中考数学专题题库∶锐角三角函数的综合题附详细答案

中考数学专题题库∶锐角三角函数的综合题附详细答案
中考数学专题题库∶锐角三角函数的综合题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.

(1)求证:∠AEC=90°;

(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;

(3)若DC=2,求DH的长.

【答案】(1)证明见解析;

(2)四边形AOCD为菱形;

(3)DH=2.

【解析】

试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得

,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出

∠AEC=90°;

(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);

(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由

DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.

试题解析:(1)连接OC,

∵EC与⊙O切点C,

∴OC⊥EC,

∴∠OCE=90°,

∵点CD是半圆O的三等分点,

∴,

∴∠DAC=∠CAB,

∵OA=OC,

∴∠CAB=∠OCA,

∴∠DAC=∠OCA,

∴AE∥OC(内错角相等,两直线平行)

∴∠AEC+∠OCE=180°,

∴∠AEC=90°;

(2)四边形AOCD为菱形.理由是:

∵,

∴∠DCA=∠CAB,

∴CD∥OA,

又∵AE∥OC,

∴四边形AOCD是平行四边形,

∵OA=OC,

∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.

∵四边形AOCD为菱形,

∴OA=AD=DC=2,

∵OA=OD,

∴OA=OD=AD=2,

∴△OAD是等边三角形,

∴∠AOD=60°,

∵DH⊥AB于点F,AB为直径,

∴DH=2DF,

在Rt△OFD中,sin∠AOD=,

∴DF=ODsin∠AOD=2sin60°=,

∴DH=2DF=2.

考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O

于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.

(1)求证:△PAC∽△PDF;

(2)若AB=5,,求PD的长;

(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)

【答案】(1)证明见解析;(2);(3).

【解析】

试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.

(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得

,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,

由(1)△PAC∽△PDF得,即可求得PD的长.

(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得

,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.

试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,

又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.

∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.

又∵∠PAC=∠PDC,∴△PAC∽△PDF.

(2)连接BP,设,∵∠ACB=90°,AB=5,

∴.∴.

∵△ACE∽△ABC,∴,即. ∴.

∵AB⊥CD,∴.

如图,连接BP,

∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.

∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.

由(1)△PAC∽△PDF得,即.

∴PD的长为.

(3)如图,连接BP,BD,AD,

∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.

∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.

∵,∴.

∵△AGP∽△DGB,∴.

∵△AGD∽△PGB,∴.

∴,即.

∵,∴.

∴与之间的函数关系式为.

考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直

角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.

3.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为23,l与x轴的交点为E,经过A、T、D三点作⊙M.

(1)求二次函数的表达式;

(2)在点T的运动过程中,

①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;

②若MT=1

2

AD,求点M的坐标;

(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).

【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析

【解析】

【分析】

(1)把点B的坐标代入抛物线解析式求得系数b的值即可;

(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;

②如图2,由已知条件MT=1

2

AD,MT=MD,推知MD=

1

2

AD,根据△ADT的外接圆圆

心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD

=1

2

AD.根据点A、D的坐标求得点M的坐标即可;

(3)如图3,作MH⊥x于点H,则AH=HT=1

2

AT.易得H(a﹣1,0),T(2a﹣1,

0).由限制性条件OH≤x≤OT 、动点T 在射线EB 上运动可以得到:0≤a ﹣1≤x≤2a ﹣1. 需要分类讨论:(i )当2111(1)211

a a a -??----?,即4

13a <,根据抛物线的增减性求得y

的极值.

(ii )当011

2111(1)211

a a a a <-??->??--<--?

,即4

3<a≤2时,根据抛物线的增减性求得y 的极值.

(iii )当a ﹣1>1,即a >2时,根据抛物线的增减性求得y 的极值. 【详解】

解:(1)把点B (3,0)代入y =x 2+bx ﹣3,得32+3b ﹣3=0, 解得b =﹣2,

则该二次函数的解析式为:y =x 2﹣2x ﹣3; (2)①∠DMT 的度数是定值.理由如下: 如图1,连接AD .

∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4. ∴抛物线的对称轴是直线x =1. 又∵点D

的纵坐标为 ∴D (1,

由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1), ∴A (﹣1,0),B (3,0). 在Rt △AED 中,tan ∠DAE

=2

DE AE ==. ∴∠DAE =60°.

∴∠DMT =2∠DAE =120°.

∴在点T 的运动过程中,∠DMT 的度数是定值; ②如图2,∵MT =1

2

AD .又MT =MD , ∴MD =

1

2

AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上,

∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =1

2

AD . ∵A (﹣1,0),D (1

, ∴点M 的坐标是(

(3)如图3,作MH ⊥x 于点H ,则AH =HT =1

2

AT . 又HT =a ,

∴H(a﹣1,0),T(2a﹣1,0).

∵OH≤x≤OT,又动点T在射线EB上运动,∴0≤a﹣1≤x≤2a﹣1.

∴0≤a﹣1≤2a﹣1.

∴a≥1,

∴2a﹣1≥1.

(i)当

211

1(1)211

a

a a

-

?

?

----

?

,即1

4

a

3

时,

当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;

当x=1时,y最小值=4.

(ii)当

011

211

1(1)211

a

a

a a

<-

?

?

->

?

?--<--

?

,即

4

3

<a≤2时,

当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.

(iii)当a﹣1>1,即a>2时,

当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.

【点睛】

主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.

4.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为13DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.12,3)

【答案】该停车库限高约为2.2米.【解析】

【分析】

据题意得出

3

tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可

得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】

解:由题意得,

3 tan

3

B=

∵MN∥AD,

∴∠A=∠B,

∴tan A3,

∵DE⊥AD,

∴在Rt△ADE中,tan A=DE

AD

∵DE=3,

又∵DC=0.5,

∴CE=2.5,

∵CF⊥AB,

∴∠FCE+∠CEF=90°,

∵DE⊥AD,

∴∠A+∠CEF=90°,

∴∠A=∠FCE,

∴tan∠FCE3

在Rt△CEF中,设EF=x,CF3x(x>0),CE=2.5,

代入得(5

2

)2=x2+3x2,

解得x=1.25,

∴CF3x≈2.2,

∴该停车库限高约为2.2米.【点睛】

本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.

5.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.

(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;

(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.

【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3

BE=

【解析】

【分析】

(1)①补全图形即可,

②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3

得出结果.

【详解】

解:(1)①补全图形如图1所示,

②FG=DG,FG⊥DG,理由如下,

连接BG,如图2所示,

∵四边形ABCD是正方形,

∴∠ACB=45°,

∵EG⊥AC,

∴∠EGC=90°,

∴△CEG是等腰直角三角形,EG=GC,

∴∠GEC=∠GCE=45°,

∴∠BEG=∠GCF=135°,

由平移的性质得:BE=CF,

在△BEG和△GCF中,

BE CF

BEG GCF EG CG

=

?

?

∠=∠

?

?=

?

∴△BEG ≌△GCF (SAS ), ∴BG =GF ,

∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,

∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.

(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =32,

在Rt △DHG 中,∵∠AGD =60°, ∴GH =

3

323

=6,

∴DG =2GH =26, ∴DF =2DG =43, 在Rt △DCF 中,CF =(

)

2

243

6-=23,

∴BE =CF =23.

【点睛】

本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角

形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.

6.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;

(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)

(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.

【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =4

3

.理由见解析. 【解析】 【分析】

(1)根据三角形判定方法进行证明即可.

(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.

(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】

(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,

ADG ABE DAG BAE AD AB ∠=∠??

∠=∠??=?

, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下:

作FH ⊥MN 于H ,如图1所示:

则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,

∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,

EHF ABE FEH BAE AE EF ∠=∠??

∠=∠??=?

, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.

(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:

由已知可得∠EAG =∠BAD =∠AEF =90°,

结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴

EH FH FH

AB BE CH

==; 在Rt △FEH 中,tan ∠FCN =

84

63

FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43

. 【点睛】

本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.

7.

如图,△ABC中,AC=BC=10,cosC=3

5

,点P是AC边上一动点(不与点A、C重合),

以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.

(1)当⊙P与边BC相切时,求⊙P的半径.

(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.

(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.

【答案】(1)

40

9

R=;(2)2

5

880

320

x

y x x

x

=-+

+

(3)505

-

【解析】【分析】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3

5

,则

sinC=4

5

,sinC=

HP

CP

10

R

R

-

4

5

,即可求解;

(2)首先证明PD∥BE,则EB BF

PD PF

=,即:20

2

4

588

x y

x

x

x

y

-+

-

=,即可求解;

(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5

【详解】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,

连接HP,则HP⊥BC,cosC=3

5

,则sinC=

4

5

sinC=HP

CP

10

R

R

-

4

5

,解得:R=

40

9

(2)在△ABC中,AC=BC=10,cosC=3

5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,

则BH=ACsinC=8,

同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=22

8+(4)

x-=2880

x x

-+,

DA=25

x,则BD=45﹣25x,

如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,

tanβ=2,则cosβ

5,sinβ

5

EB =BDcosβ=(45﹣25

x )×5=4﹣25

x ,

∴PD ∥BE ,

∴EB BF

PD PF

=,即:202

4588x y x x

x y

-+--=,

整理得:y =

25x

x 8x 803x 20

-++;

(3)以EP 为直径作圆Q 如下图所示,

两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,

由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,

∴AB =DB+AD =AG+AD =5 设圆的半径为r ,在△ADG 中, AD =2rcosβ5DG 5

AG =2r , 5=52r 51

+, 则:DG 5

50﹣5 相交所得的公共弦的长为50﹣5 【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

8.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =

1

2

∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =3

5

,AK =10,求CN 的长.

【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(320

1013

【解析】 试题分析:

(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;

(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=1

2

∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,

由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3

5

AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=

4

3

CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=

3AH

HK

=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP

=,可设PN=12b ,AP=9b ,由tan ∠ACG=

PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=5

13

,由此即可在Rt △CPN 中由勾股定理解出CN 的长.

试题解析:

(1)如图1,连接OG .

∵EF 切⊙O 于G , ∴OG ⊥EF ,

∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,

∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,

∵∠FGB=

1

2

∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .

(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=3

5

AH AC =,设AH=3a ,AC=5a , 则2

2

4AC CH a -=,tan ∠CAH=

4

3

CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,

∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AH

HK =3,AK=2210

AH HK a

+=,

∵AK=10,

∴1010

a=,

∴a=1.AC=5,

∵∠BHD=∠AGB=90°,

∴∠BHD+∠AGB=180°,

在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,

∵∠AKH+∠HKG=180°,

∴∠AKH=∠ABG,

∵∠ACN=∠ABG,

∴∠AKH=∠ACN,

∴tan∠AKH=tan∠ACN=3,

∵NP⊥AC于P,

∴∠APN=∠CPN=90°,

在Rt△APN中,tan∠CAH=

4

3

PN

AP

=,设PN=12b,则AP=9b,

在Rt△CPN中,tan∠ACN=PN

CP

=3,

∴CP=4b,

∴AC=AP+CP=13b,∵AC=5,

∴13b=5,

∴b=5

13

∴CN=22

PN CP

+=410b?=20

10 13

9.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;

(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣

【解析】

【分析】

(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,

NC=NM=BM进而得出结论;

(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,

②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;

(3) 在Rt△ABM和Rt△ANM中,,

可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.

【详解】

(1)证明:∵△ABC是等腰直角三角形,

∴∠BAC=∠C=45°,

∵AM是∠BAC的平分线,MN⊥AC,

∴BM=MN,

在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,

∵∠ENF=135°,,

∴∠BME=∠NMF,

∴△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵CN=CF+NF,

∴BE+CF=BM;

(2)针对图2,同(1)的方法得,△BME≌△NMF,

2018年中考数学《锐角三角函数》专题练习含答案

2018中考数学专题练习《锐角三角函数》 (时间:100分钟 满分:120分) 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列各数是有理数的是( ) A. B. 4π C. sin 45? D. 1 cos60? 2一个公共房门前的台阶高出地面1.2米,台阶拆除并改造成供轮椅行走的斜坡,数据如图1所示,则下列关系或说法正确的是( ) A.斜坡AB 的坡度是10o B.斜坡AB 的坡度是tan10? C. 1.2tan10AC =?米 D. 1.2 cos10AB = ? 米 3.在ABC ?中,A ∠,B ∠都是锐角,且1 sin 2 A = ,cos 2B =,则ABC ?三个角 的大小关系是( ) A. C A B ∠>∠>∠ B. B C A ∠>∠>∠ C. A B C ∠>∠>∠ D. C B A ∠>∠>∠ 4.如图2,在R t A B C ?中,90A ∠=?,AD BC ⊥于点D ,:3:2BD CD =,则t a n B 的值是( ) A. 32 B. 2 3 C. D. 5.如图3,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线,交AB 的延长 线于点E ,30A ∠=?,则s sin E 的值为( ) A. 1 2 B. 2 C. D.

6.数学社团的同学们对某塔的高度进行了测量,如图4,他们在A 处仰望塔顶,测得仰角为30o,再往楼的方向前进60 m 至B 处,测得仰角为60o,若学生的身高忽略不计, 1.7≈,结果精确到1m ,则该楼的高度CD 为( ) A.47 m B.51 m C.53 m D.54 m 7.如图5,点O 是摩天轮的圆心,长为110米的AB 是其垂直地面的直径,小莹在地面C 点处利用测角仪测得摩天轮的最高点A 的仰角为33o,测得圆心O 的仰角为21o,则小莹所在C 点到直径AB 所在直线的距离约为(参考数据:tan330.65?≈,tan 210.38?≈)( ) 图 5 A.169米 B.204米 C.240米 D.407米 8.如图6,在ABC ?中,已知90ABC ∠=?,点D 沿BC 自B 向C 运动(点D 与点B , C 不重合),作BE AD ⊥于E ,CF AD ⊥交AD 的延长线于F ,则BE CF +的值( ) A.不变 B.增大 C.减小 D.先变大,再变小 9.如图7,轮船从B 处以每小时50海里的速度沿南偏东30o方向匀速航行,在B 处观测灯塔A 位于南偏东75o的方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60o的方向上,则C 处与灯塔A 的距离是( ) A. B.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

中考数学专题题库∶锐角三角函数的综合题及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

锐角三角函数中考试题分类汇编

23、锐角三角函数 要点一:锐角三角函数的基本概念 一、选择题 1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( ) A . 3 5 B . 43 C .4 D .4 5 【解析】选C. tan α4 3 == 角的邻边角的对边αα. 2.(2008·威海中考)在△ABC 中,∠C =90°,tan A = 1 3 ,则sin B =( ) A B .23 C . 3 4 D . 【解析】选D. 3 1 tan == AB BC A ,设BC=k,则AC=3k,由勾股定理得 ,10)3(2222k k k BC AC AB =+=+=sin 10 AC B AB = = 3.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则sin B 的值是( ) A . 23 B .32 C .34 D .43 【解析】选A.连接CD,由O ⊙的半径为 32.得AD=3. sin B =.3 2 sin ==AD AC D

4.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .sin A = B .1 tan 2 A = C .cos B = D .tan B = 【解析】选D 在直角三角形ABC 中,1BC =,2AB =, 所以AC ;所以1 sin 2 A = ,cos 2A ,tan 3A = ;sin 2B =,1cos 2 B = ,tan B =; 5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =, 3AC =,则sin B 的值是( ) A . 23 B . 32 C . 34 D . 43 【解析】选C.由CD 是Rt ABC △斜边AB 上的中线,得AB=2CD=4.∴sin B 4 3 == AB AC 6.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若AC = AB =tan BCD ∠的值为( ) (A (B (C (D 答案:B A C B D

中考数学锐角三角函数真题汇编

中考数学真题汇编:锐角三角函数 (WORD版本真题试卷+名师解析答案,建议下载保存) 一、选择题 1.的值等于() A. B. C. 1 D. 【答案】B 2.如图,过点,,,点是轴下方上的一点,连接,,则的度数是() A. B. C. D. 【答案】B 3.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( ) A.3 B. C. D. 【答案】D

4.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角,升旗台底部到教学楼底部的距离米,升旗台坡面CD的坡度,坡长米,若旗杆底部到坡面CD的水平距离米,则旗杆AB的高度约为()(参考数据:,,) A. 12.6米 B. 13.1米 C. 14.7米 D. 16.3米 【答案】B 5.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)() A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里 【答案】B 6.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为() A. B. C. D. 【答案】B

7. 如图,已知在中,,,,则的值是() A. B. C. D. 【答案】A 8. 如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B 在同一条直线上)() A. B. C. D. h?cosα 【答案】B 二、填空题 9.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行 ________小时即可到达(结果保留根号) 【答案】 10.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=________。

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

2019年最新中考数学专题复习:锐角三角函数

锐角三角函数 三只钟的故事 一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。 一只旧钟对小钟说:“来吧,你也该工作了。可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。” “天哪!三千两百万次。”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别 听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。” “天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。”小钟很轻松地每秒滴答摆一 下,不知不觉中,一年过去了,它摆了三千两百万次。 成功就是这样,把简单的事做到极致,就能成功。 例1.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是() A.B.C.D. 例2.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为() A.1 B.C.3 D.

例3.cos 60°的值等于( ) A . B . C . D . 例4.如图,在半径为1的⊙O 中,∠AOB =45°,则sinC 的值为( ) A . B . C . D . 练习一 锐角三角函数 1.已知sinA= 2 1 (∠A 为锐角),则∠A=_________,cosA_______,tanA=__________. 2.在Rt △ABC 中,∠C 为直角,1a =,2b =,则cosA=________,tanA=_________. 3.在Rt △ABC 中,∠C 为直角,AB=5,BC=3,则sinA=________, tanA=_________. 4.在Rt △ABC 中,∠C 为直角,∠A=30o,4b =,则a =__________,c =__________. 5.在Rt △ABC 中,∠C 为直角,若sinA= 5 3 ,则cosB=_________. 6.已知cosA= 2 3 ,且∠B=90o-∠A ,则sinB=__________. 7.若∠A 是锐角,且cosA=sinA ,则∠A 的度数是( ) A 、30o B 、45o C 、60o D 、不能确定 8.如图,电线杆AB 的中点C 处有一标志物,在地面D 点处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为 a ,则电线杆AB 的长可表示为 A .a B .2a C .3 2a D .52 a D C B A

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

中考数学-锐角三角函数

中考数学 锐角三角函数 一、选择题 1. 4 sin tan 5 ααα= 若为锐角,且,则为 ( ) 933425543 A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( ) A .sinA = sin B B .cosA=sinB C .sinA=cosB D .∠A+∠B=90° 3.直角三角形的两边长分别是6,8,则第三边的长为( ) A .10 B .22 C .10或27 D .无法确定 4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c = sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A 5、ο ο 45cos 45sin +的值等于( ) A. 2 B. 2 1 3+ C. 3 D. 1 6.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C. 50 3 D. 15 7.当锐角α>30°时,则cos α的值是( ) A .大于 12 B .小于12 C .大于3 D .小于3 8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B .3米 C .23 D . 23 3 9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( ) (A )4 (B )5 (C )23 (D ) 83 3 10.已知Rt △ABC 中,∠C=90°,tanA=4 3 ,BC=8,则AC 等于( ) A .6 B .32 3 C .10 D .12 二、填空题 11.计算2sin30°+2cos60°+3tan45°=_______. 12.若sin28°=cos α,则α=________. 13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

锐角三角函数综合测试题

第28章锐角三角函数综合测试题 姓名 学号 成绩 一、选择题 1. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( ) A.34? B .43? C .35 D.4 5 2.一人乘雪橇沿如图2所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A .24米 B.12米? C.123米 D.6米 3.下列计算错误的是( ) A.sin60sin30sin30?-?=? B.22sin 45cos 451?+?= C.sin 60cos60cos60??= ? D.cos30cos30sin 30?? =? 4.如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点处.已知 8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34? B.43??C .35 ?D.4 5 5.如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =, D 为AC 上一点,若1 tan 5DBA ∠= ,则AD 的长为( ) A.2 B.2 C .1 D.22 二、填空题 6.如图7,在坡度为1﹕2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是________米. α 图1 A D E C B F 图4

7.如图9,在ABC ?中,90C ∠=,2BC =,1 sin 3 A = , 则AB =______.. 8.如图11所示,在高2米、坡角为30?的楼梯表面铺地毯,地毯的长度至少需 ______米.(3 1.732≈,精确到0.1米) 9.某人沿着山脚到山顶共走了1000m ,他上升的高度为500m ,这个山坡的坡度i为____. 10.等腰三角形的顶角是120?,底边上的高为30,则三角形的周长是______. 三、解答题 11.计算: (1)22sin30cos60tan 60tan30cos 45+-?+?.(2)22sin 45cos30tan 45+- 12.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31?的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45?的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度. (参考数值:t an31°≈53,sin31°≈2 1) .

2019年中考数学真题汇编 锐角三角函数

中考数学真题汇编:锐角三角函数 一、选择题 1.的值等于() A. B. C. 1 D. 【答案】B 2.如图,过点,,,点是轴下方上的一点,连接,, 则的度数是() A. B. C. D. 【答案】B 3.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的 直径是( ) A.3 B.

C. D. 【答案】D 4.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角,升旗台底部到教学楼底部的距离米,升旗台坡面CD的坡度 ,坡长米,若旗杆底部到坡面CD的水平距离米,则旗杆AB的高度约为 () (参考数据:,,) A. 12.6米 B. 13.1 米 C. 14.7 米 D. 16.3米 【答案】B 5.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后 两位)(参考数据:)() A. 4.64海里 B. 5.49海 里 C. 6.12海 里 D. 6.21海里 【答案】B

6.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为() A. B. C. D. 【答案】B 7. 如图,已知在中,,,,则的值是() A. B. C. D. 【答案】A 8. 如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B 在同一条直线上)()

A. B. C. D. h?cosα 【答案】B 二、填空题 9.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航 行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在 北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航 行________小时即可到达 (结果保留根号) 【答案】 10.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=________。 【答案】 11.如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,,得到 ,若厘米,则的边的长为________厘米. 【答案】 12.如图,在菱形中,,分别在边上,将四边形沿翻折, 使的对应线段经过顶点,当时,的值为________.

2020人教版中考数学《锐角三角函数》专题及答案详解

【2020】人教版中考数学《锐角三角函数》 专题及答案 一、选择题 1. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 2..如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于( ) A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx 【答案】D 【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a ?cosx+b ?sinx ,故选D . 3.如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知坡角为20°,山高BC =2千米. A. B. C. D. BC AB 2 sin 20sin 20BC .故按键顺序为 20° 2

4.已知∠α为锐角,且sinα=1 2,则∠α=() A.30° B.45° C.60° D.90° 【答案】A 【解析】∵∠α为锐角,且sinα=1 2,∴∠α=30°.故选A. 5.矩形OABC 在平面直角坐标系中的位置如图所示,已知B (32,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD ⊥PC 交x 轴于点D ,下列结论:①OA=BC= 32;②当点D 运动到OA 的中点处时,PC 2+PD 2=7;③在运动过程中,∠CDP 是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为(33 2,0),其中正确结论的个数是() A. 1个 B. 2个 C.3个 D. 4个 【答案】D 【解析】已知B (32,2),所以OA=BC=32,故①正确;当点D 运动到OA 的中点处时, OD=3,而OC=2,所以OC 2=7,在直角三角形CPD 中,PC 2+PD 2 =7,故②正确;过点P 作PD ⊥ PC 交x 轴于点D ,所以在运动过程中,∠CDP 是一个定值,故③正确;当△ODP 为等腰三角形时, OC ⊥BD ,∠CDO=60°所以3 OD OC ,即OD=332,所以点D 的坐标为(332,0). 6. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 【解析】过点A 作AD ⊥BC 于点D ,∵cosC=1 4,AC=4,∴CD=1,∴BD=3, AD= B

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

(完整版)锐角三角函数中考试题分类汇编含答案

23、锐角三角函数 要点一:锐角三角函数的基本概念 一、选择题 1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是() A . 35B .43 C .34 D .4 5 2.(2008·威海中考)在△ABC 中,∠C =90°,tan A = 1 3 ,则sin B =() A . 1010B .23 C .3 4 D .31010 3.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则sin B 的值是() A . 23B .32 C .34 D .43 4.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是() A .3sin A = B .1 tan 2 A =C .3cos B =.tan 3B =5.(2008·温州中考)如图,在Rt AB C △中,C D 是斜边AB 上的中线,已知2CD =, 3AC =,则sin B 的值是() A . 23B .32C .34 D . 4 3 6.(2007·泰安中考)如图,在ABC △中,90ACB ∠=o ,CD AB ⊥于,若23AC =

32 AB=,则tan BCD ∠ 的值为() (A)(B) 2 2 (C) 6 3 (D) 3 3 二、填空题 7.(2009·梧州中考)在△ABC中,∠C=90°,BC=6 cm, 5 3 sin= A,则AB的长是cm.8.(2009·孝感中考)如图,角的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一 点P(3,4),则sinα=. 9.(2009·庆阳中考)如图,菱形ABCD的边长为10cm,DE⊥AB, 3 sin 5 A=,则这个菱形的面积=cm2. 三、解答题 10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线, 弦CD是水位线,CD∥AB,且CD = 24 m,OE⊥CD于点E.已测得sin∠DOE = 12 13 .(1)求半径OD; A C B D O B E C D

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,

相关文档
最新文档