搅拌桨叶的选型和设计计算

搅拌桨叶的选型和设计计算
搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成

组成:搅拌器电动机

减速器

容器

排料管挡板

适用物料:低粘度物料

二、混合机理

利用低粘度物料流动性好的特性实现混合

1、对流混合

在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。包括两种形式:

(1)主体对流:搅拌器带动物料大范围的循环流动

(2)涡流对流:旋涡的对流运动

液体层界面强烈剪切旋涡扩散

主体对流宏观混合

涡流对流

2、分子扩散混合

液体分子间的运动微观混合

作用:形成液体分子间的均匀分布

对流混合可提高分子扩散混合

3、剪切混合

剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。

高粘度过物料混合过程.主要是剪切作用。

减速器

排料管

三、混合效果的度量 1、调匀度I

设A 、B 两种液体.各取体积vA 及vB 置于一容器中.

则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀

若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:

(当样品中CA < CA0时)

或 (当样品中CA > CA0时)

显然 I ≤1

若取m 个样品.则该样品的平均调匀度为

当混合均匀时

2、混合尺度

设有A 、B 两种液体混合后达到微粒均布状态。

B

A A A V V V C +=00A A C C I =0

11A A C C

I --=m I I I I m

+??++=-

211

=-I

A B

A

B (a)(b)

混合尺度分设备尺度

微团尺度

分子尺度

对上述两种状态:

在设备尺度上:两者都是均匀的(宏观均匀状态)

在微团尺度上:两者具有不同的均匀度。

在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均匀)

如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。

如取样尺寸小到与b中微团尺寸相近时.则b状态调匀度下降.而a状态调匀度不变。

即:同一个混合状态的调匀度随所取样品的尺寸而变化.说明单平调匀度不能反映混合物的均匀程度

四、搅拌机主要结构

1、搅拌器

搅拌器由电动机带动.物料按一定规律运动(主体对流).桨型不同.物料产生的流型不同。桨作用于物料.物料产生三个方向的速度分量:

轴向分量

经向分量

切向分量当 .桨对中安装. n 。液体绕轴整体旋转. 不利于

混合。

(1)旋桨式搅拌器

类似于无壳的轴流泵结构:

④d j=(0.2~0.5)D (0.33居多) d j :L

:b=20:5:4 ⑤适合混合中低粘度的物料. μ≤5000c

u=4~8m/s n=10~300r.p.m 。

⑥回路较曲折.出口速度大.湍动程度强.剪切力大.可将微团细化。

特点:

①流型:径向流型 伴有 轴向流 切向流 ②有两个回路

③易产生“分层效应”

(不适于混合含有较重固体颗粒悬浮液)

(2)涡轮式搅拌器 相似于无壳的离心泵 组成:圆盘、轴、

叶片(4~8)

(3)桨式搅拌器

当μ 搅拌器 提供的机械能因粘性阻力而消耗 湍动程度 主体流动范围 例:同一规格的涡轮式搅拌器.混合不同粘度的物料.混合效果差别很大。

结构:

水的搅动范围为4D

当μ>5000c p 时,其搅动 范围为0.5D ,离桨较远处 流体流动缓慢,甚至静止, 混合效果不佳。

∴当μ 时,应采用D n 的桨

桨式搅拌器特点:

①桨叶尺寸大, dj/D=0.5~0.8 宽度大,b:dj=0.1~0.25

②转速低,u=1.5~2m/s ; n=1~100 rpm

③流型:径向流

切向流

桨叶倾斜.可产生小范围轴向流

④适合低粘度物料μ>5000CP

⑤当容器内液位较高时.可在同一轴上安装几个桨叶。

(4)锚删式搅拌器

结构:

2、搅拌容器

形状:

敞开式

封闭式

锥型底圆弧底

圆弧底:有利于产生流型.加速混合.没有死角.功耗低。

锥型底:有利于底部排料.流型差.底部易产生停滞现象.

均匀程度差。

(2)设计

容器壁厚按压力容器设计标准及技术条件进行设计。(3)容器容量及结构尺寸

①容器长径流比H/D

②搅拌容器装料量

搅拌容器装满程度用装满系数表示

根据实验一般:

H/D=1~3 液—固相

液—液相

H/D=1~2 气—液相

H/D=1.7 ~2.5发酵容器H

D

η=Vg/ V

式中: V g 实际盛装物料的容积 V 容器全容积 η=0.6~0.85

如搅拌过程中起泡沫或呈沸腾状态 η=0.6~0.7 (取低值)

当物料反映平稳或粘度较大时 η=0.8~0.85 (取高值) ③容器直径与高度

确定方法:先初算(忽略封头容积),后较核计算. 直径计算:

将H/D 及V=V g/η 代入

注:D 应圆整为标准直径 容器高度计算:

式中:v 封头部分容积

注:H 应圆整

校核:H/D 及η值是否在推荐范围内 3、挡板 (1)打漩

当被搅拌液料出现沿圆周做整体旋转运动时.这种流动状态叫打旋。 (2)打旋的危害

①几乎不存在轴向混合.会出现分离现象。 ②液面下凹.有效容积降低。

③当旋涡较深时.会发生从液体表面吸气现象.引起液体密度变化或机械振动。 (3)常见消除打旋的方法

①偏心安装

D H D H D V 32

44ππ==3

)/(4D H Vg D ηπ=H D v V 24

π=-24D

v

Vg H πη-=

②倾斜安装

③側壁安装

消除打旋最简单常用的方法是在容器内加设挡板(4)挡板的结构与作用

结构

作用: ①消除打旋

②将切向流改变为轴向流和径向流 ③增大液体的湍动程度 (5)充分挡板化

实践证明:实现充分挡板化的条件为

式中:W b —挡板宽度 d j —液轮直径 n b —挡板数目

通常:

是否所有液体搅拌机无论混合物料的粘度多大都应加设挡板?

A 、低粘度物料.转速较高.桨对中按装时.应加挡板.挡板紧贴内壁。

B 、中粘度物料.挡板离开壁面安装.防止死区。

C 、高粘度物料(μ=12000cp ) 流体粘度足以抑制打旋.可不加挡板

35

.0.)(2.1=b b n dj

W 101=dj W b 4

=b n

4、轴封

(1)填料密封

特点:

①结构简单

②成本低

③对轴磨损大

④摩擦功耗大

⑤需经常调解

(2)机械密封

特点:

①密封可靠

②对轴无磨损

③摩擦功耗小

④使用寿命长

⑤无需调整

⑥结构复杂

⑦成本高

5、传动系统

组成:

电机、

减速器、

联轴器、

搅拌器

五、功率计算 1、计算方法

影响功率的因素: N=f(n,d j,ρ,μ,g)

结构参数:d j 、D 、 H 、W b

运动参数:n 找出无因次数群 物性参数:ρ、μ 用

式中:φ—功率因素

当加设挡板时.消除打旋.Y=0, Fr=1. ∴ φ=Np=k Rex

对数式:logNp =logK + XlogRe

以φ或Np 为纵坐标.以Re 为横坐标绘制功率曲线 2、功率曲线

x

e y r p R K F N ?==φ

(1) Re<10时.(层流区)为直线, 斜率为-1。

∴logNp =logK -logRe

将Np,Re代入得

N= Kn2 dj3

试验测得:k≈1 当 n一定时功率与μ.dj3 成正比(2) 10 < Re < 104时.(过渡流区)

(3) Re > 104时.(湍流区) 曲线呈水平

无挡板,功率消耗少,易打旋,效果差

有挡板,功率消耗增加,效果好。

注:∵为无因次数群.不针对特定尺寸

∴与曲线描述的搅拌器几何尺寸相近的均可用该曲线计算

设备设计计算与选型

第三部分 设备设计计算与选型 3.1苯∕甲苯精馏塔的设计计算 通过计算D=1.435kmol/h , η=F D F D x x ,设%98=η可知原料液的处理量为F=7.325kmol/h ,由于每小时处理量很小,所以先储存在储罐里,等20小时后再精馏。故D=28.7h koml ,F=146.5kmol/h ,组分为18.0x =F ,要求塔顶馏出液的组成为90.0x D =,塔底釜液的组成为01.0x W =。 设计条件如下: 操作压力:4kPa (塔顶表压); 进料热状况:自选; 回流比:自选; 单板压降:≤0.7kPa ; 全塔压降:%52=T E 。 3.1.1精馏塔的物料衡算 (1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 11.78M A =kg/kmol 甲苯的摩尔质量 13.92M B =kg/kmol 18.0x =F 90.0x D = 01.0x W = (2) 原料液及塔顶、塔底产品的平均摩尔质量 =F M 0.18×78.11+(1-0.18)×92.13=89.606kg/kmol =D M 0.9×78.11+(1-0.9)×92.13=79.512kg/kmol =W M 0.01×78.11+(1-0.01)×92.13=91.9898kg/kmol (3) 物料衡算 原料处理量 F=146.5kmol/h 总物料衡算 146.5=D+W 苯物料衡算 146.5×0.18=0.9×D+0.01×W 联立解得 D=27.89kmol/h W=118.52kmol/h

3.1.2 塔板数的确定 (1)理论板层数T N 的求取 苯—甲苯属理想物系,可采用图解法求理论板层数。 ①由物性手册查得苯—甲苯物系的气液平衡数据,绘出x —y 图,见下图3.1 图3.1图解法求理论板层数 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e (0.45,0.45)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 667.0y q = 450.0x q = 故最小回流比为 1.1217 .0233 .045.0667.0667.09.0x y y x q q q min ==--= --= D R 取操作回流比为 R=22.21.12min =?=R ③求精馏塔的气、液相负荷 L=RD=2.2×27.89=61.358kmol/h

潜水搅拌机结构和选型方法

潜水搅拌机结构和选型方法 作者:南京兰江水处理设备有限公司 【QJB型潜水搅拌机】结构特点: 混合搅拌系列产品选用多极电机,采用直联式结构,能耗低,效率高;叶轮通过精铸或冲压成型,精度高,推力大,外型美观流畅,结构紧凑。 低速推流系列产品采用摆线针轮减速机,配备功率小,转速低,叶轮直径大,服务面积广。叶轮由聚胺脂材料和铝合金铸成,强度高,耐腐蚀性强,除了具有搅拌的功能外还能外还兼有推流和创建水流的作用。 潜水搅拌机的电机绕组为F级绝缘,防护等级为IP68。在污水厂的曝气系统中配合使用,可使系统能耗大大降低,且充氧量明显提高,能有效的防止沉淀。根据工艺要求,直联式潜水搅拌可配用导流罩。 【QJB型潜水搅拌机】选型注意事项: 为保证潜水搅拌机取得最佳运行效果,请使用方提供如下资料; ◎运用目的; ◎池型及尺寸,包括水深; ◎搅拌介质的特性,包括粘度、密度、温度、及固体物含量等。

6.性能原理 电机能在全浸没条件下连续运行、间隙运行和长期停止状态(正常工艺停机)后恢复运行,搅拌器在整个运行过程中保持平稳状态,无故障运行时间不少于10000小时,每日能连续24小时运行或间隙运行。 6.1导轨系统 导轨系统可自由调整搅拌器的提升和下降,并无需排空水池情况下拆卸和安装搅拌器,搅拌器全部的重量受力在一个支架上,并且这个支架可承受搅拌器产生的推力。 6.2电机壳体 搅拌器的电机壳体由优质不锈钢制造,壳体厚度足以承受何载,其表面加工平整光滑。 6.3叶轮 叶轮用不锈钢制造,且经动平衡实验。叶轮与轴之间装有锁定装置,以防转动时松动,叶片设计为三片式,具有自清洁及免振功能。 6.4轴 搅拌器的电机和叶轮采用直联式传动方式,轴由不锈钢制造,轴能承受所有轴向和径向载荷,轴承的设计寿命不少于100000小时,叶轮轴完全与搅拌介质隔离。 6.5轴封 采用两个相互独立高质量机械密封,机械密封面材料均采用耐腐蚀碳化钨,机械密封的使用寿命不低于25000小时。 6.6电机 潜水搅拌机的电机为三相鼠笼异步电机,防护等级为IP68,绝缘等级为F,潜水电机可连续运行,每小时可启动至少10次,潜水电机与搅拌器应是同一厂家制造。 6.7电缆和电缆密封 电机配有控制和动力水下电缆,为了打动最大限度地保护电机,即使在偶然的不正常运行情况下,电缆损坏且电机仍在水下,电缆进口也不允许有湿气进入电机和接线盒,电缆进口宜采用三道密封,内侧采用单芯电缆剥皮并镀锡后嵌入树脂中,中间整个电缆嵌入树脂中,最外部用长橡胶环密封,电缆密封组件应做成一集成。 6.8搅拌器保护 电机绕组上装有温度传感器以监测电机绕组过热,在搅拌器中应设置泄露和湿气保护传感器,应能监测并在搅拌器出现严重损坏前发出报警信号。

搅拌器的选型教学文案

搅拌器的选型

第三节搅拌器的选型 (一)搅拌器选型 桨径与罐内径之比叫桨径罐径比d / D,涡轮式叶轮的d / D一般为 0.25~0.5,涡轮式为快速型,快速型搅拌器一般在H 1.3D时设置多层搅拌器,且相邻搅拌器间距不小于叶轮直径d。适应的最高黏度 为50Pa?s左右。 搅拌器在圆形罐中心直立安装时,涡轮式下层叶轮离罐底面的高度 C 一般为桨径的1~1.5倍。如果为了防止底部有沉降,也可将叶轮放置低些,如离底高度C D/10.最上层叶轮高度离液面至少要有 1.5d 的深度。符号说明 b――键槽的宽度 B――搅拌器桨叶的宽度 d——轮毂内经 d o ――搅拌器桨叶连接螺栓孔径 d1 ――搅拌器紧定螺钉孔径 d2 ――轮毂外径 D J——搅拌器直径 D1 ――搅拌器圆盘的直径

G――搅拌器参考质量 h1 ――轮毂高度 h2 ――圆盘到轮毂底部的高度 L――搅拌器叶片的长度 R――弧叶圆盘涡轮搅拌器叶片的弧半径 M ――搅拌器许用扭矩(N?m) t――轮毂内经与键槽深度之和 ――搅拌器桨叶的厚度 i ――搅拌器圆盘的厚度 工艺给定搅拌器为六弯叶圆盘涡轮搅拌器,其后掠角为45。,圆盘涡轮搅拌器的通用尺寸为桨径d j:桨长I:桨宽b 20:5:4,圆盘直径一 般取桨径的2,弯叶的圆弧半径可取桨径的3。 3 8

查HG-T 3796.1~12-2005选取搅拌器参数如下表 由前面的计算可知液层深度H 2.45m,而1.3D i 2210mm,故 H 1.3 D,则设置两层搅拌器。 为防止底部有沉淀,将底层叶轮放置低些,离底层高度为425mm,上层叶轮高度离液面2D J的深度,即1025mm。则两个搅拌器间距为1000mm,该值大于也轮直径,故符合要求。 (二)搅拌附件 ①挡板 挡板一般是指长条形的竖向固定在罐底上板,主要是在湍流状态 时,为了消除罐中央的“圆柱状回转区”而增设的。 罐内径为1700mm,选择4块竖式挡板,且沿罐壁周围均匀分布地直立安装。

小型搅拌器三维造型设计及关键零部件工艺设计

小型搅拌器三维设计及关键零部件工艺分析 摘要 搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎简单,但实际上,它所涉及的内容却极为广泛。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容及搅拌器的运动和其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参考,从而对小型搅拌器的设计加以综述。用pro/e 设计软件对搅拌器的零部件和整体进行三维设计。并对关键的零部件进行了工艺分析。 关键词:传动装置,联轴器,支承装置,电动机,减速器

The 3D Design of Small Blender and the Process analysis for the Key components Author:Du Bing Tutor:Yang Hansong Abstract The equipment of pulsator have a long history and are used in most areas. meawhile pulsator are used in tradition industry such as chemistry industry,petroleum industry,architecture industry and so on. The operation of mix round looks as if simpleness,but actually,the ingredient it involved are plaguy complexity. Tht text introduces the basic consider way and the basic theoretics of small pulsator design,and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of describe the basic fixture of pulsator and consult its basic employment principle,function and operation,thereby summarize the design of small https://www.360docs.net/doc/45445818.html,ing Pro/e software to draw a stirrer on the components and the overall three-dimensional image.And the analysis of key parts of the process. Key word: Gearing,Join shaft ware,Bearing device,Electromotor,Reducer 目录

搅拌机设计流程

摘要 搅拌机是搅拌设备的心脏。在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则。论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7—1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m /s-1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。 [关键词]:搅拌机、主要参数、合理性、实验研究

第1章前言 1.1国内外研究现状及发展趋势 19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示。形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。在这期间,仍然以各种有叶片或无叶片的自落式搅拌机的发明与应用为主?。自落式搅拌机依靠被拌筒提升到一定高度的物料的自落完成搅拌。工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。此种搅拌机适于拌制普通塑性混凝土,广泛应用于中小型建筑工地。按拌筒形状和卸料方式的不同,有鼓筒式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等,其中鼓简式搅拌机技术性能落后,已于1987年被我国建设部列为淘汰产品。随着多种商品混凝土的广泛使用以及建筑规模的大型化、复杂化和高层化对混凝土质量、产量不断提出的更高要求,有力地促进了混凝土搅拌设备在使用性能和技术水平方面的提高与发展。各国研究人员开始从混凝土搅拌机的结构形式、传动方式、搅拌腔衬板材料以及搅拌生产工艺等方面进行改进和探索。20世纪40年代后期,德国ELBA公司最先发明了强制式搅拌机,和自落式搅拌机的工作原理不同,强制式搅拌机利用旋转的叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到匀质搅拌。强制式

搅拌器参数选型表

搅拌器提资表表格:QL308 客户名称(业主):Client / Owner: 联系人:Contactor: 地址:Contact address: 电话:Telephone: 项目名称:Project Description: 传真:Facsimile: 设备名称:Equipment Name: 位号:Item No.: 搅拌釜数据必填 T A N K D A T A 圆形槽 Circular Tank (mm) 长形槽 Rectangle Tank (mm) 方形槽 Square Tank (mm) ( ) ( ) ( ) ( ) ( ) ( ) 槽体尺寸: Tank Dimension: 挡板数量: Qty. of Baffle 宽度: Width of baffle mm 长度: Length of baffle mm 离壁距离: Off-wall clearance mm 安装形式: Mounting 顶入 Top Entering 偏置 Off-set Entering 侧入 Side Entering 斜入 Inclined Entering 底入 Bottom Entering 装料量: Feed mass 最大 Max. m3 最小 Min. m3 空运转: No-load run 有 Y 否 N 安装环境: Installation 室内 ndoor 室外 Outdoor 操作条件及要求必填O P E R A T I N G D A T A 组分 Component 颗粒度 Granularity 重量 Weight ( % ) 体积 Volume ( % ) 密度 Density ( kg/m3 ) 粘度 Viscosity ( cp ) 温度 Temperature ( ℃ ) 压力 Pressure ( mPa ) 操作: Operating 设计: Design 混合物 Mixture 应用过程: Function of Agitator 混匀 Homogenizing 悬浮 Suspension 溶解 Solution 气体分散 Gas Dispersion 反应 Reaction 萃取 extraction 吸收 Absorption 传热 Heat Transfer 防止沉淀 Deposition Prevented 曝气 Aeration 发酵 Ferment 乳化 Emulsification 结晶 Crystallization 絮凝 Flocculation 稀释 Dilution 其它 Other 搅拌强度: Intensity of Mixing 温和(1~2级 Mild (class 1~2) 适中(3~5级) Moderate (class 3~5) 强烈(6~8级) Intensive (class 6~8) 剧烈(9~10级) Strenuous (class 9~10) 操作方式: Operating 连续 Continuous 间歇 Batch 混合时间: Mixing Time 分(min) 流体排量: Flowing Capacity m3/s ( ) ( )

桨叶式搅拌机的设计

1前言 建材产品的生产,从原料、燃料到半成品都需要进行破碎和粉磨,其目的是使物料的表面积增加,以提高物理作用的效果及化学反应的速度,如促进均匀混合,提高物料的流动性,便于贮存和运输,提高产量等。水泥熟料和石膏一起磨碎成最终产品,其磨碎的粒度越细,表面积越大,则水泥的标号就越高。改善和提高产品的质量和数量,减少动力消耗,降低生产成本,对达到优质、高产、低消耗具有重要意义。 机械冲击粉碎是建材行业材料破碎的主要手段,其设备效率是重要的技术和经济指标。目前在搅拌机的设计研究中,主要集中在耐磨材料和常规设计的改进。 在水泥行业、选矿电力等工业领域中广泛使用粉磨机械,但各类粉磨机械都有生产效率低,能耗高的缺点。当前的发展趋势是“以破代磨”,借助加强粉磨机前的粉碎,降低入料粒度,可大幅度提高粉磨机产量,降低综合能耗。本课题是结合市场上所使用的各类型号的搅拌机及由厂家在使用过程中所反馈的信息,分析其问题的来源,并相互比较综合各类搅拌机的优点,经师生讨论而确定的。 设计要求:a、最大进料粒度:<150mm;b、出料粒度:<10mm;c、生产能力:25-30t/h。 使用范围:桨叶式搅拌机既可以用于生料的破碎,又可以用于熟料的破碎。它适用于粉碎水泥熟料、粒状高炉矿渣、石灰石、砂岩、页岩、煤矸石、煤块、铝块石、金矿石、钼矿石等多种物料。它广泛应用于:建材、化工、冶金、电力、煤炭、矿山等工业部门。 技术要求:机械设计应保证其功能良好、使用可靠、维护方便;零件结构设计要选择合理的毛坯型式和材料,并尽可能的采用标准件和通用件,并具有良好的工艺性。 设计方法:采用二维CAD绘制图纸和在UG平台上创建三维模型相结合的方法,更加直观地将所要设计的结构表达出来。 本课题着重解决如何将反击式搅拌机和锤式搅拌机的优点结合、锤头磨损问题和机体平衡问题、搅拌机在工作过程中的粉尘泄露问题及搅拌机的各工作参数的优化确定方法等。 本设计具有很强的实用价值。因为采用了很多新的结构,大大降低了制造和维护的费用,减少了机器调整的次数,保证了生产的连续性。

搅拌器及其选型

小直径高转速搅拌机的选型及使用 目前在SW中国的几个工厂使用最多的搅拌设备是小直径高转速搅拌机。其中尤其以涡轮式搅拌器(齿式叶片)为主,推进式搅拌器(桨状叶片)为辅,其他形式的叶片就更少了。现仅以前二种搅拌机为例,互相学习探讨一下相关的问题。 一、搅拌 搅拌是使釜(或槽)内物料形成某种特定方式的运动(通常为循环流动)。 搅拌注重的是釜内物料的运动方式和剧烈程度,以及这种运动状况对于给定过程的适应性。

二.小直径高转速搅拌机1.种类: (1)。推进式搅拌器 (2)。涡轮式搅拌器

(1)推进式搅拌器(旋桨式搅拌器) 其叶轮直径较小,通常仅为釜直径的0.2~0.5倍,但转速较高,可达 100~500r/min。 叶片端部的圆周速度较大,可达5~15m/s。 工作原理: 工作时,推进式搅拌器如同一台无外壳的轴流泵,高速旋转的叶轮使液体作轴向和切向运动。 液体的轴向分速度使液体沿轴向向下流动,流至釜底时再沿釜壁折回,并重新返回旋桨入口,从而形成如图3-3所示的总体循环流动,起到混合液体的作用。 液体的切向分速度使液体在容器内作圆周运动,这种圆周运动使釜中心处的液面下凹,釜壁处的液面上升,从而使釜的有效容积减小。下凹严重时桨叶的中心甚至会吸入空气,便搅拌效果急剧下降。 当釜内物料为液-液或液-固多相体系时,圆周运动还会使物料出现分层现象,

起着与混合相反的作用,故应采取措施抑制釜内物料的圆周运动。 推进式搅拌器的特点是液体循环量较大,但产生的湍动程度不高,常用于低黏度( <2Pa·s)液体的反应、混合、传热以及固液比较小的溶解和悬浮等过程。 (2)涡轮式搅拌器(齿状叶片为例) 该搅拌器有多种型式。大部分盘状叶片都属此类(如齿状叶片)其叶轮直径亦较小,通常也仅为釜径的0.2~0.5倍,转速可达10 ~ 500 r/min,叶端圆周速度可达4~ 10m/s。

搅拌器毕业设计--(很实用)

搅拌器毕业设计 第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的

分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等); ⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。

机械搅拌设备的设计方法及要点分析

机械搅拌设备的设计方法及要点分析 管永俊 摘要:文章介绍了机械搅拌设备进行设计时的思路,在满足工艺条件下进行搅拌设备结构设计。分析了搅拌过程原理、搅拌器型式和搅拌罐体及搅拌轴的设计计算。 关键词:搅拌设备;设计方法;设计计算 搅拌操作可以使两种或两种以上的物料在外界力的作用下加速流动,从而使不同的物料在彼此之间相互分散,达到均匀混合,加速传热和传质的目的。搅拌的物料可以是液相、固相和气相,其中液相流体较多。通过搅拌设备的工艺过程可以使相溶的液相物料均匀混合,使不相溶的另液相均匀乳化,使气体在液相中均匀的分散,使固体粒子在液相中均匀悬浮。搅拌设备在工业生产中被用于物料混合、溶解、乳化、吸收、萃取、化合以及传热等工艺过程。在食品、医药、化工、水处理等工业生产中,带有搅拌装置的化工设备应用范围很广。由于机械搅拌操作条件可控范围较大,能适应多样化的工业生产,因此机械搅拌设备得到广泛应用。 机械搅拌设备由搅拌罐体和搅拌装置两大部分组成。搅拌罐体是搅拌液相流体为主体介质进行各种物理、化学过程的容器。搅拌装置由搅拌器、搅拌轴、轴封和传动装置组成,传动装置包括驱动电机、减速机、联轴器和机架。机械搅拌设备在工作中,由搅拌器的运动加速物料在罐体中完成物理、化学工艺过程。 由于搅拌设备的使用目的不同,机械搅拌操作可用于不同的行业,搅拌设备的结构也是多种多样,但都是通过物料的流动达到搅拌的目的。在搅拌罐体内,物料的流动状态与搅拌罐体的形状、有无挡板及搅拌器的形状、安装位置、转速等因素相关。因此在设计机械搅拌设备时,应对这些相关的因素进行设计,在满足所需工艺参数的前提下,利用最小的功率消耗达到搅拌的目的。 1 工艺参数的设定 为了设计机械搅拌设备应有工艺条件参数。了解搅拌设备的工作条件,如压力、温度,熟悉在工作条件下的物料特性,如密度、粘度、毒性、腐蚀性等。同时还应确定搅拌的目的及相应的操作方法,如加料方式。搅拌物料中是否有固体粒子,若有应确定固体粒子的存在形式,如溶解、悬浮、沉淀等。根据这些参数或工艺要求进一步确定与物料接触的部件的材质,判定电动机的工作环境和减速机的负载情况,确定轴封的使用条件。根据搅拌容积和充装系数设定搅拌罐体的结构及尺寸。根据搅拌过程中物料的流动状态可选定搅拌器的型式并确定是否设置挡板。 2 搅拌设备的设计 2.1 搅拌罐体的结构及尺寸 机械搅拌设备一般为立式圆筒形结构,上部分有椭圆形封头、平盖结构,分可拆和不可拆,下部分有椭圆形封头、锥形底、平底结构。换热型式分为内部换热和外部换热。依据工艺要求,内部换热可选盘管、蛇形管等换热装置,外部换热可采用整体型夹套、半圆管等结构进行换热。搅拌罐体属于压力容器范围时,应按照GB150进行设计。当罐体和夹套有压力时,一般选用椭圆形封头,为了出料需要也可选用圆锥形的罐底。搅拌罐体的容积一般为搅拌容积的1.25倍,对于发酵罐类的情况需适当增加罐体容积。搅拌罐体高度与内经之比(H/Di)通常情况下可取1~2,发酵罐类可取1.7~2.5。为了物料有上下方向的循环流动,罐体内部可设置挡板,挡板垂直安装,宽度为罐体内径的1/12~1/8。挡板与罐体内壁要有间距避免物料在挡板处停滞。 罐体尺寸可按照公式计算:

搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成 组成:搅拌器电动机 减速器 容器 排料管挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面强烈剪切旋涡扩散 主体对流宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。 高粘度过物料混合过程.主要是剪切作用。 电 动 机 减速器 搅 拌 器 容 器 排料管

三、混合效果的度量 1、调匀度I 设A 、B 两种液体.各取体积vA 及vB 置于一容器中. 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA < CA0时) 或 (当样品中CA > CA0时) 显然 I ≤1 若取m 个样品.则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =-I

如何选择合适的搅拌器

如何选择合适的搅拌器 搅拌装置的设计选型与搅拌作业目的紧密结合。各种不同的搅拌过程需要由不同的搅拌装置运行来实现,在设计选型时首先要根据工艺对搅拌作业的目的和要求,确定搅拌器型式、电动机功率、搅拌速度,然后选择减速机、机架、搅拌轴、轴封等各部件。共具体步骤方法如下: 1.按照工艺条件、搅拌目的和要求,选择搅拌器型式,选择搅拌器型式时应充分掌握搅拌器的动力特性和搅拌器在搅拌过程中所产生的流动状态与各种搅拌目的的因果关系。 2.按照所确定的搅拌器型式及搅拌器在搅拌过程中所产生的流动状态,工艺对搅拌混合时间、沉降速度、分散度的控制要求,通过实验手段和计算机模拟设计,确定电动机功率、搅拌速度、搅拌器直径。 3.按照电动机功率、搅拌转速及工艺条件,从减速机选型表中选择确定减速机机型。如果按照实际工作扭矩来选择减速机,则实际工作扭矩应小于减速机许用扭矩。 4.按照减速机的输出轴头d和搅拌轴系支承方式选择与d相同型号规格的机架、联轴器 5.按照机架搅拌轴头do尺寸、安装容纳空间及工作压力、工作温度选择轴封型式 6.按照安装形式和结构要求,设计选择搅拌轴结构型式,并校检其强度、刚度。

如按刚性轴设计,在满足强度条件下n/nk≤0.7 如按柔性轴设计,在满足强度条件下n/nk>=1.3 7.按照机架的公称心寸DN、搅拌轴的搁轴型式及压力等级、选择安装底盖、凸缘底座或凸缘法兰 8.按照支承和抗振条件,确定是否配置辅助支承。 在以上选型过程中,搅拌装置的组合、配置可参考(搅拌装置设计选择流程示意图),配置过程中各部件之间连接关键尺寸是轴头尺寸,轴头尺寸一致的各部件原则上可互换、组合。

搅拌器设计计算

搅拌器设计计算 (作者:纪学鑫) 一、设计数据: 1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m 3 ∴设混合池有效容积V=8m 3 2、混合池流量Q=0.035m 3/s 3、混合时间t=10s 4、混合池横截面尺寸1.15m ×1.15m ,当量直径D= πω4L =π15.115.14??=1.30m 5、混合池液面高度H =24πD V =m ..π036301842 ≈?? ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m 6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈?? ? ??D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。 7、取平均水温时,水的粘度值()s a ?P μ=1.14×10-3s a ?P 取水的密度3/kg 1000m =ρ 8、搅拌强度 1)搅拌速度梯度G ,一般取500~1000s -1。 混合功率估算:N Q =K e Q(kw) K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ? ∴混合功率估算:3/s kw 17~3.4m N Q ?= 1-3-3 e e )30.1365~65.686(s 8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈????===?)(μμ 取搅拌速度梯度1-s 740=G 2)体积循环次数'Z 搅拌器排液量'Q ,213.08.008.1385.0)/(333'=??==s m nd k Q q 折叶桨式,片,245=?=Z θ,流动准数385.0k q 取,见表4-27查取; ---n 搅拌器转速) (s /r ;d 搅拌器直径(m) 转速d 60n πν=;---线速度v ,直径d ,根据表4-30查取。

调度绞车选型设计计算书

丁家梁煤矿一煤运输顺槽绞车选型设计计算书 编制: 审核: 审批: 日期:

调度绞车选型设计 一、主要参数: 1、 使用地点相关参数: 使用地点:一煤运输顺槽 使用地点斜巷倾角(β) 分四段,第一段倾角按最大20°考虑,其余平均按10°考虑。 使用地点斜巷长度(L ) 900m ,分三段,第一段为250米,第二段为200米,第三段为200米,第四段为250米; 绞车绳端载荷(包括平板车自身重量和设备重量)(W )11000 kg ; 二、钢丝绳的选取 1、钢丝绳重量的计算(第一段 长度L=250米,倾角按最大坡度20°) 由下列计算公式计算钢丝绳重量 126 W sin f cos )q (sin f cos )11000sin200.015cos 20)167010250(sin200.15cos 20)9.8 6.59450 b L g m ββσββρ +≥-+???+?=?-?+???(( =1.47Kg/m 式中W :绳端载荷(包括平板车自身重量和设备重量),kg g :重力加速度,9.8m/s ; β:斜巷中产生最大拉力处的倾角,取20°; f1:平板在轨道上运行时的实测阻力系数,采用0.015; f2:钢丝绳在运行中的实测阻力系数,采用0.15;

q :钢丝绳单位长度的质量,Kg/m ; L :使用地点斜巷长度,250m; b σ:钢丝绳的公称抗拉强度,取1670×106N/㎡; ρ:钢丝绳的密度,取9450Kg/m 3 m:钢丝绳的安全系数,取6.5; 计算得钢丝绳每米重量为1.47Kg/m, 查GB8919-2006 重要用途钢丝绳,选取钢丝绳参数如下: 钢丝绳直径(φ):20mm ; 钢丝绳每米重量(q ):1.47Kg/m ; 钢丝绳公称公称抗拉强度:1670MPa 钢丝绳最小破断拉力总和(Q ):267KN 。 由此可得,第一段选用钢丝绳型号为6×19S+FC-20 2、第二、三、四段(长度按250米计算,倾角按平均10度计算) 由下列计算公式计算钢丝绳重量 126 W sin f cos )q (sin f cos )11000sin100.015cos10)167010250(sin100.15cos10)9.8 6.59450 b L g m ββσββρ +≥-+???+?=?-?+???(( =1.22Kg/m 查GB8919-2006 重要用途钢丝绳,选取钢丝绳参数如下: 钢丝绳直径(φ):18mm ; 钢丝绳每米重量(q ):1.19Kg/m ; 钢丝绳公称公称抗拉强度:1670MPa

搅拌桨叶的选型和设计计算

第二节 搅拌桨叶的设计和选型 一、搅拌机结构与组成 组成:搅拌器 电动机 减速器 容器 排料管 挡板 适用物料:低粘度物料 在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面 强烈剪切 旋涡扩散 主体对流 宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动 微观混合

作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。 高粘度过物料混合过程,主要是剪切作用。 三、混合效果的度量 1、调匀度I 设A 、B 两种液体,各取体积vA 及vB 置于一容器中, 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA ? CA0时) 或 (当样品中CA ? CA0时) 显然 I ≤1 若取m 个样品,则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 混合尺度分 设备尺度 1=- I

微团尺度 分子尺度 对上述两种状态: 在设备尺度上:两者都是均匀的(宏观均匀状态) 在微团尺度上:两者具有不同的均匀度。 在分子尺度上:两者都是不均匀的(当微团消失,称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸,则两种状态的平均调匀度接近于己于1。 如取样尺寸小到与b中微团尺寸相近时,则b状态调匀度下降,而a状态调匀度不变。 即:同一个混合状态的调匀度随所取样品的尺寸而变化,说明单平调匀度不能反映混合物的均匀程度 四、搅拌机主要结构 1、搅拌器 搅拌器由电动机带动,物料按一定规律运动(主体对流),桨型不同,物料产生的流型不同。 桨作用于物料,物料产生三个方向的速度分量: 切向分量当 ,桨对中安装, n 。液体绕轴整体旋转, 不利于混合。 (1)旋桨式搅拌器 类似于无壳的轴流泵结构:

搅拌器选型

工业搅拌与混合技术进展 虞培清,周国忠 (浙江长城减速机有限公司,温州325028) 摘要:工业搅拌与混合技术在近些年来取得了很大的发展,本文综述了这方面的进展情况。重点 对新型搅拌与混合设备的开发、流场测试与计算流体力学以及搅拌设备选型与设计软件四个方面 进行了综述与评价,并就国内的研究现状进行了简单概述。 关键词:搅拌,混合,搅拌器,流场测速,计算流体力学(CFD),专家系统 搅拌与混合是化学、制药、食品、环保等工业中最常见的关键单元操作之一。比如,一个合成纤维厂中,作为核心设备的聚合反应器仅两台,而与之配套的配料槽、溶解槽、稀释槽、缓冲槽等辅助搅拌设备则多达30台。在高分子材料生产中,作为核心设备的聚合反应器85%是搅拌设备。在制药发酵生产过程中,从种子培养到关键的发酵过程,几乎全部是搅拌设备。 鉴于搅拌设备的广泛应用,随着近年来工业技术的发展,流体混合技术在上世纪60到80年代期间得到了迅猛发展,其重点主要是对于常规搅拌桨在低粘和高粘非牛顿均相体系、固液悬浮和气液分散等非均相体系中的搅拌功耗、混合时间等宏观量进行实验研究。长期以来,虽然有大量设计经验和关联式可用于分析和预测混合体系,但将搅拌反应器从实验室规模直接放大到工业规模,仍是十分危险的,至今仍然需要通过逐级放大来达到搅拌设备所要求的传质、传热和混合。这种方法不但耗费巨额的资金和大量的人力物力,而且设计周期很长。据统计,在工业高度发达的美国,化学工业由于搅拌反应器设计不合理所造成的损失每年约为10—100亿美元。 因此,从更微观更本质的角度,例如采用先进的测试手段和建立合理的数学模型,获取搅拌槽中的速度场、温度场和浓度场,不仅对开发新型搅拌设备,而且对搅拌设备的优化设计具有十分重要的经济意义,对放大和混合的基础研究具有现实的理论意义。近些年来,工业搅拌与混合设备的一些新进展主要集中在以下几个方面。 1.新型搅拌与混合设备的开发 在很多情况下,搅拌设备是作为一种辅助设备使用的,其操作条件比较简单,搅拌的

搅拌机设计

华东交通大学理工学院毕业设计 摘要 该篇设计论文,主要是对饲料搅拌机的形体和搅拌机零件的设计及其工作状态下设计合理性的校核。主要阐述表达了与当前诸多饲料搅拌机所不同的设计理念。这篇论文设计了一台可同时运用两个螺旋搅拌叶高效、合理的搅拌饲料的仪器,这样的一台机器适合各种各样的养殖场,更切近中小型养殖场。这样的饲料搅拌机更适应于当今特种养殖技术的发展趋势,符合市场需求。 总体来说这篇设计通过对于搅拌机的轴、搅拌方式、齿轮的传动的设计校核体现了设计的合理性,文章中还有对于可能出现的问题做了相关的校核检查,所以说这是一篇相对比较全面、完善的设计。 关键词:机械知识;饲料搅拌机;双行星;小型家用;圆锥型

学生姓名:赵凯毕业论文题目:行星齿轮饲料搅拌机搅拌机 Abstract This paper mainly design, design reasonable design and check working state of feed mixerand mixer body parts under. Mainly expressed with current design philosophy of manydifferent feed mixer. This paper designed a simultaneous use of two helix mixing blade,efficient reasonable instrument mixing feed, farm machine is suitable for a wide variety dfsuch, more close to small and medium sized farms. The development trend of feed mixersuch more suitable for today's special breeding technology, to meet market demand. This article through the overall design for the mixer shaft, stirring, gear design and checkreflects the rationality of the design, there are the problems that may arise to do a checkcheck, so this is a relatively comprehensive, perfect design Key words : Mechanical knowledge; Feed mixer; Double planetary cone type; Small household

机械搅拌设备设计具备一些知识点

搅拌设备基本知识点 一.机械搅拌设备主要部件及其所特有的部件: 二.机械搅拌设备的形式有那些(按搅拌器位置和搅拌容器形式分),他们各自的优缺点和适用范围: 三.搅拌容器的内径和高度如何确定: 四.搅拌容器的换热方式包括那些,以及各自的优缺点,工艺计算如何计算:夹套 蛇管 五.夹套的种类有那些,其各自的适用范围,如何选择,以及各自的强度计算:整体 半管 型钢 蜂窝 六.整体夹套的设计有哪些特殊规定: 整体夹套的结构类型哪些 整体夹套各种结构的特点,尺寸如何确定,比如夹套端盖的类型,夹套翻边的要求 七.支座在容器上如何安放。 1.对于无夹套容器如何安放 2.对于整体夹套容器如何安放 3.对于蜂窝夹套,型钢夹套,半管夹套如何安放 4对于外盘管容器如何安放 八.当有附件穿过夹套时如何处理 九.减速机的种类,其各有什么特点,适用范围,以及如何选取 十.减速机机架的分类及其特点: 什么情况下可以适用无支点支架: 什么情况下可以适用单支点支架: 什么情况下可以适用双支点支架: 十一.常用的联轴器有那些,如何选择: 减速器或电动机与传动轴之间的联轴器选用原则: 十二.选择完机架后,选择凸缘法兰和底盖时要注意的事项: 十三.凸缘法兰与容器顶部法兰的连接结构有那些,如何选择,结构尺寸如何确定,强度计算,底支撑,中间支撑有哪些结构,如何选取,结构尺寸如何确定

十四.轴封的种类: 液封,那些条件下需要选择液封,选择液封应满足的要求 填料密封,那些条件下需要选择填料密封,选择填料密封应满足的要求 机械密封,那些条件下需要选择机械密封,选择机械密封应满足的要求 重点:他们对轴的窜动量和摆动量的要求 十五.不同机械密封形式分别适用那些范围: 十六.机械密封的材料组合的选用: 十七.机械密封循环保护系统: 十八.机械密封循环保护系统的几种流程,各在什么情况适用: 十九.选择机架,凸缘法兰,安装底座,轴封还应注意的一些细节问题: 二十.搅拌器的功率计算,当搅拌器型号尺寸一样时如何计算,不同时又如何计算,以及搅拌器在搅拌设备中如何定位 二十一.桨叶材料的许用应力如何计算: 二十二.搅拌器的种类,及他们的强度如何计算 二十三.搅拌器设计时应注意的一些其他问题 二十四.搅拌器与轴连接时所采用的结构是怎样的: 二十五.搅拌器轴套的尺寸如何确定: 二十六.键的强度计算: 什么情况下需要进行键的计算 二十七.搅拌轴和传动轴的尺寸是如何确定的: 二十八.什么情况下搅拌轴和传动轴可以采用一体形式: 二十九.搅拌轴计算的一些基本条件,以及受力模型 三十.搅拌轴的有效质量计算,圆盘(搅拌器及附件)的有效质量计算: 三十一.悬臂及跨间二轴段直径相等的一阶临界转速计算: 悬臂及跨间二轴段直径不等的一阶临界转速计算: 单跨距轴的一阶临界转速计算:

相关文档
最新文档