直流无刷电机 行业应用和发展趋势

无刷直流电动机毕业设计绪论

无刷直流电动机 一、简介: 一种用电子换向的小功率直流电动机。又称无换向器电动机、无整流子直流电动机。它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。 同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷电动 机结构如图1。 图1无刷直流电动机结构图 二、特点(优点及意义): 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载;3 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;

9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震 动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。i 三、发展历程: 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。ii 四、国内外无刷电机的发展现状: 1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。由于需要量少,只需由某些科研单位试制提供就能满足要求。经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。iii 2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。例如: ①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

超高速永磁直流无刷电机的特点

超高速永磁直流无刷电机的特点 永磁无刷直流电机由于气隙大,效率高,转子结构简单,适合于超高速运行,是特种电机领域研究的热点,也是超高速精密电主轴理想的驱动部件之一。 永磁无刷直流电机的转子常采用高性能永磁铁,设计成磁环或者扇形块粘贴在转子上,强度低;另外电机高频引起的损耗大,转子散热困难等特有的问题,使得高速永磁无刷直流电机转子温升过大,永磁体易于退磁,制约了电机转速的进一步提高。 在掌握高速永磁无刷直流电机设计理论的基础上,通过电主轴用永磁直流无刷电机的主要问题进行深入的分析,从电机本体结构设计、电磁设计、超高速转子设计等方面对超高速电主轴用电机进行设计,并对开发的超高速永磁直流无刷电机的性能进行了分析。 主要的研究内容包括:首先,阐述了课题的背景及意义,国内外的研究现状,研究内容及结构安排,接着对永磁无刷直流电机的结构组成和工作原理进行了分析。采用传统的磁路计算和电磁场有限元相结合的方法,进行了高速永磁电机的电磁计算。 针对超高速电机的损耗过大等关键问题,结合永磁无刷直流电机的电磁计算方法,给出了一套比较完整的电主轴用内装式超高速永磁无刷直流电机本体设计方案。 其次,研究了力辉电机转子机械强度,转子采用的是整体磁环式结构,为了防止永磁体在高速旋转时产生的巨大拉应力作用下而破

坏,利用非导磁合金钢护套对永磁体进行了保护,保护套与永磁体之间采用过盈配合。基于弹性力学理论和有限元接触理论建立了高速永磁转子应力计算模型,计算了永磁体和护套的接触应力,确定了护套和永磁体之间的过盈量。 根据电主轴实际运行时的温升现象,校核了不同温度下的永磁体和护套的强度,从而保证永磁转子的安全运行。 第三,对高速永磁无刷直流电机内的损耗进行了分析计算,采用有限元法研究了槽开口和气隙长度对转子涡流损耗的影响,在空,负载状态下的研究结果均表明:随着槽开口的增加或者气隙长度的减小,转子损耗都会增加。由于定转子损耗与磁场波形密切相关,对比分析了平行充磁和径向充磁对高速永磁无刷直流电机气隙磁场和电机损耗的影响,结果表明:平行充磁优于径向充磁。 最后,在电机设计的基础上,利用软件搭建了永磁无刷直流电机有限元模型,分析了电磁转矩脉动的抑制方法,并对磁路方案进行了校正,仿真分析了电机性能,完善了电机的结构设计。

无刷直流电机控制系统仿真-毕业设计

毕业论文 课题名称无刷直流电机双闭环PI控制系统仿真 系部 专业 班级 学号 姓名 指导教师

摘要 本设计基于MATLAB/SIMULINK环境,利用其自带模块,编写S-函数程序,建立无刷直流电机的闭环控制系统模型。此系统采用转速-电流PI双闭环控制策略。其中,转速环为控制外环,使用PI控制算法;电流环为控制内环,采用滞环比较PWM控制方式,使得实际电流能跟踪参考电流。在分析了无刷直流电机的物理特性之后,可以建立其数学模型,将它与控制系统数学模型结合,就可以实现电机控制。将仿真结果与理论分析对比之后,可以看到本控制系统具有良好的控制效果。 关键词:无刷直流电机;双闭环控制系统;MATLAB/Simulink;PI控制 Abstract

based on MATLAB/SIMULINK environment, using the automatic module and writing S - function program establish a model of the closed loop control system of brushless dc motor. This system USES PI speed - current double closed-loop control strategy. Among them, the speed loop as the outer ring to use PI control algorithm; Current loop to control the inner ring, using the hysteresis PWM control mode, makes the actual current can track reference current. Physical properties after the analysis of the brushless dc motor, can establish its mathematical model, combined with control system mathematical model, it can achieve motor control. After compare the simulation results and theoretical analysis, you can see this control system has good control effect. Keywords: Brushless DC Motor; double-loop control system; MATLAB/Simulink; PI control

永磁直流电机性能参数

ZYT直流永磁电机 概述 ZYT直流永磁电机采用铁氧体永磁磁铁作为激磁,系封闭自冷式。作为小功 率直流马达可以用在各种驱动装置中做驱动元件。 产品说明 (1)产品特点:直流电动机的调速范围宽广,调速特性平滑;直流电动机 过载能力较强,热动和制动转矩较大;由于存在换向器,其制造复杂,价格较高。 (2)使用条件:海拔w 4000m环境温度:-25 C —+40C ;相对湿度w 90%(+25C时);允许温升,不超过75K。 型号说明 90ZYT08/H1 1.90位置表示机座号。用55、70、90、110和130表示。其相应机座号外径为 55mm 70mm 90mm 110mn和130mm 2. ZYT表示直流永磁马达。 3.08位置表示铁芯长度。其中01-49为短铁芯,51-99为长铁芯和101-149为超长铁芯。 4.H1位置为派生结构。其代号用H1、H2 H3??…。 安装形式 1. A1表示单轴伸底脚安装,AA1表示双轴伸底脚安装。 2. A3表示单轴伸法兰安装,AA3表示双轴伸法兰安装。 3. A5表示单轴伸机壳外圆安装,AA5表示双轴伸机壳外圆安装。 使用条件 1. 海拔不超过4000米。 2. 环境温度:-25度到40度。 3. 相对温度:小于等于95度。 4. 在海拔不超过1000米时,不超过75K. 技术参数 以下数值为参考使用,在实际生产时可以根据客户要求调整。 1. 型号55ZYZT01-55ZYZ10转矩55.7-63.7(毫牛米),速度3000-6000(r/min), 功率20-35(W),电压24-110(V),电流1.5-3.2 (A)和允许逆转速度差

永磁无刷直流电机矢量控制系统实现毕业设计(论文)

摘要 电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。 本文主要研究内容如下: 1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。 2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。 关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,Simulink

ABSTRACT Electric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection. The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency . The main studies were as follows: (1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation. (2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.

电动车无刷直流电机毕业设计论文

摘要 近年来,燃油交通工具因尾气排放问题已造成城市空气的严重污染。于是发展绿色交通工具已经成为一个重要的课题。考虑到我国的国情,发展电动自行车具有重要的环保意义。随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。本文设计采用无刷直流电机专用控制芯片MC33033为控制芯片,以功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。设计出了电路原理图、印制板电路图和电路板实物的3维效果图。 关键词:无刷直流电机MC33033 原理图印制板电路图

Abstract In recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. Design a circuit diagram, PCB circuit diagrams and circuit board real 3-D renderings. Keywords:brushless DC motor MC33033 Schematic PCB circuit

直流永磁电机基本知识

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈,从电刷B 流出,根据电磁力定律,载流导体和收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是,从电刷B 流出。 此时载流导体和受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下

电动车无刷直流电机 毕业设计论文

毕业设计(论文) 题目:无刷电机驱动的电动自行车 的控制系统设计 专业:数控技术 班级: 学号: 姓名: 指导老师:

摘要 近年来,燃油交通工具因尾气排放问题已造成城市空气的严重污染。于是发展绿色交通工具已经成为一个重要的课题。考虑到我国的国情,发展电动自行车具有重要的环保意义。随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。本文设计采用无刷直流电机专用控制芯片MC33033为控制芯片,以功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。设计出了电路原理图、印制板电路图和电路板实物的3维效果图。 关键词:无刷直流电机MC33033 原理图印制板电路图

Abstract In recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. Design a circuit diagram, PCB circuit diagrams and circuit board real 3-D renderings. Keywords:brushless DC motor MC33033 Schematic PCB circuit

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

学号:1008421057 本科毕业论文(设计) (2014届) 直流无刷电机控制系统的设计 院系电子信息工程学院 专业电子信息工程 姓名胡杰 指导教师陆俊峰陈兵兵 高工助教 2014年4月

摘要 无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。 自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。 本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。 关键词:控制系统;DSPIC30F2010芯片;无刷直流电机

Abstract Brushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention. Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth. The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop. Keywords: Control system; dspic30f2010 chip; brushless DC motor

无刷直流电机控制系统的设计

无刷直流电机控制系统 的设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。

无刷直流电机控制器的设计

无刷直流电机控制器的设计 3.1 无刷直流电机控制器的概述 无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简 单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便。 电机控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,它主要完成以下功能:对各种信号进行逻辑综合,以给驱动电路提供各种控制信号;产生PWM调制信号,实现电机的调速;对电机进行速度环和电流环调节,使系统具有较好的动态和静态性能;实现短路、过流、欠压、堵转等故障保护功能。 现代控制技术的发展与微处理器的发展息息相关,可以说,每一次微处理器的进步都推动了控制技术的一次飞跃。在微处理器出现之前,控制器只能由模拟系统构成。由模拟器件构成的控制器只能实现简单的控制,功能单一、升级换代困难,而且由分立器件构成的系统控制精度不高,温度漂移,器件老化严重,使得维护成本增高,限制了它的发展和应用范围。随着微处理器的迅速发展和推广,控制器由模拟式转换成了数模混合式,并进一步发展到全数字式,技术的进步使得许多模拟器件难以实现的功能都可以方便地用软件实现,使系统的可靠性和智能化水平大大提高。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便[9][10]。 控制器是电动自行车的驱动系统,它是电动自行车的大脑。其主要作用是在保证电动自行车正常工作的前提下,提高电机和蓄电池的效率、节省能源、保护

毕业设计:无 刷 直 流 电 机 控 制 器 设 计

第一章前言 无刷直流电机控制器设计 这些年来,燃油交通工具因尾气排放问题已造成严重的空气污染。于是绿色交通工具的发展已经成为一个很重要的课题。结合我国的国情,电动自行车的发展具有重要的环保意义。随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。本文设计主要采用无刷直流电机专用控制芯片MC33033为控制芯片,用功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。该设计不仅要实现电动自行车正常使用时应具备的基本性能,还要通过增加欠压检测电路、过流保护电路、同步整流电路等措施来提升电机运行可靠性与稳定性,使电动自行车用无刷直流电机具备更持久的生命力。 [关键词]无刷直流电机MC33033 电路图

无刷直流电机控制器设计

[Abstract] In recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. This design not only to achieve the electric bicycle in normal use should have the basic performance, but also by adding under-voltage detection circuit, an overcurrent protection circuit, a synchronous rectifier circuit and other measures to improve the stability and reliability of the operation of the motor, brushless DC motor with a more lasting vitality. [Keywords] brushless DC motor MC33033Circuit diagram

电动自行车用200W永磁无刷直流电机选型及结构参数设计2011.10.31

电动自行车用永磁无刷直流电机选型及结构参数设计 1.油泥模型电机参数分析 油泥模型的电机设计为38齿牙盘,其转子内径为111mm,电机铁心长度为14mm。其参数见表1。 表1 方案1电机参数表 当给电机加上48V电压时,其输出特性如图1所示,此时电机最高效率的工作点较高,为650 r/min,而电动自行车额定工作转速仅为180 r/min。所以理论上应增加匝数或降低电压,直接增加匝数受到了槽满率的限制,降低线径再增加匝数又受到了定子电流密度的限制。所以实际工作时只能通过降低电压来。降低定子电流。当电压降低到18V使得定子电流为9.5A时,其输出功率仅为120W,效率为70%,不能满足要求。 图1 油泥模型电机输出特性 2.电机初始方案选择 电机槽数和极数有多种匹配参数可以选用,设计组利用计算机软件对槽数和极数分别为

36/24、36/40、42/46的电机进行了参数仿真,并对结果进行了分析。结论表明,极数为24的电机极数太少,导致磁钢较宽(17mm),加工困难。另外,由于24极数的电机额定工作速度太高,其低速时效率较低,因此不适合采用。 2.1推荐方案定子、转子参数的确定 推荐方案的定子槽、转子极数分别为36/40,定子绕组为0.69漆包线3股33匝,如表2所示。 表2推荐方案电机参数表 本方案最高效率转速440r/min,最高效率87%,电机输出特性如图3所示。图为铁心长20mm的输出特性。由图中可以看出,相比较铁芯25mm电机结构,最高效率时的转速370 r/min提升到到450 r/min,电机从30 r/min~460 r/min都可以输出200W以上的功率。 图3推荐方案电机输出特性 电机定子采用双层绕组,电机齿槽匹配和部分嵌线图如图4和图5所示。

相关文档
最新文档