系统和部件相关的试验、测试及试验设施设备等领域(具体包括整机/核心机地面试验技术、高空模拟试验技术、强度试验技术、部件试验技术、内流换热试验技术、控制系统试验技术、机械系统试验技术、直升机传动系统试验技术、动力装置试飞技术、特种及环境试验技术、测试传感器技术、试验试飞测试技术、故障诊断与预测技术、数据采集及处理技术等)。

航空发动机控制系统的研究目的与发展

目录 1.1.课题研究的目的和要求 (1) 1.2.航空发动机控制系统的发展 (2) 1.2.1.经典控制理论和现代控制理论在发动机控制中的应用 (2) 1.2.2.航空推进系统机械液压式控制器和数字式电子控制器 (4) 1.2.3.航空推进系统各部分独立控制与综合控制 (6) 1.3.航空发动机控制系统的基本类型 (6) 1.3.1.机械液压式控制系统 (7) 1.3.2.数字式电子控制系统 (7) 1.1.课题研究的目的和要求 航空发动机的工作过程是一个非常复杂的气动热力过程,随着环境条件和工作状态(如最大、巡航、加力及减速等)的变化,它要给飞机提供所需的时变推力和力矩,对这样一个复杂且多变的过程,如不加以控制,航空发动机是根本不能工作的。例如:某发动机在地面最大状态工作时,需油量是每小时2400kg;在15km高空、马赫数Ma为0.8时只有每小时500kg,需油量变化达5倍。若对供油量不加以控制,则发动机在飞机升高过程中,将发生严重的超温、超转,会使发动机严重损坏。因此,发动机控制的目的就是使其在任何环境条件和任何工作状态下都能稳定、可靠地运行,并且充分发挥其性能效益。 概括来说,航空发动机对控制的基本要求有: (1)在各种工作状态及飞行条件下,能最大限度地发挥动力装置的潜力,能有效的使用动力装置,以满足飞机

对动力装置的要求。具体来说,就是在最大状态下, 要能发出最大推力,以满足飞机起飞、爬高的要求; 在巡航状态下,耗油率要小,以满足经济性要求(即 飞机的航程要大);慢车状态时则要求转速尽可能的 小,但又能保证发动机连续稳定的工作。 (2)过渡过程(启动、加速、减速、加力启动等)的调节时间尽可能地短,但又要保证动力装置能稳定、可靠 地工作。 (3)在各种工作状态及飞行条件下,保证动力装置不出现超转、过热、超载、喘振、熄火等不安全现象。 1.2.航空发动机控制系统的发展 航空发动机控制系统的发展大致可归纳为:由基于经典控制理论的单变量控制系统发展到基于现代控制理论的多变量控制系统,由机械液压式控制系统发展到数字式电子控制系统,由动力装置各部分的独立控制发展到各部分的综合控制。 1.2.1.经典控制理论和现代控制理论在发动机控制中的应用(一)经典反馈控制 早期飞机的飞行速度不高,发动机的推力也不大,所采用的亚声速进气道和收敛型喷管也不需要控制,这时的航空发动机采用的控制

航空发动机发展史

摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出 kW的功率,重量却有81 kg,功重比为daN。发动机通过两根自行车上那样的链条,带动两个直径为的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从daN提高到daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋

航空发动机期末复习习题

一、填空题(请把正确答案写在试卷有下划线的空格处) 容易题目 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置;其中“三大核心”部件为:压气机;燃烧室和涡轮。 3.压气机的作用提高空气压力,分成轴流式、离心式和组合式三种 4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣 5.压气机增压比的定义是压气机出口压力与进口压力的比值,反映了气流在压气机内压力提高的程度。 6.压气机由转子和静子等组成,静子包括机匣和整流器 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子(工作)叶片的部分组成:叶身、榫头、中间叶根 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气 14.轴流式压气机转子的组成盘;鼓(轴)和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振 17.采用双转子压气机的作用是防止压气机喘振。

18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力 20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环 21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。 25.在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 26.叶冠的作用:①可减少径向漏气而提高涡轮效率;②可抑制振动。 27.叶身凸台的作用:阻尼减振,避免发生共振或颤震,降低叶片根部的弯曲扭转应力(防止叶片振动)。 28.涡轮工作条件:燃气温度高,转速高,负荷高,功率大 29.涡轮的基本类型:轴流式涡轮,径向式涡轮 30.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功从而带动压气机和其他附件工作 31.涡轮的组成:转子;静子和冷却系统。 32.涡轮叶片的特点剖面厚;弯曲大;和内腔有冷却通道。 33.涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案;盘、轴焊接联接方案和盘轴整体方案 34.加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。 35.鼓式转子的优点是抗弯刚性好,结构简单。 36..涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。

2019 航空发动机控制复习大纲 总结

2019 年《航空发动机控制》复习提纲 1.理解航空动力装置在地面条件下的安全工作范围。 它的工作受到慢车转速、最大转速、贫油熄火、涡轮前最高温度以及压气机喘振边界的限制。 2.理解航空动力装置在空中飞行时受到的各种限制。 高空低速时受燃烧室高空熄火的限制。因为高空空气稀薄,燃油雾化质量差,难以稳定燃烧。低空高速时受压气机 超压限制。因为压气机后压力过高,可能会损坏压气机、燃烧室等薄壁部件。图中右边为最大飞行马赫数 MH 限制线。右上方为进气道、飞机蒙皮承受的气动热限制,或称为超载边界。发动机在空中熄火后,一般只能在空中起动 区这一狭小范围内,利用发动机风车状态所造成的燃烧室压力而重新点火、起动。 3.理解航空发动机对控制装置的要求。(P22) 1 保证最有效地使用发动机、 2 稳定工作,控制精度高、 3 良好的动态品质、 4 可靠性高,维护性好、 5 可更改 性好,满足先进发动机对控制不断增加的要求。 4.掌握可控变量的概念。 能影响被控对象的工作过程,用来改变被控参数大小的因素称为可控变量,如供往发动机的燃油流量Wf,涡桨发 动机上螺旋桨的桨叶角β。通常选择油气比(Wf /p3)作为主要的可控变量(原因在28题处也有): (1)因其与主燃烧室油气比的正比关系,油气比可以很好地控制涡轮燃气温度;(2)当发动机喘振时提供了自 恢复的特征;(3)由于减少了控制器收益限制的变化,简化了控制规律,就如同使用修正参数来降低发动机性能 参数的变化。 5.掌握被控参数的概念。 能表征被控对象的工作状态而又被控制的参数。原则上能表征发动机推力大小的参数均可选作被控参数,如转速、涡轮前温度、涡轮后温度、增压比等,当然也包括推力本身。现代民用航空发动机通常用N1和EPR作为被控参数。 6.掌握控制装置的概念。 用以完成既定控制任务的机构总和,又称控制器。 7.掌握干扰作用量的概念。 作用在被控对象或/和控制器上,能引起被控参数发生变化的外部作用量,如飞机的飞行高度H,飞行速度V、外界 温度、压力等,通用可以用f表示。 8.理解并分析开环控制。 整个控制系统构成一个开启的回路,所以称为开环控制。优点:控制及时,稳定性好;缺点:精度差。开环控制 系统按补偿原理控制;控制装置与发动机同时感受同样的外界干扰量;只要干扰量发生变化,控制装置就会相应 的改变可控变量qm,f,以补偿干扰量对发动机所引起的被控参数n的变化,从而间接保持被控参数不变。 补充:图 1-3(a)为开环转速控制系统原理图。该系统是利用柱塞泵供油的。各柱塞都顶靠在一个斜盘上,只要 通过随动活塞移动改变斜盘的倾角就可改变柱塞的行程,使供油量发生变化(柱塞泵将在油泵一章进行详细讲述)。由图可见,它是用膜盒来感受外界干扰量p2(外界大气压)的变化,该干扰量同时作用于发动机上,引起 发动机转速的变化。通常p2 的变化反应了飞行高度和速度的变化。当发动机的外界条件变化时,流过发动机的空

航空发动机原理图文解析

航空发动机原理图文解析 航空发动机原理--螺桨风扇发动机 螺桨风扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来,目前正处于研究和实验阶段。 螺桨风扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片。 根据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8~M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。

由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左右。 同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。 当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的螺桨-风扇的气动设计也是目前研究的难点所在。 -------------------------------------------------------------------------------- 航空发动机原理——涡轮风扇喷气发动机

航空发动机控制系统发展概述

航空发动机控制系统发展概述 摘要:发动机作为飞机的心脏为飞机提供前进的动力,而动力来自于发动机通过进气道、压气机、燃烧室、涡轮及尾喷管共同工作提供的推力。但是这些部分的工作参数是无法通过自身进行调节的,需要采用智能调控系统进行控制,这就是航空发动机的控制系统。本文主要就航空发动机控制系统发展进行探讨。 关键词:航空发动机;控制系统;发展 1航空发动机控制系统组成和原理 1.1航空发动机控制系统组成 发动机是飞机的重要系统,除了发动机本体单元体之外,还包括控制系统、传动系统及润滑系统等。其中控制系统是航空发动机的重要组成部分,现代航空发动机基本都采用全权限数字电子控制(FADEC)系统。 FADEC系统由感受航空发动机工作状态和环境信息的传感装置、对信息进行逻辑判断和控制运算的计算装置、把计算结果施加给航空发动机的控制装置,以及在它们之间传递信息的机械、电缆和管路等组成。FADEC系统--般可分为控制计算机子系统、燃油与作动子系统、传感器子系统、电气子系统等。图1为某型发动机FADEC系统的组成图。 控制计算机子系统分为电子控制器和嵌入式软件两部分。数字电子控制器(EEC)是FADEC系统的核心部件,它处理来自各种传感器和开关装置的信号,经模/数转换为数字量,由其内部机载的控制软件对输入数字量进行诊断、处理,实现各种控制算法、控制逻辑的计算,产生输出数字量,再经过数/模转换成模拟信号,经放大处理,生成控制器输出驱动信号,经电缆传输给相应的液压机械装置。燃油与作动子系统包括燃油子系统和伺服作动子系统。燃油子系统包括增压泵、主燃油泵、燃油计量装置、燃油滤、燃油管路、喷嘴等。伺服作动子系统包括伺服控制单元、伺服作动器及相应附件。传感器子系统包括控制用传感器和状态监视用传感器等。 1.2航空发动机控制系统原理 FADEC系统-般包括转速、压力、温度等多个控制回路,每个控制回路根据相应的输入闭环计算出控制输出,进而实现控制发动机状态的目的。 电子控制器根据发动机工作过程的转速、温度、压力等参数及外部条件(如飞行高度、速度,发动机进口温度、压力,驾驶员指令等)和控制系统内部某些参数(如温度、压力、位移等)的变化,通过控制律计算,产生控制信号,经过电子控制器输出处理电路,输出给液压机械装置,将电信号转换为液压信号,驱动相应作动器,以改变燃油流量、导叶角度、放气开度等,进而达到控制发动机的目的。 飞机油箱来油经过低压泵增压后,进入主燃滑油散热器进行热交换。经主燃滑油散热器再回到燃油泵后通过主燃油滤进入高压泵再次进行增压。高压泵出口油分为两路:-路经自洗油滤和伺服燃油加热器后进入液压机械装置(HMU)的伺服燃油系统,按照EEC指令控制燃油计量系统和作动部件;另一路进入液压机械装置(HMU)的燃油计量系统,计量后的燃油经过燃油流量传感器和喷嘴油滤后进入喷嘴向燃烧室供油。 2发动机控制系统的发展 总体来说,为了适应高性能和高精度的要求,发动机控制技术经过了从传统的液压机械式控制向数字电子控制的转变阶段,并且经历了从单个部件到整体、

航空发动机控制系统仿真课程的教学

航空发动机控制系统仿真课程的教学改革探索 摘要本文分析了航空发动机控制系统仿真课程的教学现状,论述了课程教学改革的意义,指出了课程教学改革中面临的挑战,针对这些挑战并依据课程教学内容及其体系结构特点,提出“控制系统仿真”课程教学改革。 关键词航空发动机控制系统仿真 reform and exploration of teaching for control system simulation of aeroengine pan muxuan (college of energy and power engineering, nanjing university of aeronautics and astronautics, nanjing, jiangsu 210016) abstract the current teaching of “control system simulation of aeroengine” is analyzed in the paper. the teaching reform signification is discussed and the challenges facing the reform are pointed out. in response to the challenges and based on the teaching content and its architecture, the teaching reform is proposed. key words aeroengine; control system; simulation 0 引言 航空发动机控制系统仿真(简称“控制系统仿真”)是一门飞行器动力工程专业本科生的高年级专业课程,主要讲授仿真的基本原

航空发动机产业全景解析

航空发动机产业全景解析

查行业数据,就用行行查 ? https://www.360docs.net/doc/451453728.html, 航空发动机行业的发展水平是一个国家工业基础、科技水平和综合国力的集中体现,也是国家安全和大国地位的重要战略保障。 航空发动机是航空器的“心脏”-为航空器提供飞行所需动力的装置,约占到飞机整机价值量的20%~30%。 全球航空发动机主要分为涡扇发动机、涡喷发动机、涡轴发动机、涡浆发动机四类,其中涡扇发动机是目前最为核心的航空发动机。 目前,世界上能够独立研制高性能军用航空发动机的国家只有美、俄、英、中等少数几个国家,民用领域则由美、英两国垄断,技术工艺门槛较高。 中国的航空发动机历经“引进—仿制—自主研发”,目前已全面进入涡扇阶段。

资料来源:《航空发动机—飞机的心脏》 根据空天界发布的航空发动机产业现状与趋势,2019年各类航发总产量14144台,总产值728亿美元,其中涡扇发动机6322台,数量占比为44.7%,其高昂的制造价格使得其价值占比在90%以上。 战斗机(例如F-35、F-22、歼-20、歼-31)和民航客机(C919、波音、空客的绝大多数客机),都采用的是涡扇发动机,军用战斗机多采用小涵道比,民用客机多为大涵道比。 预计未来15年间航发生产结构大致稳定,总产量23.8万台,总价值1.3万亿美元,其中涡扇发动机11万台,总价值占比92.9%。 资料来源:民生证券

涡扇发动机:军民用飞机主要动力 涡扇发动机由涡轮喷气发动机发展而成,在核心机基础增加了风扇和低压涡轮。由风扇、外涵道、压气机、燃烧室和涡轮组成,涡扇发动机相当于是涡喷发动机加上风扇及其外涵道的部分。 20世纪60年代出现风扇化热潮,70~80年代以后涡扇发动机高速发展,开始取代涡喷发动机成为军民用飞机的主要动力,分别向小涵道比的军用加力发动机和大涵道比的军民共用发动机两个方向发展。 涵道比(Bypass ratio,简称BPR)是指外涵道与内涵道空气流量之比,又称为流量比,是影响涡扇发动机性能好坏的一个重要参数。高涵道比涡轮风扇发动机的迎风面积大,不宜于作超声速飞行,因此一般战斗机用的加力涡轮风扇发动机的涵道比一般小于1.0。 目前除了尚未退役的部分二代战斗机用涡喷发动机外,大多数已被涡轮风扇发动机所取代,当前小型涡喷发动机主要应用于中高空无人机、靶机和弹道导弹领域。 根据战斗机的性能,现役及在研的战斗机的代数可以分为五代,与之对应的航空发动机也被划分为五代。当前,发达国家装备主战机种是第三代战斗机,未来将逐步过渡到四代战机。 第五代涡扇发动机出现在21 世纪初,以美国的F135 和英、美联合研制的F136 发动机为代表,推重比为12-13。 目前,在国际市场上,大型飞机发动机的研制主要依赖GE、PW和R&R三大公司,各公

航空发动机材料及热效分析

目录 1 引言 (2) 1.1概述 (2) 1.2国内外研究现状 (2) 1.3 本文要解决的问题 (3) 2 航空发动机的热效分析 (3) 2.1 燃料的燃烧效率η (4) 2.1.1 燃烧反应速率 (4) 2.1.2 燃烧效率的计算 (5) 2.2 温度与平均动能的关系 (6) 2.2.1 微观角度分析 (6) 2.2.2 宏观角度分析 (6) 2.3 热机效率η卡计算过程 (7) 3 火焰筒性能分析主要的区域 (7) 3.1火焰筒壁温的轴向分布 (7) 3.2火焰筒壁温的径向分布.............................................................................. 错误!未定义书签。 4 常用的发动机燃烧室的材料的性能 (9) 4.1 GH3044的性能 (9) 4.1.1 力学性能 (9) 4.1.2 锻件的高温持久性能 (10) 4.1.3 材料的高温拉伸性能 (10) 4.2 Ti-Al-Sn-Zr-Mo-Ta-Si-C的性能 (10) 4.2.1 拉伸性能............................................................................................... 错误!未定义书签。 4.2.2 热稳定性............................................................................................... 错误!未定义书签。 4.2.3蠕变和持久性能...................................................................................... 错误!未定义书签。 4.3 BT25y......................................................................................................... 错误!未定义书签。 4.3.1 材料在不同温度条件下的力学性能 ................................................... 错误!未定义书签。 4.3.2材料高温下的拉伸性能.......................................................................... 错误!未定义书签。 4.3.3高温蠕变性能.......................................................................................... 错误!未定义书签。 4.4 GH150 (11) 4.4.1合金不同温度的拉伸性能 (11) 4.4.2 材料的持久性能................................................................................... 错误!未定义书签。 4.4.3 蠕变性能............................................................................................... 错误!未定义书签。 4.4.4 疲劳性能............................................................................................... 错误!未定义书签。 5 材料使用温度对航空发动机燃烧室的热效的影响 (12) 5.1 GH3044效率计算 (12) 5.2 Ti-AL-Sn-Zr-Mo-Ta-Si-C的效率为: (12) 5.3 BT25y的效率为: (12) 5.4 GH150的效率为: (12) 6 推重比计算 (13) 结论 (15)

相关文档
最新文档