等离子体概述

等离子体概述
等离子体概述

一、等离子体概述

物质有几个状态?学过初中物理的会很快回答固态、液态、气态。其实,等离子态是物质存在的又一种聚集态,称为物质的第四态。它是由大量的自由电子和离子组成,整体上呈现电中性的电离气体。

在一定条件下,物质的各态之间是可以相互转化的,当有足够的能量施予固体,使得粒子的平均动能超过粒子在晶格中的结合能,晶体被破坏,固体变成液体。若向液体施加足够的能量,使粒子的结合键破坏,液体就变成了气体。若对气体分子施加足够的能量,使电子脱离分子或原子的束缚成为自由电子,失去电子的原子成为带正电的离子时,中性气体就变成了等离子体。物质的状态对应了物质中粒子的有序程度,等离子内物质中的粒子有序程度是最差的。相应的,等离子体内的粒子具有较高的能量、较高的温度。实际上,宇宙中99.9%的物质处于等离子态,它是宇宙中物质存在的普遍形式,不过地球上,等离子体多是人造的。

人工如何造出等离子体呢?从上面的论述可以看出,等离子体的能量是很高的,任何物质加热到足够高的温度,都会成为电离态,形成等离子体。在太阳和恒星的内部,都存在着大量的高温产生的等离子体。太阳和恒星的热辐射和紫外辐射能使星际空间的稀薄气体产生电离,形成等离子体,如地球上空的电离层就是这样来的。各种直流、交流、脉冲放电等均可用来产生等离子体。利用激光也可以产生等离子体。

等离子体如何描述?温度。等离子体有两种状态:平衡状态和非平衡状态。等离子体中的带电粒子之间存在库伦力的作用,但是此作用力远小于粒子运动的热运动能。当讨论处于热平衡状态的等离子体时,常将等离子体当做理想气体处理,而忽略粒子间的相互作用。在热平衡状态下,粒子能量服从麦克斯韦分布。每个粒子的平均动能32

E kT =。对于处于非平衡状态下的等离子体,一般认为不同粒子成分各自处于热平衡态,分别用e T 、i T 、n T 表示电子气、离子气和中性气体的温度,并表示各自的平均动能。可以用动力学温度E T (eV )表示等离子体的温度,E T 的单位是能量单位,由粒子的动能公式可得

2133222

E E mv kT T =

==,E T 就是粒子的等效能量kT 值(1eV 的能量温度,相应的开氏绝对温度为1T k ==11600K )。 温度是描述等离子体能量的,还有其它的一些概念来表述。(1)高温等离子体,低温等离子体,冷等离子体。高温等离子体也是完全电离体,温度6810~10K ,核反应、恒星的等离子体是这类。低温等离子体是部分电离体,463410~10,310~310e i T K T K ==??,电弧等离子体、燃烧等离子体是这种。冷等离子体是410,e i T K T >约等于室温的等离子体。

(2)电离度。强电离等离子体指电离度η>10-4的等离子体,弱电离等离子体η<10-4。η是电离度,0=n n n

η+,n 是两种异电荷粒子中任何一种密度,0n 为中性粒子密度。粒子密度是表示单位体积中所含粒子的数目。(3)稠密等离子体和稀薄等离子体。具体区分度不详。

二、等离子体特性

1.电中性:等离子体整体表现是电中性,但由于某种扰动或其它原因,在局部空间有可能出现离子过剩或电子的偏少,相应的,另一空间出现离子偏少和电子过剩。过剩电子的区域中的电子会有强烈的向电子偏少区域运动的特性,恢复等离子体的电荷分离,因此等离子体具有强烈的维持电中性的特性。但是粒子是处在运动中的,因此,在某一有限小的区域内,电中性是可以不存在的。

2.德拜屏蔽长度:为了描述等离子体内电荷分离的最大线性尺度,它指的是等离子体能够保持电中性的区域范围。在德拜球范围内,电中性是不保证的,即球内不能称为等离子体,只能是电离气体。因此,德拜长度是电离气体电中性空间的临界线度的判据。等离子体内带电粒子浓度越大,电子温度越低,德拜长度就越小,非电中性被限制在较小的范围内。

3.等离子体(振荡)频率:首先要知道为什么等离子体会振荡,设想等离子体内离子是均匀分布的,由于某种扰动,电子偏离平衡位置,局部出现了电荷过剩,电中性受到了破坏。显然,这些过剩的电子产生的电场,使电子向平衡位置运动,从而使电子过剩很快消失,由于惯性作用,电子到达平衡位置不可能立即静止而是继续运动,从而使平衡位置的另一端出现了电子过剩,同样形成电场,又把外面的电子拉回来。这样,相当数量的电子以正电荷为平衡位置产生集体振荡,这种振荡现象成为等离子体的静电振荡,它的频率称为等离子体频率。

8.910f =?4.导电性和介电性:等离子体能同时表现出导电性和介电性。在弱电离情况下,带电粒子主要与中性粒子碰撞,直流电导率一般较大,类似金属中电子的自由运动。如果把等离子体置于交变电场中,如电磁场,此时无界的等离子体就像各向异性的电介质,在平行和垂直于磁场传播方向上有不同的介电常数。

5.等离子体的“鞘”:当等离子体与容器壁接触时,在两者的交界处形成一层负电位的薄层,它把等离子体包围起来,通常称为等离子体的“鞘”。“鞘”是如何产生的呢?等离子体内的粒子都处于热运动状态,在等离子体热平衡状态下(即e i T T T ==),可以认为电子的平均动能和离子平均动能相同,但是由于电子质量小得多,因此e i v v >>,当等离子体与容器壁相接触时,一开始到达器壁表面的电子数目远远超过离子数目,固体壁积聚负电荷,由此产生负电位阻止电子向器壁运动,而吸引离子向器壁运动,电子逐渐减少,离子逐渐增加,最后达到平衡,使固体器壁的负电位数值不再改变,这样就形成了一层负电位的等离子体“鞘”。它把固体器壁与等离子体隔开,并把等离子体包围起来。电子要从等离子到达器壁,必须要克服由“鞘”所形成的势垒。“鞘”的宽度一般在拜德屏蔽长度级别。

6.等离子体的磁约束:带电粒子在恒稳磁场中的运动受到洛伦兹力作用,通过受力分析可以得到带电粒子总的运动轨迹是以磁力线为轴的螺旋线。回旋运动中心沿磁力线作匀速运动。对于高温等离子体来说,任何固体容器都难以承受,因此,必须采用强磁场约束等离子体,这是的外磁场称为“磁壁”。

三、等离子体的辐射

等离子体都是发光的,不仅包含可见光,还可以发出紫外光,甚至X 射线。等离子体发生辐射的方式有很多种:

1. 激发辐射。主要发生在粒子密度很低的冷等离子体中,当粒子能量小于几个电子

伏时,主要产生激发辐射。常见的日光灯、霓虹灯等都是这种冷等离子体辐射。

它主要是核外电子从较高能级向较低能级的跃迁。原子或离子都可以发光,主要

靠的是电子的碰撞激发,电子的碰撞几率和电子的能量有关。对应于一定电子温度的某些特定能级的相应激发几率最大,产生的谱线最强。在低气压放电的冷等离子体中,粒子的激发辐射可看成是孤立原子或离子产生的辐射,谱线宽度很窄,等于谱线的自然宽度。当在高气压放电的电弧等离子体中,辐射谱线波长变短,谱线也会丰富很多。当电子温度T e达到10eV时,几乎所有的原子都电离,多电子的原子发生二次或多次电离,使核电荷屏蔽减少,束缚态之间能级差更大,辐射谱线波长更短,甚至发射X射线。当温度更高时,所有的核外电子都被剥离,离子变成裸核,于是激发辐射消失。

2.复合辐射。自由电子和离子的复合有两种状况,一是自由电子被n次电离的原子

俘获,俘获了电子的离子跃迁到(n-1)次电离原子的束缚态,被俘获的电子的多余能量以及原子的电离能以光子的形式发射出来;二是两个自由电子同时与一个离子相碰,则一个电子被俘获,而另一个电子带走多余能量,这个电子仍然是自由电子,并不产生辐射,随着等离子体密度的增大,这种三体复合发生的几率比复合辐射更大。需要说明的是,由于自由电子的动能有一定的连续分布,且不同能量的电子所对应的俘获截面也不同,因此,自由电子被俘获后失去的能量是一个连续谱。

3.轫致辐射。在无磁场等离子体中,自由电子在原子核电场作用下产生电子-原子

核库伦碰撞,使自由电子跃迁到能量较低的另一自由态。碰撞过程中,电子减速,将一部分能量或动量传递给原子核,把多余的能量以光子形式辐射出去。这种由减速电子所发射的辐射,称为轫致辐射。由于电子碰撞前后都是自由度,也称为自由-自由跃迁。由于电子的能量具有任意性,故轫致辐射产生连续光谱。一般而言,轫致辐射出现在紫外到X射线范围。

4.回旋辐射。在磁场中围绕磁力线作回旋运动的带电粒子发出的辐射,称为回旋辐

射或磁轫致辐射。一般只考虑电子的回旋辐射,电子质量小,回旋加速度大,辐射强度大。它也是一种连续辐射。

ICP等离子体直读光谱仪作业指导书

ICP等离子体直读光谱仪作业指导书 1 主题内容 本作业指导书规定了ICP等离子体发射光谱开机预热、编辑分析方法、和打印报告等各环节的具体操作程序。 2人员 操作人员须经过专业培训,考核合格,取得仪器操作授权。 3仪器的准备 (1)开机 调分压表为0.5—0.8Mpa,同时确认两瓶氩气储量足够。再确认氩气打开1小时后开主机。 (2)预热 主机开机以后预热一般2—3小时,使光室恒温指示达到90±0.2华氏度。 4计算机操作系统 (1)条件检查 再次确认氩气储量大于或等于一瓶,分压为0.5—0.8Mpa,通气时间大于40min。 检查并确认炬管等进样系统正确安装。 ●检查病确认废液桶有足够的容积空间。 ?将进样管放入水中。 (2)启动计算机

进入TEVA软件,点击点火图标,检查仪器连接是否正常。 如果仪器连接正常,点击点火图标,稳定15—30min后开始工作。 5编辑分析方法 (1)选择元素及谱线 在TEVA软件里选择Analysis 选择Methad,再选择new,选择所需要的元素,点击OK即可。 (2)设定分析参数 在上一步完成后,点击Methad,点击Analysis Preference设置重复次数、长短波积分时间。 (3)保存参数 点击Automated output,选上store results to database,点击Apply to all sample type,即可。 (4)设定标准系列 点击standards,输入标准系列,点击save保存。 6拍摄高标谱图 回到Analyst界面中,点击拍摄高标图标,选择各元素条件拍摄高标谱图。 7校正高标谱图里的谱线 选择使谱线波长接近元素波长,强度最大的位置为谱图的中心位置,然后右键点击Restore zoom即可。 8拍摄标准谱线 回到Analyst界面中,点击左下角Analyst,点击拍摄标准曲线图标,点击run,

等离子体概述

一、等离子体概述 物质有几个状态?学过初中物理的会很快回答固态、液态、气态。其实,等离子态是物质存在的又一种聚集态,称为物质的第四态。它是由大量的自由电子和离子组成,整体上呈现电中性的电离气体。 在一定条件下,物质的各态之间是可以相互转化的,当有足够的能量施予固体,使得粒子的平均动能超过粒子在晶格中的结合能,晶体被破坏,固体变成液体。若向液体施加足够的能量,使粒子的结合键破坏,液体就变成了气体。若对气体分子施加足够的能量,使电子脱离分子或原子的束缚成为自由电子,失去电子的原子成为带正电的离子时,中性气体就变成了等离子体。物质的状态对应了物质中粒子的有序程度,等离子内物质中的粒子有序程度是最差的。相应的,等离子体内的粒子具有较高的能量、较高的温度。实际上,宇宙中99.9%的物质处于等离子态,它是宇宙中物质存在的普遍形式,不过地球上,等离子体多是人造的。 人工如何造出等离子体呢?从上面的论述可以看出,等离子体的能量是很高的,任何物质加热到足够高的温度,都会成为电离态,形成等离子体。在太阳和恒星的内部,都存在着大量的高温产生的等离子体。太阳和恒星的热辐射和紫外辐射能使星际空间的稀薄气体产生电离,形成等离子体,如地球上空的电离层就是这样来的。各种直流、交流、脉冲放电等均可用来产生等离子体。利用激光也可以产生等离子体。 等离子体如何描述?温度。等离子体有两种状态:平衡状态和非平衡状态。等离子体中的带电粒子之间存在库伦力的作用,但是此作用力远小于粒子运动的热运动能。当讨论处于热平衡状态的等离子体时,常将等离子体当做理想气体处理,而忽略粒子间的相互作用。在热平衡状态下,粒子能量服从麦克斯韦分布。每个粒子的平均动能32 E kT =。对于处于非平衡状态下的等离子体,一般认为不同粒子成分各自处于热平衡态,分别用e T 、i T 、n T 表示电子气、离子气和中性气体的温度,并表示各自的平均动能。可以用动力学温度E T (eV )表示等离子体的温度,E T 的单位是能量单位,由粒子的动能公式可得 2133222 E E mv kT T ===,E T 就是粒子的等效能量kT 值(1eV 的能量温度,相应的开氏绝对温度为1T k ==11600K )。 温度是描述等离子体能量的,还有其它的一些概念来表述。(1)高温等离子体,低温等离子体,冷等离子体。高温等离子体也是完全电离体,温度68 10~10K ,核反应、恒星的等离子体是这类。低温等离子体是部分电离体, 463410~10,310~310e i T K T K ==??,电弧等离子体、燃烧等离子体是这种。冷等离子体是410,e i T K T >约等于室温的等离子体。 (2)电离度。强电离等离子体指电离度η>10-4的等离子体,弱电离等离子体η<10-4。η是电离度,0=n n n η+,n 是两种异电荷粒子中任何一种密度,0n 为中性粒子密度。粒子密度是表示单位体积中所含粒子的数目。(3)稠密等离子体和稀薄等离子体。具体区分度不详。

等离子体物理培养方案

等离子体物理学科硕士研究生培养方案 (专业代码:070204) 等离子体物理主要研究微波等离子体理论与应用、计算等离子体物理、等离子体电子学以及激光与等离子体的相互作用、聚变等离子体、等离子体诊断。微波等离子体理论与应用,重点研究其产生、维持的理论和方法,微波等离子体激光、微波等离子体沉积及新材料制备等。计算等离子体物理研究等离子体重要物理过程的粒子模拟技术(PIC技术)。等离子体电子学主要研究电磁场或电磁波和电子注及等离子体的三元相互作用,探索新型高效率、高功率微波器件。聚变等离子体学主要开展对受控聚变中所涉及的基础等离子体物理学进行细致研究。重点开展波与等离子体相互作用及加热机理,探索新型等离子体诊断方法。 一、培养目标 培养德、智体全面发展的,具有坚实的数理基础和等离子体物理专业知识,掌握本学科坚实的理论基础及系统的专门知识,掌握现代微波等离子体实验技能和基本的等离子体诊断技术,了解等离子体物理的前沿领域和发展动态。具有严谨求实的科学态度和工作作风及从事科学研究工作及独立从事专门技术工作的能力,能胜任高等院校、研究机构和产业部门有关方面的教学、研究、工程、开发及管理工作。 二、研究方向 1.微波等离子体理论与应用2.计算等离子体物理 3.聚变等离子体物理4.等离子体电子学 5.等离子体诊断6.太赫兹科学技术 三、培养方式和学习年限 全日制硕士研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。 四、学分与课程学习基本要求 总学分要求不低于26学分,其中课程总学分不低于24个学分,必修环节不低于2学分。课程学分要求中,学位课不低于15学分,其中公共基础课必修,基础课至少选修一门。专业基础课中有“*”标志的为全校共选专业基础课。允许在导师指导下、在相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。 学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求补修相应专业本科核心课程至少2门,通过考试,但不计学分;通过后方可选修专业课。 研究生应在导师指导下制定个人培养计划和具体选课。研究生学习与研究课题有关的专业知识,可由导师指定内容系统地自学某些课程,并列入个人培养计划,但不计学分。 五、课程设置 研究生课程主要划分为学位课、非学位选修课、必修环节三大部分。

等离子体诊断技术作业题及答案

“等离子体诊断技术”课程作业题 1.试述光谱分析法对激光等离子体诊断的特点以及能进行定量测试的物理量,并举例说明; 答:不同波段对分析仪器及所用的分析技术的要求不相同。而且各种类型的高温等离子体的参数范围变化很大,不同的参数范围和不同的诊断方法对光谱的分析也有不同的要求。在此着重介绍可见光区光谱分析,稍微介绍下红外和紫外以及X射线光谱。在可见光区,光谱分析基本上都是用棱镜光谱仪、衍射光栅光谱仪和干涉光谱仪。光谱分析仪中最关键的元件是棱镜或衍射光栅等色散元件,它用以使不同波长的光在空间分离出来。 棱镜的分光原理是基于某些透光物质的色散作用,即某些透光介质对不同光波的光具有不同的折射率。棱镜光谱分析仪最大的优点是其没有光谱重叠问题。其显 著缺点是,在0.4m μ到1.0m μ,d n dλ 均下降约达一个数量级,使角色散率和分辨 率都随波长而有显著变化。棱镜光谱仪的工作光谱区,主要取决于棱镜及其它光学零件所用材料的光谱透射率。国产KCA-1型大型棱镜摄谱仪,光源出发的光通过三透镜系统照明狭缝,使得整个狭缝照明均匀,并使光线充满物镜,从而发挥仪器的最大分辨率。狭缝是光谱仪中十分精密的部件,其缝宽调节精度达微米量级,它的高度有光阑调节。 近代高级的光谱仪大多都采用光栅作为色散元件。从广义上讲,任何一种装置和结构,只要它能给入射光的振幅或相位、或者两者同时加以周期性的空间调制,都称为衍射光栅。它的分光作用是基于光的衍射和干涉现象。实际采用的光栅都不采用投射式,而采用反射式。由于振幅调制式光栅的大部分光强仍然都落在五色散的零级谱上,因而现代所有的光栅都采用相位调制式反射光栅。相位调制式反射光栅的主要优点是,可以选择一定形状的沟槽断面,是大部分的入射光集中于预定的方向上,这种光栅称为闪耀光栅。闪耀光栅在闪耀方向上,所集中地入射总光能可达80%~90%,这是闪耀光栅的最大优点。在光栅光谱仪中,不同波长的不同光谱级的光会发生重叠,这是其最严重的缺点之一。反射光栅除了上述的平面反射光栅外,还有一种所谓凹面反射光栅,它是在球面反射镜上沿弦刻画出等间隔且等宽的许多平行直刻痕二制成的。凹面光栅除了具有与平面光栅相同

等离子体

3.空心阴极效应如何产生的? 两平行平板阴极置于真空设备中,当满足气体点燃电压时,这两个阴极都产生辉光放电,在阴极附近形成阴极暗区,当两阴极靠近或气压降低时,两 个负辉区合并。此时从阴极K1发射出电子在K1 的阴极位降区加速,当它进入阴极K2的阴极位降 区又被减速,因此如果这些电子没有产生电离和 激发,则电子在K1和K2之间来回振动,增加了 电子和气体分子的碰撞几率,可以引起更多的激 发和电离过程。电离密度增加,负辉光强度增加, 这种现象称为空心阴极效应。 4.辉光放电和弧光放电的特点各是? 5.低于和高于共析温度渗氮时组织是如何形成的?1首先是α相被氮所饱和,当氮含量达到饱和极限时,便通过非扩散性的晶格重构方式,形成γ’相;随着时间的延长,当γ’相的氮含量达到饱和极限时,在铁的表层,同样以晶格重构方式形成ε相。γ’相和ε相均按扩散方式长大。因此,纯铁经充分渗氮后,表层组织依次为ε、γ’以及α相 2在高于共析温度时纯铁渗氮,在渗氮温度下生成的组织,由表及里依次为:ε,,γ,α。当缓冷至室温时,低浓度的ε相会析出。γ相在590发生共析转变(),相降低了其饱和含氢量而析出。若快冷时,则含氮奥氏体发生氮马氏体转变,故表层组织依次为:ε,,,α 6.三种渗氮理论分别是什么?1射与沉积理论:离子渗氮时,渗氮层是通过反应阴极溅射而形成。在真空炉体内,工件为阴极,炉体为阳极,加上直流高压后,稀薄气体电离,形成等离子体2子离子理论:在离子渗氮中,虽然溅射很明显,然而不是主要的控制因素,对渗氮起决定作用的是氮氢分子离子化的结果3性氮原子模型:对离子渗氮其作用的实际上是中性氮原子,分子离子的作用是次要的 7.简述离子渗氮的特点:优点a渗氮速度快b渗氮层组织易控制,脆性小c无公害热处理d节约能源、气源e变形小;f适用于不锈钢渗氮。缺点:1不同形状、尺寸、材料的零件混合装炉渗氮时,要使工件温度均匀一致比较困难2.离子渗氮设备较复杂,价格也比气体渗氮炉贵3.准确测定零件温度较困难。 8.简述渗氮过程中脉状组织形成受什么影响?a合金元素在晶界偏聚严重的,则脉状组织明显;b工艺参数的影响:渗氮温度高,保温时间越长,NH3渗氮时炉内;压强越高,均促进脉状组织的形成;c零件棱角的影响:棱角处的脉状组织比其他部位严重得多 9.讨论渗氮材料选择有哪些原则? 1碳钢渗氮效果极差,表面硬度低,硬化层浅。为了提高碳氮的硬化效果,可以采用离子软化工艺2合金结构钢。根据使用条件,选择不同的钢种进行离子渗氮,预先处理一般为调制处理,有的低碳合金钢可以用正火处理。而渗氮温度必须略低于调制回火温度,以保证心部强度不致降低。3工模具渗氮。常用离子渗氮提高工模具使用寿命。4不锈耐酸钢的离子渗氮。离子渗氮可以大幅度提高铁素体型,马氏体型和奥氏体不锈钢的硬度和耐磨性。对于表面要求耐磨,往往由于磨损报废,又要求耐酸蚀的零件可以选用不锈耐酸钢进行离子渗氮处理。5铸铁的离子渗氮。铸铁由于含碳量及含硅量较高,阻止氮的扩散,常采用离子软化的方法渗氮,或选用球墨铸铁合金铸铁,也加快渗速6钛及钛合金的渗氮。由于钛及钛合金具有优异的特性,有广泛的应用。 10.试举例说明如何提高离子渗层的耐蚀性能与耐磨性能: 提高耐蚀性:加入适量的合金元素。提高耐磨性:控制好渗氮温度(较低为宜),选择合适气体比例(减少CO2)。 11.检测渗氮层厚度的方法有哪些?1金相法2硬度梯度法3用X射线衍射法测化合物层厚度4淬火法; 12.检测渗氮层硬度的方法有哪些?1表面硬度:表面硬度的测定以负荷5~10kg的维氏硬度计为准;2硬度梯度:用50~100g现为硬度计进行测定,从边缘往中心每隔一定距离打一硬度值,然后作出硬度分布曲线。 13.元素Al和Cr对渗层有什么影响 1)形成合金氮化物,使硬度、耐磨性增加2)溶入а-Fe中,提高а-Fe的溶氮能力,产生固溶强化作用3)影响氮在铁中的扩散系数及表面吸氮能力4)改变钢的临界点,从而改变渗氮温度

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

等离子体物理基础期末考试含答案

版权所有,违者必究!! 中文版低温等离子体作业 一. 氩等离子体密度103 210n cm -=?, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存 在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径; (2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。 解:1、1/2302 ( )8.310()e i D e i T T mm T T ne ελ-==?+, 2、氩原子量为40, 221/21/2 00()8.0,()29pe pi e i ne ne GHz MHz m m ωωεε====, 3、14,0.19e i e i eB eB GHz MHz m m Ω= =Ω== 4、设粒子运动与磁场垂直 2 4.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===?=== 二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为22 0()(1/)B z B z L =+,并满 足空间缓变条件。 求:(1)带电粒子能被约束住需满足的条件。 (2)估计逃逸粒子占全部粒子的比例。 解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得 22001122m m mv mv B B ⊥⊥ = ,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜 中央,粒子速度满足002 v v ⊥≥ 2 、逃逸粒子百分比20 1 sin 129.3%2P d d π θ ?θθπ = ==?? (2)

等离子体第一部分

等离子体化工导论讲义 前言 等离子体化工是利用气体放电的方式产生等离子体作为化学性生产手段的一门科学。因其在原理与应用方面都与传统的化学方法有着完全不同的规律而引起广泛的兴趣,自20世纪70年代以来该学科迅速发展,已经成为人们十分关注的新兴科学领域之一。 特别是,近年来低温等离子体技术以迅猛的势头在化工合成、材料制备、环境保护、集成电路制造等许多领域得到研究和应用,使其成为具有全球影响的重要科学与工程。例如:先进的等离子体刻蚀设备已成为21世纪目标为0.1μm线宽的集成电路芯片唯一的选择,利用等离子体增强化学气相沉积方法制备无缺陷、附着力大的高品位薄膜将会使微电子学系统设计发生一场技术革命,低温等离子体对废水和废气的处理正在向实际应用阶段过渡,农作物、微生物利用等离子体正在不断培育出新的品种,利用等离子体技术对大分子链实现嫁接和裁剪、利用等离子体实现煤的洁净和生产多种化工原料的煤化工新技术正在发展。可以说,在不久的将来,低温等离子体技术将在国民经济各个领域产生不可估量的作用。 但是,与应用研究的发展相比,被称为年轻科学的等离子体化学的基础理论研究缓慢而且较薄弱,其理论和方法都未达到成熟的地步。例如,其中的化学反应是经过何种历程进行,活性基团如何产生等等。因此,本课程力求介绍这些方面的一些基础理论、研究方法、最新研究成果以及应用工艺。 课程内容安排: 1、等离子体的基本概念 2、统计物理初步 3、等离子体中的能量传递和等离子体的性质 4、气体放电原理及其产生方法 5、冷等离子体中的化学过程及研究方法 6、热等离子体中的化学过程及研究方法

7、当前等离子体的研究热点 8、等离子体的几种工业应用 学习方法: 1、加强大学物理和物理化学的知识 2、仔细作好课堂笔记,完成规定作业 3、大量阅读参考书和科技文献 第一章等离子体的概念

等离子体及其技术的应用

等离子体及其技术的应用 摘要: 随着等离子体技术的迅速发展,逐渐形成了一个新兴的等离子体化工体系。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。这势必会造就很多性能优良的新物质,其也将会有广泛的应用前景。 关键词:等离子体;喷涂;焊接;尾气处理;隐身技术

Plasma and its technical application ABSTRACT With the rapid development of plasma technology, and gradually formed a new plasma chemical system.We know, the common chemical reaction and chemical engineering equipments only produce two thousand degrees temperature.The temperatures that in low temperature plasma electronic produced by all forms of gas discharge up to ten thousand degrees or above,more enough to fracture all sorts of the chemical bonds, or make the gas molecule ionization, produce many chemical reactions that can't happened in usual conditions , get compound or chemical products that can't achieved in usual conditions , and the products won't occur thermal decomposition.It will produce a lot of new substances that performance excellent ,and have a broad application prospect. keywords:plasma;flame plating;soldering;tail gas treatment;invisible technology

等离子体物理课程教学大纲

等离子体物理课程教学大纲 课程基本信息(Course Information) 课程代码 (Course Code) PH339 *学时 (Credit Hours) 3 *学分 (Credits) 48 *课程名称 (Course Name) 等离子体物理 Plasma Physics 课程性质 (Course Type) 物理学专业、物理学专业(国际班)选修课 授课对象 (Audience) 物理学专业、物理学专业(国际班)大学三年级本科生 授课语言 (Language of Instruction) 英文 *开课院系 (School) 物理与天文学院 先修课程 (Prerequisite) Classical electrodynamics 授课教师 (Instructor) 课程网址 (Course Webpage) *课程简介(Description) The course is introductory‐level plasma physics where I teach students the fundamental concepts, theories and some potential applications for plasma physics. Fundamental theories include single‐particle approach as a first step which gives a reasonable background on different particle drift motions in various E‐ and B‐field configurations some are relevant to E‐B fields of magnetic‐confinement machines like EAST Tokamak in CHINA. The fluid‐theory of plasma physics is given and directly applied to various (tens) kinds of plasma waves (EM and ES) and their propagation characteristics in plasma. A modified approach of the fluid theory, called “MHD” is applied to get the electrical properties and the stability properties of the plasma in various confinement configurations, including the most famous 2D equilibrium configuration called “Grad‐Shafranov”. Finally I teach the basics of the microscopic theory of plasma physics which is the kinetic approach. Based on this theory I derive the exact dispersion relationship of plasma waves and the so called “Landau damping”. Throughout the course, we teach how the plasma physics is applied, for example to create a nuclear fusion reactor for future energy needs etc. 课程教学大纲(Course Syllabus)

等离子体物理思考题参考050718讲解

思考题 1.1 电离气体一定是等离子体吗?反过来呢? 答:电离气体不一定是等离子体,反过来也不一定。 1.2 试就高温、低温、高密度、低密度等离子体各举一例。 答:磁约束受控热核聚变等离子体是高温等离子体,电弧等离子体是低温等离子体,太阳内部等离子体是高密度等离子体,电离层等离子体是低密度等离子体。 1.3 德拜屏蔽效应一定要有异性离子存在吗? 答:不一定,完全由电子构成的非中性等离子体也具有德拜屏蔽效应。 1.4 用电子德拜长度表示等离子体的德拜长度的前提是什么? 答:主要是所考虑问题的时间尺度应小于离子的响应时间,离子不能响应。 1.5 由于德拜屏蔽,带电粒子的库仑势被限制在德拜长度内,这是否意味着 粒子与德拜球外粒子无相互作用?为什么? 答:有,但是表现为集体相互作用,实际上屏蔽本身可以视为相互作用的传递过程,粒子对德拜球外的粒子的相互作用,通过周围屏蔽粒子的传递而作用。 1.6 对于完全由同一种离子构成的非中性等离子体,能够有德拜屏蔽的概念 吗? 答:同样有,但此时是指在平衡状态下,系统对电扰动的屏蔽作用。 1.7 常规等离子体具有不容忍内部存在电场的禀性,这是否意味着等离子体 内部不可能存在很大的电场,为什么? 答:不一定,在小于德拜长度的空间尺度中,可以存在局域很强的电场,在比等离子体特征响应时间小的时间尺度中,可以存在瞬时的强电场。 1.8 在电子集体振荡的模型中,若初始时不是所有电子与离子产生分离而是 部分电子,则振荡频率会发生变化吗?如果变化,如何解释? 答:从方程上看,此时的振荡频率似乎会减小,即将电子密度换成分离电子密度,如果这样,集体振荡频率就不是等离子体的一种特征频率,因为与振荡扰动的幅度相关。但事实上这样处理是不对的,部分电子与离子分离的情况应用此模型无法进行。因为当部分电子分离时,未分离的电子同样会运动,使得电场会增大,结果使振荡频率仍然是等离子体频率。 1.9 粒子之间的碰撞是中性气体中粒子相互作用的唯一途径,在等离子体中

火与等离子体

火是物质燃烧产生的光和热。必须有可燃物、燃点、助燃气体(不一定是氧气)并存才能生火。三者缺任何一者就不能生火。 火是很泛的概念,基本包含两大元素:发光(光子的产生)和产热(如氧化、核反应所致)。在生活中,火可以被认为是物质发生某些变化时的表征。很多物质都能在某些特定的变化或说反应中产生光和热,两者共同构成我们所说的“火”。 譬如以蜡烛为例,蜡烛燃烧时当然产生了火。但我们到底该认为谁是火呢?是蜡,还是二氧化碳、水,甚至是炭或蜡分解出的小分子有机物? 水和二氧化碳是无法独自产生火的,可排除此可能性;我们在蜡烛燃烧时看到黑烟,说明炭还好好的存在着,并未发生反应,所以这种可能性亦不存在,至于其他杂分子,也是燃烧的副产物,既然称为产物,则不会在我们所讨论的反应过程中发生变化了,排除。只剩下蜡了。蜡是火?确实荒谬。不错,蜡本身绝不是火,但火源自蜡,而非上述任何其他物质,这是肯定的。蜡产生了火,而火却不是此反应中的任何反应物或生成物本身!火就是火自己!但火实际上确是一种物质,但又不仅仅是物质。 或许我们也会问“闪电是什么物质?”,有人可能会回答道“闪电是一种现象,不是一种物质”,这样的答复没什么意义。其实这个问题颇值得思考。闪电产生于空气中,更准确地说,是云(以水为主)中。书本告诉我们闪电是电中和所致,但这并不直击问题要害。相信某人说“闪电是一种大自然的现象”没人会反驳,但我提出的闪电与他说的闪电是两个不同的词。我说的是一个物质名词,他说的是一个动名词!举个例子,我说的闪电好比雪snow,而他所说的闪电好比下雪fall of snow OR snowing。对于火的理解,也有相同的理解分歧。但是,我们要清楚一点,任何自然现象都是物质的。客观存在的是物质本身,而其现象只是人脑中的反映,或说人的感知及后继的理性思考。 在火中,光既是物质又是能量,这不难接受。而对于热,大多数人认为热仅仅是能量,但实际上,热辐射作为一种电磁辐射,在量子物理中亦有物质性,其和光的本质是同一的。更深层上,物质与能量是统一的,可等价的。只是当代物理学界倾向于将物质统一于能量——受限的能量。所以火的本质既是同具光波和热辐射的电磁波,是物质,也是同具光能、热能的能量。 电子离开原子核,这个过程就叫做“电离”。这时,物质就变成了由带正电的原子核和带负电的电子组成的,一团均匀的“浆糊”,人们称它离子浆。这些离子浆中正负电荷总量相等,因此又叫等离子体。 火是物质吗?如果是,是什么物质?

等离子体-第二部分

第四章 等离子体的产生 4.1 碰撞过程中能量的传递特征 气体放电中任何一个粒子会通过碰撞过程与其它各种粒子产生相互作用。粒子之间通过碰撞交换动量、动能、位能和电荷,使粒子发生电离、复合、光子发射和吸收等物理过程。 粒子间的碰撞是指它们在各种力场下的相互作用。并不必象刚体那样一定要发生它们之间的直接接着才称为碰撞。只要粒子受其它粒子影响后,它的物理状态发生了变化,就可以认为这些粒子间发生了碰撞。根据粒子状态的变化,可以把粒子发生的碰撞分成弹性碰撞和非弹性碰撞两大类。 在弹性碰撞中,参与碰撞的粒子其位能不发生变化。如电子和原子之间发生弹性碰撞时,电子只把自己的部分动能交给原子,使两者的运动速度和方向发生变化,而原子不被激发或电离。这类碰撞主要发生在低能粒子间的碰撞中。 在非弹性碰撞中,参与碰撞的粒子间发生了位能的变化。例如,具有足够动能的电子与原子碰撞,原子得到电子交出的动能,而被激发或电离,即原子的位能得到了增加。通常把这种导致粒子体系位能增加的碰撞称为第一类非弹性碰撞。具有一定位能的粒子通过碰撞也可以交出自己的位能,同时使被碰粒子的动能得到增加。例如被激发到亚稳态的原子与电子之间的碰撞,通过这种碰撞,原子回到了基态,原子的激发能转成了电子的动能。通常把导致粒子体系位能减少的碰撞称为第二类非弹性碰撞,或称为超弹性碰撞。 1.弹性碰撞时的能量转移 为使问题简化,设一速度为1v 、质量为1m 的入射粒子另一静止的、质量为2m 的靶粒子发生了碰撞。碰撞后,两粒子的速度分别为1u 和2u 。 由动能守恒和动量守恒得 2 211112 2 22112112 12121u m u m v m u m u m v m +=+= 解得 12 12 11v m m m m u ?+-=

等离子体的生成方式

本章主要内容
第6章 等离子体的生成方法
6.1 6.2 6.3 6.4 6.5 各种直流放电方法与放电模式 辉光放电与低温等离子体 电弧放电与热等离子体 高频放电产生等离子体 微波放电产生等离子体

6.1 各种直流放电方法与放电模式
?直流放电法
– 冷阴极放电 – 热阴极放电 – 空心阴极放电 – 磁场辅助放电(磁控管放电)
" 直流放电的特征:
1. 电极上所加电压在极性上是恒定的,正电位端为阳极、负电位为阴极; 2. 等离子体的生成与维持主要通过阴极鞘层中的电子加速和等离子体中的 焦耳加热来实现;


? 冷阴极放电与热阴极放电的区别
– 冷阴极放电依靠阴极的二次电子发射来维持放 电,热阴极依靠阴极本身的热电子发射来维持放 电; – 热阴极放电需要较高的阴极温度 (1000 ̄3000oC),但在低气压(如0.1Pa)下 仍能维持放电; – 冷阴极放电需要较高的着火电压与放电维持电压 (用于加速离子),而热阴极放电的放电维持电 压较低; – 冷阴极放电器件不需要加热灯丝有较长的寿命, 且节能,热阴极放电器件有较高的功率;

? 空心阴极放电的原理与优点
– 阴极面积大,易于产生较高的电流密度,从而 得到高密度等离子体; – 空心阴极放电的阴极属冷阴极,依靠二次电子 发射维持放电; – 空心阴极有利于提高电离效率
? 径向电子运动在一定条件下可以维持很长的寿命, 从而增加其参与电离的次数(条件:平均自由程大 于圆筒半径,阴极表面的鞘层厚度小于圆筒半径, 电子在另一侧鞘层内被反射) ? 阳极面积小,可以减少阳极对电子的吸收,加强放 电;

什么是等离子体

什么是等离子体?还有什么情况下产生? 等离子(等离子态,电浆,英文:Plasma)是一种电离的气体, 由于存在电离出来的自由电子和带电离子, 等离子体具有很高的电导率,与电磁场存在极强的耦合作用.等离子体由克鲁克斯在1879 年发现,"Plasma"这个词,由朗廖尔在1928 年最早采用等离子体是存在最广泛的一种物态,目前观测到的宇宙物质中,99%都是等离子体. 等离子态在宇宙中广泛存在,常被看作物质的第四态(有人也称之为"超气态") . 人造的等离子体: 荧光灯,霓虹灯灯管中的电离气体; 核聚变实验中的高温电离气体; 电焊时产生的高温电弧. 地球上的等离子体: 火焰(上部的高温部分) 闪电;大气层; 中的电离层;极光. 宇宙空间中的等离子体:恒星;太阳风;行星际物质;恒星际物质;星云. 等离子体可分为两种:高温和低温等离子体.以上提到的是高温等离子体,高温等离子体的温度,可以高达 1 亿摄氏度.现在低温等离子体广泛运用于多种生产领域.例如:等离子电视,婴儿尿布表面防水涂层, 增加啤酒瓶阻隔性. 更重要的是在电脑芯片中的蚀刻运用, 让网络时代成为现实. 等离子态常被称为"超气态", 它和气体有很多相似之处, 比如: 没有确定形状和体积,具有流动性,但等离子也有很多独特的性质. 这种物质的第四基本形态,就是等离子态(体) .那么,什么是等离子态呢? 在等离子体中,电磁力起主要作用,使原本普通的物质内部出现新的运动形态,比如电子,离子的集体振荡. 等离子体虽然看不见摸不着,但它并不是虚无没用的,相反,它具有相当神奇广泛的作用,因此被称为"法力无边的隐形魔术师". 如:令萨达姆闻风丧胆的隐形武器.在海湾战争中,美国投入了一种新研制出来的隐形飞机,深人到伊拉克腹地进行侦察活动,充分掌握了伊军的布防情况,而伊军对之却毫无办法,因为这种侦察飞机采用了等离子体技术,等离子体具有的屏蔽效应,使雷达无法探测到它的踪迹.在科索沃战争中,以美国为首的北约的隐形侦察机,隐形轰炸机更是大肆发挥了它的威力.英,美, 俄等国都在致力于将等离子(体) 技术应用于军事方面.采用了等离子体技术后,飞机,导弹可以减少飞行阻力30%以上,因此大大提高了飞机,导弹的飞行速度和机动性能.等离子体还可以降低飞机,导弹的防热防护标准和飞行的轰鸣声等.俄罗斯正在开发一种新型的等离子武器,能通过将大气层电离产生的高温高能量,形成一个能量巨大的等离子大气环境区域,将在该区域的天空,太空中飞行的飞机,导弹和航天器击毁. "绿色","清洁"的动力来源. 随着社会的不断发展和人们生活的日益丰富繁荣, 对于电力的需求量也将越来越大.传统的发电技术在为人类做出贡献的同时,也"惹"下不少麻烦,污染了环境,对自然生态和人类健康造成了不小的损害.而且它们的发电效率也不高,所采用的发电来源又大多是不可再生的自然资源.所以,科学家一直在努力寻求一种先进.高效又无污染的发电技术. 而等离子体发电技术正好就能圆科学家们的这一梦想. 等离子体的发电原理是:将带电的高温流体,以极高的速度喷射到稳定的强磁场中,电磁场对带电流体(粒子)施加磁力作用而产生电,直接由热能转变为电能.与传统的火力发电方式相比,等离子体发电具有两大突出特点:一是发电效率高.等离子体发电技术利用发电装置所排泄的温度很高的废气余热来产生蒸汽,以驱动汽轮发电机,从而构成等离子体——汽轮发电的组合发电方式,发电有效率可比火电提高百分之五十以上.二是对环境的污染很轻.等离子发电由于温度很高, 流体燃料燃烧得很充分, 同时, 还因为添加了一些材料, 与发电过程中产生的废气——硫,进行反应,生

等离子体3

作业 等离子态 开放分类:物理、物质、高能物理、状态、电离气体 等离子态 将气体加热,当其原子达到几千甚至上万摄氏 度时,电子就被"甩"掉,原子变成只带正电荷的离 子。此时,电子和离子带的电荷相反,但数量相等, 这种状态称做等离子态。人们常年看到的闪电、流 星以及荧光灯点燃时,都是处于等离子态。人类可 以利用它放出大量能量产生的高温,切割金属、制造半导体元件、进行特殊的化学反应等 等离子体 (等离子态,电浆,英文:Plasma)是一种电离的气体,由于存在电离出来的自由电子和带电离子,等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子态在宇宙中广泛存在,常被看作物质的第四态(有人也称之为“超气态”)。等离子体由克鲁克斯在1879年发现,“Plasma”这个词,由朗廖尔在1928年最早采用。 等离子体的性质 等离子态常被称为“超气态”,它和气体有很多相似之处,比如:没有确定形状和体积,具有流动性,但等离子也有很多独特的性质。 电离 等离子体和普通气体的最大区别是它是一种电离气体。由于存在带负电的自由电子和带正电的离子,有很高的电导率,和电磁场的耦合作用也极强:带电粒子可以同电场耦合,带电粒子流可以和磁场耦合。描述等离子体要用到电动力学,并因此发展起来一门叫做磁流体动力学的理论。 组成粒子 和一般气体不同的是,等离子体包含两到三种不同组成粒子:自由电子,带正电的离子和未电离的原子。这使得我们针对不同的组分定义不同的温度:电子温度和离子温度。轻度电离的等离子体,离子温度一般远低于电子温度,称之为“低温等离子体”。高度电离的等离子体,离子温度和电子温度都很高,称为“高温等离子体”。 相比于一般气体,等离子体组成粒子间的相互作用也大很多。 速率分布 一般气体的速率分布满足麦克斯韦分布,但等离子体由于与电场的耦合,可能偏离麦克斯韦分布。 常见的等离子体 等离子体是存在最广泛的一种物态,目前观测到的宇宙物质中,99%都是等离子体。 * 人造的等离子体

低温等离子体的产生方法

低温等离子体的产生方法 辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出现击穿和燃烧并且处理温度接近室温。次大气压辉光放电技术目前可用于低温材料、生物材料、异型材料的表面亲水处理和表面接枝、表面聚合、金属渗氮、冶金、表面催化、化学合成等工艺。由于是在次大气压条件下的辉光放电,处理环境的气氛浓度高,电子和

相关文档
最新文档