聚乳酸纤维PLA

聚乳酸纤维PLA
聚乳酸纤维PLA

聚乳酸生物分解性纤维(PLA)

谢绍铨

近来,不少刊物报导日本、美国研制生物分解性聚乳酸纤维的消息,今年二月,美国中部Cagill Dow合资公司宣布,要投资三亿美元在偏远的Blair,Nebraska建一座大型年产14万吨的聚乳酸PLA(Polylactic Acid)工厂,预定2001年完成,此一新厂比该公司现有的4千吨小型工厂或日本钟纺(Kanebo)公司的试验工厂大很多。由于聚乳酸具有环保、易分解等一系列的优点,可开发成聚乳酸纤维、不织布和薄膜等产品。

现有的四大项合成纤维,聚酯(PET)、尼龙(Nylon)、亚克力(Acrylics)、聚丙烯(PP)等都是以石油化工产品为基本原料所合成的,其物理、化学性质稳定,但存在着使用后废弃物无法分解的问题,棉、毛、麻、丝等天然纤维又缺乏上述合纤特有的性能。聚乳酸纤维兼具两者纤维的优点,其原料乳酸可以玉米之类的植物中取得,其成品聚乳酸可在一定的温度、PH值和水份的条件下,会被分解成水和二氧化碳。

聚乳酸融点约为175 度C,比PET、Nylon低,与PP相近,具备实用的耐热性,所抽成丝的纤维强度等物性,具有与聚酯纤维一般相近的性能。聚乳酸可以采用融熔纺丝装置抽丝,即先将它以融点以上的温度熔化,由纺嘴中压出,经冷却、固化、牵伸成丝。可先生产POY丝,卷绕之后再在另外设备上加工成成品丝,也可以直接经热牵伸一步完成。若生产短纤维产品,需经卷曲,卷曲数为10-15个/20毫米。乳酸本身有不同的光学异构体,即L体(左旋)和D体(右旋),原料中不同的D和L体含量,可使聚乳酸的融点不同。因此,原料光学异构体的纯化是以生物技术天然方法最关键的技术,也是Cargill专利技术及商标权”NatureWorks”technology的重点。调整聚乳酸纤维表层和芯层的DL体含量比例,使皮比芯层的融点低,利用这般不同的融点,可容易地生产出热粘着型的不织布产品,且产品十分柔软。聚乳酸纤维具有优良的耐气候性。经科学试验,此种纤维具有超强的紫外线(UV)抵抗力,经日晒500小时后,仍然保持90%的强力,而一般聚酯纤维200小时后,强力便降至60%左右。聚乳酸纤维内部结构存在着大量非结晶部分,在水、细菌和氧气存在下,可进行较快的分解。经土壤掩埋试验,经过一年半之后,纤维强度降至60%左右,系因相对粘度对应降低所致。聚乳酸纤维可使之堆肥化,这样更能显出它与传统合成纤维的优势,废弃物堆肥化,回归自然,绿色再生。

除了上述纤维基本性质之外,聚乳酸纤维加工性良好,很容易可以制成超细(microdeniers)纤维;快干、不缩,介于棉与丝之间的性质,适合于制作衣裤等;又耐光线、低燃性,燃烧时低烟、低放热等性质,是有防火概念的家饰品及窗帘等最好的材料。目前美国尖端的纤维业者如Unifi、Fiber Innovation、Parkdale及下游纺织业者如

Interface、Woolmark等公司都在加紧开发相关的纺织品,以因应配合Cargill Dow一年后,十万吨以上PLA即将大量生产时之加工上市。今年年初发表会上,会场上陈列者相关的PLA制成的长、短纤维、衬衫、衣裤、家饰品等制品,最上游却是一棵玉米植物与常吃的玉米的图像,并且与石化工厂的照片作强烈对照,也与棉花等纤维作比较,参观者相信很快地体认到,这才是未来真正的绿色的生活。

PLA聚乳酸纤维的特性

事实上,生物分解性纤维并非只有聚乳酸纤维。大约十年前包括塑料、树脂业及纤维业界的科学家们,目见化学合成材料大量使用后,其废弃物累积已是人类挥之不去的恶梦。因此,积极投入研究符合环保要求、可被微生物分解型的高分子。随后陆续出现,依生产方法差异分类区分,如微生物系、化学合成系、天然物系及复合系等多项新的生物分解性高分子(biodegradable polymers)上市(如表1.),作为日常特殊应用的塑料或纤维制品之材料。

表1.已经实用化之生物分解性Biodegradable Polymers

依照各生物分解性高分子的性质,评估发展其应用例;如今PCL已在家庭用食器、塑料袋占一席之地,PLA则将在纤维、纺织制品方面广被接受。日本钟纺(Kanebo)公司所开发的PLA纤维相当早,1994年在广岛亚运会上日本运动员穿上第一次出现,命名为Lactron(乳酸龙??)的运动衫,穿着舒适,汗后干爽,是很好的衣物材料。根据该公司透过,其生物分解性高分子PLA之重要数据数据、及与其它竞争物质的功能、效益,详细比较如下;

表2. Biodegradable Polymers之性质比较

注:PLA,Polylactic Acid;PBD/SA,Polybutylene Succinate/Adipate;

PCL,Polycaprolactone;P(HB-HV),Polyhydroxybutylate/valilate

表3. PLA纤维与其它合成纤维之性质比较

由表1 可看出PLA的高分子特性,其融点(Tm)是所有生物分解型高分子中最高的,并且有良好的结晶性及透明度,容易制成丝状、薄膜、或铸形品。有效的结晶体是以异构物中的L体为主,正好利用生物发酵法得到的乳酸是以单旋L体结构为主,再与少量的D体,或是与其它化学单体共聚,是可以改变聚合物的各项物性,以取得纤维加工业所需要的性质。

PLA经过下列与PET或PA一样的加工程序,以得到纤维制品;

PLA → melt spinning → drawing → heat treatment → Lactron纤维产品

抽丝技术的重点在;

1.PLA高分子的纯度,及分子量大小与分布。

2.融熔纺丝时的高分子融熔粘度之控制。

3.通过纺嘴时之条件,及牵伸的速度等。

4.最后加工定形阶段的条件最为重要。

由表2说明Lactron纤维产品与其它合成纤维如PET、PA的性质比较,其中纤维的强度(tensile strength)与伸度(elongation)还可以随需要改变,也可以再假捻(texturized)成加工丝;其比重及扬氏系数介于PET与PA之间,吸湿度较接近于PET,这些特性使制成的衣物有质轻、柔软及干爽的感觉,低反射热使衣物穿起来感觉如真的丝绸。又高结晶性使得衣物之尺寸稳定,并易于加热定形(heat-setting),虽然其融点高达175度C,但衣物熨烫时还是要小心,因为PLA的燃烧热比PET、PA都低,只有塑料PE/PP等的1/3而已,易于出现热分解的现象,但是另一方面是优点,低燃烧热使废弃物若被燃烧时,对地球温室效应的伤害比较小。其染色性是用分散性染料,温度约98-110度C,一般上色及干/湿洗涤的坚牢度都可达到指数3或4以上。

PLA聚乳酸纤维的生物分解性,可以产品用途不同而设计几个不同的方法加以试验;简单的如埋在地下,再分浸泡淡水或海水或含有细菌生物污泥法等,又如有相处理的家庭堆肥法或标准堆肥法等。其中,简单的地下掩埋,PLA的分解速度并不快速,强度及重量分解减少都要长达一年半之后,但是使用含细菌的生物污泥法,强度在3-4

个月后就解降下来,但要总重量减少(即细菌消化成CO2跑掉)仍需一年。再以标准堆肥法(CEN法)试验PLA聚乳酸纤维分子,虽然在前20天还是稳定,但是第20至30

天高分子快速解降,且高达90%以上都被分解,而一般的纤维素纤维如嫘萦(Rayon),前20天即开始解降,约到70%以后就停止不前,永远残留约30%,要很长时间才消失,又PET、PA等纤维,是永垂不朽的,掩埋地下永不分解,已成人类的公敌。标准堆肥法,使用过程控制的较高的水份湿润度及约58度C的温度,解降的过程的第一步是把高分子中的非晶性(amorphous)部份先水解打断,把平均Mn约100,000的分子量解降为Mn=10,000-20,000的分子,此时结晶部份仍未被细菌破坏,总重量也未减少,第二步才是真正的细菌分解,将上述这些寡聚体次分子(sub-molecule)消化,变成H2O +CO2跑掉,重量快速减少。

环保人士对PLA聚乳酸纤维一定很有兴趣,若以环保法规常要求的产品生命周期评估(Life Cycle Assesment,LCA)来看,将PLA纤维与PET纤维试着以LCA定量数据比较,前者一生的能源总需求可减少近50%,CO2(温室效应)产生量减少30%,燃烧热减少20%,是相当环保的产品,若非生产成本较高的不利因素,全球目前年产约达2,000万吨的PET纤维,恐将被PLA一夕之间打倒。

表4. PLA纤维与PET合成纤维之LCA定量比较

Lactic Acid乳酸单体先利用生物技术法大量生产、再纯化提取有用的L体,是Cargill 公司多年努力的大突破,过去五年已取得多项关键性的专利;如US6005067,5357035,5258488,5247059/58,5142023,WO9509879,9315127等,专有技术内容是利用玉米淀粉发酵,加以纯化,生产所需要的乳酸成分,再聚合成PLA。Lactic Acid学名

2-hydroxypropanoic acid,分子结构具光学异构性,一个分子上同时具有醇基(-OH)与酸基(-COOH),但是要自身延伸聚合却很困难,必需将适当比例的D/L异构体先在高度真空情况下裂解脱氢,形成环状的二聚体(Dilactide),再用金属触媒将环状打断打开之,同时会脱水聚合成高分子量、直线状的PLA polymer。Cargill Dow完整的生产程序将是,前段为生物技术发酵、纯化分离,后段为化学触媒、聚缩合反应,两大类别的技术作完整的组合而成,流程概况如下;

玉米淀粉→Dextrose→Lactic Acid→Dilactide→Polylactic Acid→纤维、薄膜

由于日本纺织业一贯作业,开发下游产品一向比欧美同业要快、有效率。目前钟纺(Kanebo)公司想要领先美国的Cargill Dow,加速开发PLA纤维产品的应用,如表4已经有多种规格的纤维产品出现,如单丝、复数长丝、短纤棉、原丝及黏织物等,分别供应衣着类(衣服、家饰用)与非衣着类(工程/土木、渔业、医疗用)两大用途。

衣着类用途方面;1998年创造新商标”钟纺玉米纤维”,是将PLA与棉花或羊毛等取代PET式的混纺,取得合纤混纺的特性,却是保持全部生物可分解性。取得较佳的光亮度、丝绸感,以及水分吸收,却是快干性等。PLA与羊毛混纺,可变得定形保持,防皱折,且重量减轻许多。这些衣料将是裁剪成正式衣裤、制服、内衣裤、毛衣、便衫等最好的新素材。

非衣着类用途方面;已知的用途如工程网布、过滤材、蔬果栽培网及布、绳、线等,家用桌布、食品包装网或袋,及医疗卫生用尿片、卫生棉、手术线、绷带等等,都可以加以应用。

表5.PLA纤维已知产品规格(钟纺Lactron)

以上各项数据,已详细描述生物分解性PLA纤维的开发由来、产品特性、加工条件、用途及符合环保的优势,是一项不可多得的优良新素材。但是其单位生产成本还是太贵,只要是上游原料的生产技术受到限制,尚未大量生产所致,乳酸是哺乳类动物乳液中的常见的成分之一,自然界存在,但是过去无法大量提取及纯化,例如聚乳酸PLA 树脂,已使用于塑料用途多年,但是其原料成分来源,至今仍然以化学方法合成之,被归类于如表1.中的化学合成系。目前开发中的生物技术转化法正好补足了这个缺口,且可以不虞匮乏的天然淀粉快速转化而得,基因工程与生物技术正在快速发展,屡见突破,未来PLA将改分类成微生物系的生物分解性高分子,大量化PLA生产很快就可以运用此一新技术,显著降低成本,PLA纤维将是搭乘在这一快车上最耀眼的新产品之一。

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

聚乳酸纤维的结构与性能

聚乳酸纤维的结构与性能 一、概述 聚乳酸纤维是一种可完全生物降解的合成纤维,它可从谷物中取得。其制品废弃后在土壤或海水中经微生物作用可分解为二氧化碳和水,燃烧时,不会散发毒气,不会造成污染。是一种可持续发展的生态纤维。” 1.乳酸纤维的发展概况 聚乳酸纤维的研究历史可追溯到上世纪30年代,其发明报道可追溯到50年代,杜帮公司最早测定了聚乳酸酯的分子量,60年代以后,各国科技工作者对此作了广泛的研究,日本以玉米为原料开发了新型聚乳酸纤维,90年代后期,美国两家大公司联合开发了聚乳酸纤维,它们以玉米为原料,首先建设了生产能力很大的试验工厂,完善了现代化生产高分子聚乳酸的生产工艺,开创了聚乳酸酯的工业化发展阶段。日本钟纺、仓敷公司、香港的福田实业公司、日本的东丽公司和台湾的远纺公司等先后开发研制了聚乳酸纤维。2002年上海华源股份有限公司开始与美国CDP公司合作,成为国内第一家实现工业化开发聚乳酸产品的化纤企业。 二、聚乳酸(P LA)纤维制备 <1> 乳酸的制取 合成聚乳酸的单体是乳酸,乳酸的生产可分为: 1发酵法是采用玉米、小麦、稻谷和木薯等含淀粉农作物为

原料,从原料中提取淀粉,经淀粉酶分解得到葡萄糖等单糖,再加入纯乳酸菌和碳酸钙进行发酵。发酵液用石灰乳中和至微碱性,煮沸杀菌,冷却后过滤,用热水重结晶。再加入50%的硫酸分解出乳酸和硫酸钙沉淀。滤出硫酸钙,滤液在减压下蒸发浓缩,即得到工业用乳酸。 2.石油合成法 由于发酵法原料来源广泛,原料的利用率和转化率较高,大多数生产商采用此法进行生产。 <2> 聚乳酸树脂的制取 乳酸的聚合是PLA 生产的一项核心技术。近年来国内外对乳酸的聚合工艺作了不少研究,目前聚乳酸的制造方法有两种:一种是直接聚合,即在高真空和高温条件下用溶剂去除凝结水,将精制的乳酸直接聚合(缩合)成聚乳酸树脂,可以生产较低分子量的聚合体。此方法工艺流程短,成本低,对环境污染小,但制得的PLA 平均分子量较小,强度低,不能用作塑料和纤维加工,用途不广,不适合大规模工业化生产。 直接聚合示例(见图1)

十大常见服装面料优缺点

页眉 《十大常见服装面料优缺点》 1、羊绒 优点: 羊绒是动物纤维中最优秀的一种重量轻、柔软、韧性好、保暖性好手感柔滑、光泽好,弹性强吸湿性能好具有良好的排汗作用。 被誉为“纤维宝石”、“软黄金”。缺点: 抗皱性差、易起球、起静电。 2、纯羊毛优点: 保暖、透气、吸湿性较强 弹性好、可塑性较好 手感柔软,富有光泽,悬垂性好缺点: 易缩水,耐酸不耐碱,怕日晒。易吸水,潮湿时强度下降。易虫蛀 3、棉 优点: 吸湿性、耐热性好。耐碱性、耐日光性好。质地柔软,染色性好。缺点: 抗皱性差、缩水;弹性差 4、真丝 优点: 吸湿性、透气性好。耐酸性、耐热性好。 质地柔软,染色性好。 手感好,光滑而有层次缺点: 抗皱性差、缩水;怕日晒 5、亚麻 优点: 亚麻挺括、滑爽,抗酸性优于棉, 吸湿性和染色性好,但吸湿后散湿速度比棉快。缺点: 页眉 易折皱,缩水、抗碱。 6腈纶(聚丙烯腈纤维) 优点: 有“合成羊毛”之誉称蓬松柔软,弹性和保暖性较好,耐日光、易染色,色泽鲜艳。 易洗、快干、不霉、不蛀,耐腐性强。缺点:

耐磨性差,吸湿性不好。 7、锦纶(尼龙) 优点: 耐磨性是目前所用纤维中最好的。 强度高、弹性好。 吸湿性好,染色性好。易洗涤,干的快。耐碱不耐酸,储存时不宜放卫生球。缺点: 耐光性较差,日晒易泛黄,洗后不宜日晒易起球 8、涤纶(聚酯纤维) 优点: 强度高、耐磨,弹性好,抗变形能力强。 易洗涤,干得快,不需熨烫 缺点: 吸湿性小,易起球。 耐酸不耐碱,耐热性比一般纤维高。 常用的混纺面料:棉涤(的确良)、毛涤 9、氨纶(莱卡) 优点: 咼弹性。 耐酸碱、耐汗、耐海水、耐干洗、耐磨。 制作服装重量轻、质地柔软,舒适合身。缺点: 易起静电 10、粘胶纤维 优点: 质地柔软,穿着舒适,悬垂度好。 染色性好,色彩鲜艳。吸湿性好,易洗涤,干的快。 缺点:易缩水,易变形,不耐磨抗皱性差,怕日晒 页眉

PBAT的共混改性综述

PBAT的共混改性综述 聚己二酸对苯二甲酸丁二酯(PBAT)是一种新型的完全生物降解脂肪-芳香族共聚酯。与其它聚合物进行共混改性是改善PBAT基材综合性能的有效手段,同时也是降低该材料价格的重要方式。为拓展PBAT材料的应用范围,扩大PBAT 的市场需求,有必要利用多种方式对其进行共混改性。 1. PBAT与可降解聚合物共混改性 1.1 PBAT与聚乳酸(PLA)共混 PLA是一种脂肪族聚酯,其合成原料乳酸可完全由生物法发酵制得,脱离了传统的石油原料,且具有良好的生物相容性、较高的强度;同时PLA具有生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染,这使之在以环境和发展为主题的今天越来越受到人们的重视,并在日用品以及生物医疗领域中都得到了广泛的应用。然而,PLA虽然具有较高的强度及压缩模量,但是其质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形,抗冲击和抗撕裂能力差,这在一定程度上限制了PLA的使用范围。同样作为一种生物降解材料,PBAT恰好具有良好的拉伸性能和柔韧性,利用PBAT与PLA共混来对其增韧是一种行之有效的方法。前人用熔融共混法制备了(PLA/PBAT)复合材料,实验表明,PBAT能够抑制PLA的结晶,导致材料断面出现孔洞和凹槽,随着PBAT用量的增多,材料断面孔洞的尺寸会有所增加,这会导致复合材料的拉伸强度下降。但是,PBAT 的柔性链段能有效改善PLA的脆性,当PBAT质量分数为30%时,PLA/PBAT复合材料的断裂伸长率最大,达到9%,同时,其冲击强度也能够达到5.33kJ/m2。 前人在PBAT与PLA共混的过程中发现,随着PBAT用量的增加,PLA/PBAT 复合材料中两相的相容性变差,这也是PLA/PBAT共混物力学强度不理想的重要原因。为了进一步提高PLA/PBAT复合材料的性能,扩大其应用范围,前人通常在该共混物中引人增容剂以减小两相界面张力,增大界面结合力,改善共混体系的力学相容性和抗冲击性。 德国BASF公司的Joncryl系列扩链剂是一种由甲基丙烯酸缩水甘油酯与其他丙烯酸树脂或苯乙烯合成的共聚物,该扩链剂被研究者和生产企业广泛用于PLA/PBAT共混物的增容中。当0.5份的Joncryl扩链剂加入到PLA/PBAT共混物中时,可以有效增加共混体系的结晶温度,降低结晶度,同时,PLA与PBAT间的界面结合力也显著提高。以PLA/PBAT比例为60/40的共混物为例,在Joncryl扩链剂加入后,其拉伸强度能够提高至30MPa,断裂伸长也提高至700%。与上述类似的是,以法国阿科玛公司生产的LotaderAX8900作为增容剂(用量为3Phr)

聚酯纤维和涤纶

聚酯纤维和涤纶 参考资料一: 涤纶和聚酯纤维有没有区别 【涤纶和聚酯纤维】在选购的时候,一些材质常容易引起一些兄弟姐妹的关注,比如:涤纶和聚酯纤维这两种,清楚的兄弟姐妹会说这是一种材质,不清楚的兄弟姐妹疑惑为什么同一种材质却有不一样的名称?到底涤纶和聚酯纤维有没有区别? 首先要肯定聚酯纤维和涤纶是一种材质,为什么却又不一样的名称,是正因:聚酯纤维是国际通用名称,主要是正因最早的生产商品名而驰名,如今成为国际上的通用名称;涤纶是中国名称,在中国聚酯纤维通常为涤纶。从这点上能够清楚它们是没有区别的。 对于不清楚涤纶和聚酯纤维的兄弟姐妹,很容易被名称忽悠,认为不一样的材质却从根本上一样,对于购买者,清楚涤纶的兄弟姐妹知道,虽然涤纶的用途很广,但是却存在必须的缺点,因此,两种之间的名称很容易造成消费误导。为此此咱们要清楚聚酯纤维的优缺点,充分的了解这种材质。 涤纶和聚酯纤维的用途很广,多用于纺织品,能够与其他材质混纺制成各种仿棉、仿麻、仿丝织物,更因聚酯纤维具有很好的免烫和易洗易干等优点,混纺后能够改变其他材质的不足。比如解决丝质品易皱的缺点。当然聚酯纤维和涤纶的缺点就是容易起球,透气性差等,

但是现代工艺透过化学改性的方法正在逐步改良这些缺点。 上方为不清楚涤纶和聚酯纤维的兄弟姐妹,解答了它们的区别,从材质而言是没有区别的,不一样的区别就是名称不一样,同时还为大家解答了它们的优缺点,期望各位在选购的时候不在被名称左右,能根据自我的需要,选购到适宜的商品。 参考资料二: 涤纶跟聚酯纤维有哪些区别 首先要确定聚酯纤维和涤纶是一种原料,为何却又不相同的称号,是正因:聚酯纤维是世界通用称号,首要是正因最早的出产商品名而著名,如今变成世界上的通用称号;涤纶是中国称号,在中国聚酯纤维一般为涤纶。从这点上能够明白它们是没有差异的。 关于不明白涤纶和聚酯纤维的兄弟,很简单被称号忽悠,以为不相同的原料却从根本上相同,关于购买者,明白涤纶的兄弟晓得,尽管涤纶的用处很广,但是却存在必定的缺陷,因而,两种之间的称号很简单构成花费误导。为此此咱们要明白聚酯纤维的优缺陷,充沛的知道这种原料。 涤纶和聚酯纤维的用处很广,多用于纺织品,能够与其他原料混纺制成各种仿棉、仿麻、仿丝织物,更因聚酯纤维具有极好的免烫和易洗易干等长处,混纺后能够改动其他原料的缺乏。比方处理丝质品易皱的缺陷。当然聚酯纤维和涤纶的缺陷即是简单起球,透气性差等,但是现代技术经过化学改性的办法正在逐渐改善这些缺陷。 聚酯纤维就是涤纶,只是叫法不一样

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

聚乳酸化学改性

聚乳酸化学改性的研究 摘要为了改善聚乳酸的使用性能,需要将聚乳酸改性,改善其力学性能、耐热性、柔韧性和作为生物材料所需的亲水性、生物相容性等。近年来有许多研究者对聚乳酸的改性进行了大量研究。本文致力于综述各种化学改性的方法如共聚、交联改性、表面改性,并对各种方法进行分析。 关键词聚乳酸化学改性共聚表面改性 0引言 合成聚乳酸的原料来自可再生的农副产品,而且聚乳酸本身可以生物降解、有较好生物相容性,因此聚乳酸在通用材料特别是一次性材料和生物材料等方面有较好的应用前景。然而聚乳酸的韧性、强度等力学性能和耐热性较差,同时亲水性不高、生物相容性还不能满足作为生物材料的许多要求,因此近年来许多研究者从化学改性、物理改性、复合改性方面进行了大量研究。而本文将从最有效的改性手段之一-化学改性的进展进行诉述和分析。 共聚改性 共聚改性是指将乳酸和其他单体按一定比例进行共聚,以此改善聚乳酸某些性能。 1.1任建敏等【1】分别研究了聚乳酸与聚乙二醇改性聚乳酸的体外降解特性,通过测定分子量和重量在pH7.4的磷酸盐缓冲液中的变化表征它们的体外降解特性。结果表明,聚乙二醇改性聚乳酸开始降解的时间早于聚乳酸,在相同时间内,前者的重量下降也较后者明显。他们提到这些材料的降解与水引起酯基水解有关,降解较快表明亲水性更好,所以聚乙二醇改性聚乳酸亲水性优于聚乳酸,这使得它可能是蛋白抗原等亲水性药物的缓释载体材料。而乙二醇的比例应该与亲水程度有关,因此研究乙二醇的比例与降解速率的关系对满足不同的缓释效果有重大的意义。樊国栋等【2】就对在共聚物中PEG分子量对亲水性能的影响进行了研究,结果表明PEG聚合度为800时亲水性最好,水在其表面的接触角为63。 1.2马来酸酐改性聚乳酸指将乳酸和马来酸酐进行共聚而得到的共聚物。许多研究证明了马来酸酐可以改性聚乳酸的亲水性和力学性能。程艳玲和龚平【3】在不同的pH值的环境下研究了聚乳酸和马来酸酐改性聚乳酸的降解性能,结果表明聚乳酸在碱性环境中降解更快,而在酸性环境中马来酸酐改性聚乳酸降解更快。曹雪波等【4】研究了马来酸酐改性聚乳酸的力学性能,结果显示其压缩强度和压缩模量均优于未改性的聚乳酸。作为生物材料,经常需要更好的力学性能,因此马来酸酐改性聚乳酸在作为组织工程支架材料方面有更好的优势。当然,力学性能改性也能改善聚乳酸作为环保材料的力学性能要求。曹雪波等【5】还研究了大鼠成骨细胞在聚乳酸、马来酸酐改性聚乳酸表面的粘附性能。他们的实验表明:与玻璃材料相比,成骨细胞在聚乳酸表面的粘附力有较大的提升,而在马来酸酐改性聚乳酸表面的粘附力更是提升了近两倍。这体现了马来酸酐改性聚乳酸对成骨细胞有较好的亲和力。马来酸酐改性聚乳酸相比聚乳酸有更好的亲水性、力学性能和细胞粘附力,这体现它可能在组织工程材料方面有一定的应用前景。 同时,聚乳酸降解会产生乳酸,这将会导致机体不良反应,因此再次改性消除这种效应对于最终的成功应用是不可或缺的。为此,罗彦风等【6】合成了基于马来酸酐改性聚乳酸和丁二胺的新型改性聚乳酸BMPLA。他们测定了BMPLA在12周内降解过程中pH的变化,结果表明降解过程中未出现pH快速下降的现象,没有表现酸致自加速特征。丁二胺上的氨基有效地改善了降解产生的酸导致的pH变化,同时阻止了酸催化降解的加速效应。不仅如此,他们还测定了水接触角,发现这种新型改性聚乳酸相比于聚乳酸和马来酸酐改性,其亲水性有了很大的改性。这可能与氨基与水形成了氢键有关。优良的细胞亲和性和降解行为,使得马来酸酐、丁二胺改性聚乳酸在组织工程支架上有良好的应用前景。

生物可降解材料聚乳酸的制备改性及应用演示教学

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。 关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

聚酯纤维是什么 聚酯纤维的缺点

聚酯纤维材质的衣服受到了广大消费者的认可,那聚酯纤维是一种什么样的面料呢?虽然现在市场上的衣服各式各样,但是人们在选择时,最为关心的问题就是衣服的主要材质是什么,对于不同材质的衣服带给人们的档次也不一样,而且穿到身上的感觉也不一样。但是人们有一个同样的发现,那就是聚酯纤维材质的衣服在市场上十分的流行,聚酯纤维的缺点与优点是什么呢?聚酯纤维的价格贵不贵呢?这些问题都是消费者心中的疑问,想要知道这样衣服好不好,那就一起来看看聚酯纤维的缺点吧。 聚酯纤维的缺点之什么是聚酯纤维 聚酯纤维的主要形成物就是二元酸与二元醇缩聚物组合形成的聚酯轻纺丝的合成纤维。它也是人们平时所说的涤沦面料,它也是现在衣服最常使用的材质。这种材质的面料防皱性好,而且弹性超大,剪裁出来的尺寸大小稳定,而且最为重要的就是绝缘性非常好。不管是男士服饰还是女士服饰,都是十分流行的。 聚酯纤维的缺点之优点有中哪些 已经了解了很多是聚酯纤维面料,还要来看看它们的优点是什么。它们有着超高的弹性。你洗完衣服就算是不整齐的叠放,它们也不会出现折皱现象。而且耐光性比较的好。长

时间的接受太阳光的照射也不会出现变色的现象。不管是酸性环境还是碱性环境,都不会影响它的正常使用。而且聚酯纤维的价格也是非常实惠。 聚酯纤维的缺点是什么 说完了聚酯纤维的优点,就来看看聚酯纤维的缺点吧,由于材质的特殊性,它们吸湿性能很差,透气性也是比较差的。尤其是夏天,最好不要选择这种材质的衣服。它们的颜色上色比较差,必须要在高温环境才可以上色。容易沾上一些灰尘,如果遇到火星或者高温情况,那就会形成孔洞,影响美观与正常的穿着。

就算是在市场上最为流行的聚酯纤维面料,它们也是存在着缺点。大家不要看到它的缺点,就不再相信此材质的面料。虽然聚酯纤维的缺点是真实存在的,但是它们在人们的生活中还是有着巨大作用。给人们的生活带来方便与帮助。所以说人们应该综合考虑它的特点,看到对人们有利的一面,从而才可以正确的去使用聚酯纤维。 原文引用:https://www.360docs.net/doc/4518508435.html,/zhuangxiu/zhishi-2253.html

聚乳酸纤维PLA

聚乳酸生物分解性纤维(PLA) 谢绍铨 近来,不少刊物报导日本、美国研制生物分解性聚乳酸纤维的消息,今年二月,美国中部Cagill Dow合资公司宣布,要投资三亿美元在偏远的Blair,Nebraska建一座大型年产14万吨的聚乳酸PLA(Polylactic Acid)工厂,预定2001年完成,此一新厂比该公司现有的4千吨小型工厂或日本钟纺(Kanebo)公司的试验工厂大很多。由于聚乳酸具有环保、易分解等一系列的优点,可开发成聚乳酸纤维、不织布和薄膜等产品。 现有的四大项合成纤维,聚酯(PET)、尼龙(Nylon)、亚克力(Acrylics)、聚丙烯(PP)等都是以石油化工产品为基本原料所合成的,其物理、化学性质稳定,但存在着使用后废弃物无法分解的问题,棉、毛、麻、丝等天然纤维又缺乏上述合纤特有的性能。聚乳酸纤维兼具两者纤维的优点,其原料乳酸可以玉米之类的植物中取得,其成品聚乳酸可在一定的温度、PH值和水份的条件下,会被分解成水和二氧化碳。 聚乳酸融点约为175 度C,比PET、Nylon低,与PP相近,具备实用的耐热性,所抽成丝的纤维强度等物性,具有与聚酯纤维一般相近的性能。聚乳酸可以采用融熔纺丝装置抽丝,即先将它以融点以上的温度熔化,由纺嘴中压出,经冷却、固化、牵伸成丝。可先生产POY丝,卷绕之后再在另外设备上加工成成品丝,也可以直接经热牵伸一步完成。若生产短纤维产品,需经卷曲,卷曲数为10-15个/20毫米。乳酸本身有不同的光学异构体,即L体(左旋)和D体(右旋),原料中不同的D和L体含量,可使聚乳酸的融点不同。因此,原料光学异构体的纯化是以生物技术天然方法最关键的技术,也是Cargill专利技术及商标权”NatureWorks”technology的重点。调整聚乳酸纤维表层和芯层的DL体含量比例,使皮比芯层的融点低,利用这般不同的融点,可容易地生产出热粘着型的不织布产品,且产品十分柔软。聚乳酸纤维具有优良的耐气候性。经科学试验,此种纤维具有超强的紫外线(UV)抵抗力,经日晒500小时后,仍然保持90%的强力,而一般聚酯纤维200小时后,强力便降至60%左右。聚乳酸纤维内部结构存在着大量非结晶部分,在水、细菌和氧气存在下,可进行较快的分解。经土壤掩埋试验,经过一年半之后,纤维强度降至60%左右,系因相对粘度对应降低所致。聚乳酸纤维可使之堆肥化,这样更能显出它与传统合成纤维的优势,废弃物堆肥化,回归自然,绿色再生。 除了上述纤维基本性质之外,聚乳酸纤维加工性良好,很容易可以制成超细(microdeniers)纤维;快干、不缩,介于棉与丝之间的性质,适合于制作衣裤等;又耐光线、低燃性,燃烧时低烟、低放热等性质,是有防火概念的家饰品及窗帘等最好的材料。目前美国尖端的纤维业者如Unifi、Fiber Innovation、Parkdale及下游纺织业者如

十大常见服装面料优缺点

十大常见服装面料优缺点标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

《十大常见服装面料优缺点》1、羊绒 优点: 羊绒是动物纤维中最优秀的一种 重量轻、柔软、韧性好、保暖性好 手感柔滑、光泽好,弹性强 吸湿性能好具有良好的排汗作用。 被誉为“纤维宝石”、“软黄金”。 缺点: 抗皱性差、易起球、起静电。 2、纯羊毛 优点: 保暖、透气、吸湿性较强 弹性好、可塑性较好 手感柔软,富有光泽,悬垂性好 缺点: 易缩水,耐酸不耐碱,怕日晒。 易吸水,潮湿时强度下降。易虫蛀。 3、棉 优点: 吸湿性、耐热性好。 耐碱性、耐日光性好。 质地柔软,染色性好。 缺点: 抗皱性差、缩水;弹性差。 4、真丝 优点: 吸湿性、透气性好。 耐酸性、耐热性好。 质地柔软,染色性好。 手感好,光滑而有层次 缺点: 抗皱性差、缩水;怕日晒。 5、亚麻 优点: 亚麻挺括、滑爽,抗酸性优于棉, 吸湿性和染色性好,但吸湿后散湿速度比棉快。缺点:

易折皱,缩水、抗碱。 6、腈纶(聚丙烯腈纤维) 优点: 有“合成羊毛”之誉称 蓬松柔软,弹性和保暖性较好, 耐日光、易染色,色泽鲜艳。 易洗、快干、不霉、不蛀,耐腐性强。 缺点: 耐磨性差,吸湿性不好。 7、锦纶(尼龙) 优点: 耐磨性是目前所用纤维中最好的。 强度高、弹性好。 吸湿性好,染色性好。易洗涤,干的快。 耐碱不耐酸,储存时不宜放卫生球。 缺点: 耐光性较差,日晒易泛黄,洗后不宜日晒。 易起球 8、涤纶(聚酯纤维) 优点: 强度高、耐磨,弹性好,抗变形能力强。 易洗涤,干得快,不需熨烫 缺点: 吸湿性小,易起球。 耐酸不耐碱,耐热性比一般纤维高。 常用的混纺面料:棉涤(的确良)、毛涤 9、氨纶(莱卡) 优点: 高弹性。 耐酸碱、耐汗、耐海水、耐干洗、耐磨。 制作服装重量轻、质地柔软,舒适合身。 缺点: 易起静电 10、粘胶纤维 优点: 质地柔软,穿着舒适,悬垂度好。 染色性好,色彩鲜艳。 吸湿性好,易洗涤,干的快。 缺点:易缩水,易变形,不耐磨抗皱性差,怕日晒。

十大常见服装面料优缺点

十大常见服装面料优缺点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《十大常见服装面料优缺点》 1、羊绒优点: 羊绒是动物纤维中最优秀的一种重量轻、柔软、韧性好、保暖性好手感柔滑、光泽好,弹性强 吸湿性能好具有良好的排汗作用。被誉为“纤维宝石”、“软黄金”。缺点: 抗皱性差、易起球、起静电。 2、纯羊毛优点: 保暖、透气、吸湿性较强弹性好、可塑性较好 手感柔软,富有光泽,悬垂性好缺点: 易缩水,耐酸不耐碱,怕日晒。 易吸水,潮湿时强度下降。易虫蛀。 3、棉优点: 吸湿性、耐热性好。耐碱性、耐日光性好。质地柔软,染色性好。缺点:抗皱性差、缩水;弹性差。 4、真丝优点: 吸湿性、透气性好。耐酸性、耐热性好。质地柔软,染色性好。手感好,光滑而有层次缺点: 抗皱性差、缩水;怕日晒。 5、亚麻优点: 亚麻挺括、滑爽,抗酸性优于棉, 吸湿性和染色性好,但吸湿后散湿速度比棉快 缺点:易折皱,缩水、抗碱。 6、腈纶(聚丙烯腈纤维)优点: 有“合成羊毛”之誉称 蓬松柔软,弹性和保暖性较好,耐日光、易染色,色泽鲜艳。 易洗、快干、不霉、不蛀,耐腐性强。缺点: 耐磨性差,吸湿性不好。 7、锦纶(尼龙)优点: 耐磨性是目前所用纤维中最好的。强度高、弹性好。 吸湿性好,染色性好。易洗涤,干的快。耐碱不耐酸,储存时不宜放卫生球。缺点: 耐光性较差,日晒易泛黄,洗后不宜日晒。易起球 8、涤纶(聚酯纤维)优点: 强度高、耐磨,弹性好,抗变形能力强。 易洗涤,干得快,不需熨烫缺点: 吸湿性小,易起球。 耐酸不耐碱,耐热性比一般纤维高。常用的混纺面料:棉涤(的确良)、毛涤 9、氨纶(莱卡)优点:高弹性。 耐酸碱、耐汗、耐海水、耐干洗、耐磨。制作服装重量轻、质地柔软,舒适合身。缺点:易起静电 10、粘胶纤维优点: 质地柔软,穿着舒适,悬垂度好。染色性好,色彩鲜艳。

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚乳酸改性的研究进展

聚乳酸改性的研究进展 周海鸥史铁钧王华林方大庆 (合肥工业大学化工学院,合肥,230009) 摘 要 概述了近年来国内外聚乳酸通过共聚、共混、复合等方法获得改性材料的研究进展,并对其发展方向进行了展望。 关键词:聚乳酸改性共聚共混复合 一、前言 聚乳酸(PLA)具有优良的生物相容性、生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染。这使之在以环境和发展为主题的今天越来越受到人们的重视,并对其在工业、农业、生物医药、食品包装等领域的应用展开了广泛地研究。由于聚乳酸在性质上存在如下局限而限制了它的实际应用: (1)聚乳酸中有大量的酯键。酯键为疏水性基团,它降低了聚乳酸的生物相容性; (2)降解周期难以控制; (3)聚合所得产物的分子量分布过宽。聚乳酸本身为线型聚合物,这使得材料的强度往往不能满足要求。 同时,在实际应用中还有一些特殊的功能性需要。这都促使人们对聚乳酸材料的改性展开深入地研究。目前国内外对聚乳酸的改性主要有共聚、共混以及制成复合材料等几种方法。 二、共聚法改性 随着聚乳酸应用领域的不断扩展,单纯的均聚物已不能满足人们的需要,特别是在高分子药物控制释放体系中,要求对于不同的药物有不同的降解速度,同时对于抗冲击强度、亲水性有更高的要求。这使得人们开始将乳酸与其它单体共聚改性,以调节共聚物的分子量、共聚单体数目和种类来控制降解速度并改善结晶度、亲水性等。由于在乳酸分子中含有羟基和羧基,生成的聚乳酸含有端羟基和端羧基,所以在聚乳酸共聚物中比较多的是聚酯2聚酯共聚物、聚酯2聚醚共聚物以及和有机酸、酸酐等反应生成的共聚物。 1.线性结构的共聚物 聚酯2聚酯共聚物是目前聚乳酸共聚物中最多的一种。人们将多种酯类和丙交酯共聚制得了不同用途的产物,其中涉及的机理主要是将共聚单体制成环状化合物,再开环聚合生成不同单体间的交替共聚物。Miller等研究发现用乙醇酸生成乙交酯(gly2 colide,简称G A)再和乳酸开环聚合,能使降解速率比均聚物提高10倍以上,并且可以通过改变组分的配比来调节共聚物的降解速度[1]。张艳红等采用低聚D,L2丙交酯与聚己内酯低聚物在2,42甲苯二异氰酸酯(TDI)作用下进行了扩链反应,形成了具有

莱卡、氨纶、聚酯三者优缺点

莱卡=氨纶弹力面料 聚酯是一个比较广义的词,一般用来指涤纶,为涤纶的化学名 锦纶定义: 锦纶是合成纤维nylon的中国名称,翻译名称又叫“耐纶”、“尼龙”,学名为polyamide fibre,即聚酰胺纤维。由于锦州化纤厂是我国首家合成polyamide fibre的工厂,因此把它定名为“锦纶”。 它是世界上最早的合成纤维品种,由于性能优良,原料资源丰富,一直被广泛使用。 锦纶的性能: 强力、耐磨性好,居所有纤维之首。它的耐磨性是棉纤维的10倍,是干态粘胶纤维的10倍,是湿态纤维的140倍。因此,其耐用性极佳。 锦纶织物的弹性及弹性恢复性极好,但小外力下易变形,故其织物在穿用过程中易变皱折。通风透气性差,易产生静电。 锦纶织物的吸湿性在合成纤维织物中属较好品种,因此用锦纶制作的服装比涤纶服装穿着舒适些。 有良好的耐蛀、耐腐蚀性能。 耐热耐光性都不够好,熨烫温度应控制在140℃以下。在穿着使用过程中须注意洗涤、保养的条件,以免损伤织物。 锦纶织物属轻型织物,在合成纤维织物中仅列于丙纶、腈纶织物之后,因此,适合制作登山服、冬季服装等。 锦纶的大类品种: 锦纶纤维面料可分为纯纺、混纺和交织物三大类,每一大类中包含许多品种。 1. 锦纶纯纺织物 以锦纶丝为原料织成的各种织物,如锦纶塔夫绸、锦纶绉等。因用锦纶长丝织成,故有手感滑爽、坚牢耐用、价格适中的特点,也存在织物易皱且不易恢复的缺点。锦纶塔夫绸多用于做轻便服装、羽绒服或雨衣布,而锦纶绉则适合做夏季衣裙、春秋两用衫等。 2.锦纶混纺及交织物 采用锦纶长丝或短纤维与其它纤维进行混纺或交织而获得的织物,兼具每种纤维的特点和长处。如粘/锦华达呢,采用15%的锦纶与85%的粘胶混纺成纱制得,具有经密比纬密大一倍,呢身质地厚实,坚韧耐穿的特点,缺点是弹性差,易折皱,湿强下降,穿时易下垂。此外,还有粘/锦凡立丁、粘/锦/毛花呢等品种,都是一些常用面料。 涤纶 涤纶的定义: 涤纶是合成纤维中的一个重要品种,是我国聚酯纤维的商品名称。它是以精对苯二甲酸(PTA)或对苯二甲酸二甲酯(DMT)和乙二醇(EG)为原料经酯化或酯交换和缩聚反应而制得的成纤高聚物——聚对苯二甲酸乙二醇酯(PET),经纺丝和后处理制成的纤维。 涤纶的性能: 强度高。短纤维强度为2.6~5.7cN/dtex,高强力纤维为5.6~8.0cN/dtex。由于吸湿性较低,它的湿态强度与干态强度基本相同。耐冲击强度比锦纶高4倍,比粘胶纤维高20倍。

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景 聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法。 2、PLA的合成 以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA。 PLA的合成通常有:1)直接缩聚法[3-4]。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA。该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA。具体反应式如下[5]: nHOCH(CH 3)COOH → H 一[OCH(CH 3 )CO]n 一OH + (n-1)H 2 O H一[OCH(CH 3 )CO]n一 一[OCH(CH 3 )CO]n一OH + H 2 O

生物可降解聚乳酸的改性及其应用研究

生物可降解聚乳酸的改性及其应用研究(上) https://www.360docs.net/doc/4518508435.html, 2006年11月06日中国包装网作者: 1概述 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA 这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30 天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O ,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法) 。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA ,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA) 是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA) 批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。

相关文档
最新文档