十大高中平面几何几何定理汇总及证明

十大高中平面几何几何定理汇总及证明
十大高中平面几何几何定理汇总及证明

高中平面几何定理汇总及证明

1.共边比例定理

有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.

证明:分如下四种情况,分别作三角形高,由相似三角形可证

S△PAB=(S△PAM-S△PMB)

=(S△PAM/S△PMB-1)×S△PMB

=(AM/BM-1)×S△PMB(等高底共线,面积比=底长比)

同理,S△QAB=(AM/BM-1)×S△QMB

所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比)

定理得证!

特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ。

2.正弦定理

在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=R(r为外接圆半径,R为直径)

证明:

现将△ABC,做其外接圆,设圆心为O。我们考虑∠C及其对边

AB。设AB长度为c。

若∠C为直角,则AB就是⊙O的直径,即c= 2r。

∵(特殊角正弦函数值)

若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,

显然BC'= 2r=R。

若∠C为锐角,则C'与C落于AB的同侧,

此时∠C'=∠C(同弧所对的圆周角相等)

∴在Rt△ABC'中有

若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出。

考虑同一个三角形内的三个角及三条边,同理,分别列式可得

在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,

则有BD/CD=(sin∠BAD/sin∠CAD)*(AB/AC)。

证明:

S△ABD/S△ACD=BD/CD………… (1.1)

S△ABD/S△ACD=[(1/2)×AB×AD×sin∠BAD]/[(1/2) ×AC×AD×sin∠CAD]

= (sin∠BAD/sin∠CAD) ×(AB/AC) …………(1.2)

由1.1式和1.2式得

BD/CD=(sin∠BAD/sin∠CAD) ×(AB/AC)

4.张角定理

在△ABC中,D是BC上的一点,连结AD。那么∠∠∠。

证明:

设∠1=∠BAD,∠2=∠CAD

由分角定理,

S△ABD/S△ABC=BD/BC=(AD/AC)*(sin∠1/sin∠BAC)

→ (BD/BC)*(sin∠BAC/AD)=sin∠1/AC (1.1)

S△ACD/S△ABC=CD/BC=(AD/AB)*(sin∠2/sin∠BAC)

→ (CD/BC)*(sin∠BAC/AD)=sin∠2/AB (1.2)

(1.1)式+(1.2)式即得sin∠1/AC+sin∠2/AB=sin∠BAC/AD

5.帕普斯定理

直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于G,AF,DC交于I,BF,EC交于H,则G,I,H共线。

设S为圆内弦AB的中点,过S作弦CF和DE。设CF和DE各相交AB于点M和N,则S是MN的中点。

证明:

过O作OL⊥ED,OT⊥CF,垂足为L、T,

连接ON,OM,OS,SL,ST,易明△ESD∽△CSF

∴ES/CS=ED/FC

根据垂径定理得:LD=ED/2,FT=FC/2

∴ES/CS=EL/CT

又∵∠E=∠C

∴△ESL∽△CST

∴∠SLN=∠STM

∵S是AB的中点所以OS⊥AB

∴∠OSN=∠OLN=90°

∴O,S,N,L四点共圆,(一中同长)

同理,O,T,M,S四点共圆

∴∠STM=∠SOM,∠SLN=∠SON

∴∠SON=∠SOM

∵OS⊥AB

∴MS=NS

7.西姆松定理

过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线。(此线常称为西姆松线)。

证明:

若L、M、N三点共线,连结BP,CP,则因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N 和P、M、C、L分别四点共圆,有

∠NBP = ∠NLP = ∠MLP= ∠MCP.

故A、B、P、C四点共圆。

若A、P、B、C四点共圆,则

∠NBP= ∠MCP。

因PL⊥BC,PM⊥AC,PN⊥AB,

有B、L、P、N和P、M、C、L四点共圆,有

∠NBP = ∠NLP= ∠MCP= ∠MLP.

故L、M、N三点共线。

西姆松逆定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。

证明:PM⊥AC,PN⊥AB ,所以A,M,N,P共圆

设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上.

证明:

A、B、P、C四点共圆,因此

∠PCE=∠ABP

点P和V关于CA对称

所以∠PCV=2∠PCE

又因为P和W关于AB对称,所以

∠PBW=2∠ABP

从这三个式子,有

∠PCV=∠PBW

另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的

圆周角,所以

∠PCQ=∠PBQ

两式相加,有

∠PCV+∠PCQ=∠PBW+∠PBQ

即∠QCV=∠QBW

即△QCV和△QBW有一个顶角相等,因此

但是,,所以

同理

于是

根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上。

三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点。设A为C1的点,直线MA交C2于B,直线PA交C3于C。那么B, N, C这三点共线。

逆定理:如果是三角形,M, N, P三点分别在边AB, BC, CA

上,那么△AMP、△BMN、△CPN 的外接圆交于一点O。

完全四线形定理

如果ABCDEF是完全四线形,那么三角形的外接圆交于一点

O,称为密克点。

四圆定理

设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的交点,

A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,

A4和B4是C1和C4的交点。那么A1, A2, A3, A4四点共圆当且仅当B1, B2, B3, B4四点共圆。

证明:在△ABC的BC,AC,AB边上分别取点W,M,N,对AMN,△BWN和△CWM分别作其外接圆,则这三个外接圆共点。

该定理的证明很简单,利用“圆内接四边形对角和为180度”及其逆定理。

现在已知U是和的公共点。连接UM和UN,

∵四边形BNUW和四边形CMUW分别是和的内接四边形,

∴∠UWB+∠UNB=∠UNB+∠UNA=180度

∴∠UWB=∠UNA。

同理∠UWB+∠UWC=∠UWC+∠UMC=180度

∴∠UWB=∠UMC。

∵∠UMC+∠UMA=180度

∴∠UNA+∠UMA=180度,

这正说明四边形ANUM是一个圆内接四边形,而该圆必是,U必在上。

10.婆罗摩笈多定理

圆内接四边形ABCD的对角线AC⊥BD,垂足为M。EF⊥BC,且M在EF上。那么F是A D的中点。

证明:

∵AC⊥BD,ME⊥BC

∴∠CBD=∠CME

∵∠CBD=∠CAD,∠CME=∠AMF

∴∠CAD=∠AMF

∴AF=MF

∵∠AMD=90°,同时∠MAD+∠MDA=90°

∴∠FMD=∠FDM

∴MF=DF,即F是AD中点

逆定理:

若圆内接四边形的对角线相互垂直,则一边中点与对角线交点的连线垂直于对边。

证明:

∵MA⊥MD,F是AD中点

∴AF=MF

∴∠CAD=∠AMF

∵∠CAD=∠CBD,∠AMF=∠CME ∴∠CBD=∠CME

∵∠CME+∠BME=∠BMC=90°

∴∠CBD+∠BME=90°

∴EF⊥BC

圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.

证明:过C作CP交BD于P,使∠1=∠2,又∠3=∠4,

∴△ACD∽△BCP.

得AC:BC=AD:BP,AC·BP=AD·BC ①。

又∠ACB=∠DCP,∠5=∠6,

∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。

①+②得AC(BP+DP)=AB·CD+AD·BC.

即AC·BD=AB·CD+AD·BC.

12.梅涅劳斯定理

当直线交三边所在直线于点时,。

证明:过点C作CP∥DF交AB于P,则

两式相乘得

梅涅劳斯逆定理:若有三点F、D、E分别在边三角形的三

边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。

证明:先假设E、F、D三点不共线,直线DE与AB交于P。

由梅涅劳斯定理的定理证明(如利用平行线分线段成比例的证明方法)得:

(AP/PB)(BD/DC)(CE/EA)=1。

∵ (AF/FB)(BD/DC)(CE/EA)=1。

∴ AP/PB=AF/FB ;

∴ (AP+PB)/PB=(AF+FB)/FB ;

∴ AB/PB=AB/FB ;

∴ PB=FB;即P与F重合。

∴ D、E、F三点共线。

13.塞瓦定理

在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则

(BD/DC)×(CE/EA)×(AF/FB)=1。

∵△ADC被直线BOE所截,

∴(CB/BD)*(DO/OA)*(AE/EC)=1①

∵△ABD被直线COF所截,

∴(BC/CD)*(DO/OA)*(AF/FB)=1②

②/①约分得:

(DB/CD)×(CE/EA)×(AF/FB)=1

相交弦定理:如图Ⅰ,AB、CD为圆O的

两条任意弦。相交于点P,连接AD、BC,

由于∠B与∠D同为弧AC所对的圆周角,

因此由圆周角定理知:∠B=∠D,同理

∠A=∠C,所以。所以有:

,即:。

割线定理:如图Ⅱ,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有,同上证得。

切割线定理:如图Ⅲ,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PBC=∠D,又因为∠P为公共角,所以有

,易证

图Ⅳ,PA、PC均为切线,则∠PAO=∠PCO=90°,在直角三角形中:OC=OA=R,PO为公共边,因此

。所以PA=PC,所以

综上可知,

是普遍成立的。

弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度

数的一半,等于它所夹的弧所对的圆周角度数。

点对圆的幂

P点对圆O的幂定义为

点P在圆O内→P对圆O的幂为负数;

点P在圆O外→P对圆O的幂为正数;

点P在圆O上→P对圆O的幂为0。

三角形五心:

内心:三角形三条内角平分线的交点

外心:三角形三条边的垂直平分线(中垂线)的相交点

重心:三角形三边中线的交点

垂心:三角形的三条高线的交点

旁心:三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心

九点圆心:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆的圆心

15.根心定理

三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:

(1)三根轴两两平行;

(2)三根轴完全重合;

(3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。

平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它

们的根心;若三圆圆心共线,则三条根轴互相平行。

根轴定义:

A与B的根轴L1:到A与B的切线相等的点。

B与C的根轴L2:到B与C的切线相等的点。

证明

设A、B、C三个圆,圆心不重合也不共线。

考察L1与L2的交点P。

因为P在L1上,所以:P到A的切线距离=P到B的切线距离。

因为P在L2上,所以:P到B的切线距离=P到C的切线距离。

所以:P到A的切线距离=P到B的切线距离=P到C的切线距离。

也就是:P到A的切线距离=P到C的切线距离。所以:P在A与C的根轴上。所以:三个根轴交于一点。

16.鸡爪定理

设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC。

证明:

由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=(180°-∠ABC)/2

∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ

同理,∠ICJ=90°

∵∠IBJ+∠ICJ=180°

∴IBJC四点共圆,且IJ为圆的直径

∵AK平分∠BAC

∴KB=KC(相等的圆周角所对的弦相等)

又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB

∴KB=KI

由直角三角形斜边中线定理逆定理可知K是IJ的中点

∴KB=KI=KJ=KC

逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K。在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部。则I是△ABC的内心,J是△ABC 的旁心。

证明:

利用同一法可轻松证明该定理的逆定理。

取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ'

又∵KB=KI=KJ

∴I和I'重合,J和J’重合

即I和J分别是内心和旁心

17.费尔巴哈定理

三角形的九点圆与其内切圆以及三个旁切圆相切

设△ABC的内心为I,九点圆的圆心为V。三边中点分别为L,M,N,内切圆与三边的切点分别是P,Q,R,三边上的垂足分别为D,E,F。

不妨设AB>AC。

假设⊙I与⊙V相切于点T,那么LT与⊙I相交,设另

一个交点为S。

过点S作⊙I的切线,分别交AB和BC于V,U,连接

AU。

又作两圆的公切线TX,使其与边AB位于LT的同侧。

由假设知

∠XTL=∠LDT

而TX和SV都是⊙I的切线,且与弦ST所夹

的圆弧相同,于是

∠XTL=∠VST

因此

∠LDT=∠VST

∠UDT+∠UST=180°

这就是说,S,T,D,U共圆。

而这等价于:LU×LD=LS×LT

又LP2=LS×LT

故有LP2=LU×LD

另一方面,T是公共的切点,自然在⊙V上,

因此 L,D,T,N共圆,进而有

∠LTD=∠LND

由已导出的S,T,D,U共圆,得

∠LTD=∠STD=180°-∠SUD=∠VUB

=∠AVU-∠B

∠LND=∠NLB-∠NDB

=∠ACB-∠NBD

=∠C-∠B

(这里用了LN∥AC,以及直角三角形斜边上中线等于斜边的一半)所以,就得到

∠AVU=∠C

注意到AV,AC,CU,UV均与⊙I相切,于是有

∠AIR=∠AIQ

∠UIS=∠UIP

∠RIS=∠QIS

三式相加,即知

∠AIU=180°

也即是说,A,I,U三点共线。

另外,AV=AC,这可由△AIV≌△AIC得到。

(这说明,公切点T可如下得到:

连接AI,并延长交BC于点U,

过点U作⊙I的切线,切点为S,交AB于V,

最后连接LS,其延长线与⊙I的交点即是所谓的公切点T。)

连接CV,与AU交于点K,

则K是VC的中点。

前面已得到:LP2=LU×LD

2LP=(BL+LP)-(CL-LP)

=BP-CP

=BR-CQ

=(BR+AR)-(CQ+AQ)

=AB-AC

=AB-AV

=BV

即 LP=BV

然而

LK是△CBV的中位线

于是 LK=BV

因之 LP=LK

故LK2=LU×LD

由于以上推导均可逆转,因此我们只需证明:

LK2=LU×LD。往证之

这等价于:LK与圆KUD相切

于是只需证:∠LKU=∠KDU

再注意到 LK∥AB(LK是△CBV的中位线),即有

∠LKU=∠BAU

又AU是角平分线,于是

∠LKU=∠CAU=∠CAK

于是又只需证:∠CAK=∠KDU

即证:∠CAK+∠CDK=180°

这即是证:A,C,D,K四点共圆

由于 AK⊥KC(易得),AD⊥DC

所以 A,C,D,K确实共圆。

这就证明了⊙I与⊙V内切。

旁切圆的情形是类似的。

证毕

另略证:

OI2=R2-2Rr

IH2=2r2-2Rr'

OH2=R2-4Rr'(其中r‘是垂心H的垂足三角形的内切圆半径,R、r是三角形ABC外接圆和内切圆半径)

FI2=1/2(OI2+IH2)-1/4OH2=(1/2R-r)2

FI=1/2R-r这就证明了九点圆与内切圆内切(九点圆半径为外接圆半径一半。F是九点圆圆心,I为内心)

18.莫利定理

将三角形的三个内角三等分,靠近某边的两条三分角线相交

得到一个交点,则这样的三个交点可以构成一个正三角形

证明:设△ABC中,AQ,AR,BR,BP,CP,CQ为各角的三等分线,

三边长为a,b,c,三内角为3α,3β,3γ,则α+β+γ=60°。

在△ABC中,由正弦定理,得AF=csinβ/sin(α+β)。

不失一般性,△ABC外接圆直径为1,则由正弦定理,知

c=sin3γ,所以

AF=(sin3γ*sinβ)/sin(60°-γ)

= [sinβ*sinγ(3-4sin2γ)]/[1/2(√3cosγ-sinγ)]

= 2sinβsinγ(√3cosγ+sinγ)

= 4sinβsinγsin(60°+γ).

同理,AE=4sinβsinγsin(60°+β)

∴AF:AE=[4sinβsinγsin(60°+γ)]:[4sinβsinγsin(60°+β)] =sin(60°+γ):sin(60°+β)=sin∠AEF:sin∠AFE

∴∠AEF=60°+γ,∠AFE=60°+β.同理得,∠CED=60°+α

∠FED=180°-CED-(AEF-α-γ)=180°-60°-α-60°+α=60°

∴△FED为正三角形

19.拿破仑定理

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学公式定理大集中

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα 2cotα=1 sinα 2cscα=1 cosα 2secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα 2tanβ tanα-tanβ tan(α-β)=—————— 1+tanα 2tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

初中几何定理大全之欧阳歌谷创编

初中几何概念、定理 欧阳歌谷(2021.02.01) 平面几何 1.两点之间的所有连线中,线段最短。 2.两点之间线段的长度叫做这两点之间的距离。 3.经过两点有一条直线,并且只有一条直线。 4.将一个角分成相等的两部分的射线叫做这个角的角平分线。 5.如果两个角的和是一个直角,这两个角叫做互为余角。简称 互余,其中的一个角叫做另一个角的余角。 6.如果两个角的和是一个平角,这两个角叫做互为补角。简称 互补,其中的一个角叫做另一个角的补角。 7.同角(或等角)的余角相等。 8.同角(或等角)的补角相等。 9.对顶角相等。 10.在同一平面内,不相交的两条直线叫做平行线。 11.经过直线外一点,有且只有一条直线与已知直线平行。

12.如果两条直线都与第三条直线平行,那么这两条直线相互 平行。 13.如果两条直线相交成直角,那么这两条直线互相垂直。互 相垂直的两条直线的交点叫做垂足。 14.当两条直线互相处置时,其中一条直线叫做另一条直线的 垂线。 15.经过一点有且只有一条直线与已知直线垂直。 16.直线外一点到直线上各点连接的所有线段中,垂线段最 短。 17.直线外一点到这条直线的垂线段的长度,叫做点到直线的 距离。 18.同位角相等,两直线平行。 19.内错角相等,两直线平行。 20.同旁内角互补,两直线平行。 21.两直线平行,同位角相等。 22.两直线平行,内错角相等。 23.两直线平行,同旁内角互补。 24.在平面内,将一个图形沿着某个方向移动一定的距离,这 样的图形运动叫做图形的平移。平移不改变图形的形状、大小。 25.如果两条直线互相平行,那么其中一条直线上任意两点到 另一直线的距离相等,这个距离称为平行线之间的距离。

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

高级中学数学公式定理一览表

高中所用重点公式汇总

公式口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。 函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

(完整版)初中平面几何知识点汇总(一)

平面几何知识点汇总(一) 知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段 (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.

二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形 ①多边形的对角线 2)3 ( n n条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

平面几何四大定理

. 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。求证: FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于

DEG 截△ABM →1DB MD GM AG EA BE =? ?(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB ( GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C 。求证:AC 2=AB 2 +AB ·BC 。

[整理]年高中数学定理汇总

124推论2 经过切点且垂直于切线的直线必经过圆心 125切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 126圆的外切四边形的两组对边的和相等 127弦切角定理弦切角等于它所夹的弧对的圆周角 128推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 129相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 130推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 131切割线定理从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 132推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 133如果两个圆相切,那么切点一定在连心线上 134①两圆外离d﹥r+r ②两圆外切d=r+r ③两圆相交r-r﹤d﹤r+r(r﹥r) ④两圆内切d=r-r(r﹥r) ⑤两圆内含d﹤r-r(r﹥r) 135定理相交两圆的连心线垂直平分两圆的公共弦 136定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 137定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 138正n边形的每个内角都等于(n-2)×180°/n 139定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 149正n边形的面积sn=pnrn/2 p表示正n边形的周长 141正三角形面积√3a²/4( a表示边长) 142如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 143弧长计算公式:l=nπr/180 144扇形面积公式:s扇形=nπr2/360=lr/2 145内公切线长= d-(r-r) 外公切线长= d-(r+r) 146等腰三角形的两个底角相等 147等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 148如果一个三角形的两个角相等,那么这两个角所对的边也相等 149三条边都相等的三角形叫做等边三角形 150两边的平方的和等于第三边的三角形是直角三角形 编辑本段数学归纳法 (—)第一数学归纳法: 一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立 (2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。 (二)第二数学归纳法: 第二数学归纳法原理是设有一个与自然数n有关的命题,如果:

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

相关文档
最新文档