手性药物不对称合成90 (3)_附件

手性药物不对称合成90 (3)_附件
手性药物不对称合成90 (3)_附件

手性药物及其不对称合成

[摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。

[关键词]手性药物;制备;不对称合成;不对称催化

Chiral Drugs and Asymmetric Synthesis

Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed .

Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis

1 引言

2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】

2手性药物

:

手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

药物分子,将互为镜像关系而又不能重合的一对药物结构称为对映体(enantiomer)。过去多数化学药品是由等量的左旋(S型)和右旋(R型)两种对映体组成的外消旋体,只含有单一对映体即光学纯度较高的药物,与外消旋药物相比,具有疗效好、副作用小等特点

3 获取手性药物的途径

一般可通过从天然物中提取,生物酶合成法和外消旋体拆分法获取手性药物,近年来,随着合成方法的发展和先进分析技术的出现,越来越多的手性化合物可通过化学合成方法得到,不对称合成已成为获取手性物质的重要手段,也成为最有希望、最具活力的研究领域。

4不对称合成

Morrison和Mosherl将不对称合成定义为:“一个反应,其中底物分子整体中的非手性单元由反应剂以不等量生成立体异构产物的途径转化为手性单元。也就是说,不对称合成是这样一个过程,它将潜手性单元转化为手性单元,使得产生不等量的立体异构产物”。不对称合成是获取手性药物最直接的方法。不对称合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用,因而,手性合成可分为:手性源合成、手性助剂法、手性试剂法及不对称催化法。

4.1手性源合成

在手性源合成中,所有的合成转变都必须是高度立体选择性的,通过这些反应最终将手性源分子转变成目标手性分子。碳水化合物、有机酸(如酒石酸、乳酸等)、氨基酸、萜类化合及生物碱是非常有用的手性合成起始原料,并可用于复杂分子的全合成中。如:美国Scripps研究所的Wong等[3]报道了利用阿拉伯糖来合成 L-N-乙酰神经氨酸和利用半乳糖来合成唾液酸的极其巧妙的方法, 堪称有机合成当中一个巧妙的艺术(图式 1).

O

OH HO

OH

OH

+

NH 2

MeO

OMe

+B

OBu

BuO

50

℃ for 3d

EtOH/H2O(4:1)

OH

OH

OH OH NHR

L-arebinose

OH OH OH

OH

B

OBu

BuO

H 2O

B

OH

OH

HO

OH

HO

OH OH

H B N R

-N

R

1.TFA,50℃

2.Ac 2O,MeOH

OH OH

OH NHR

55% overrall yield > 99% de

OH

4.2 手性助剂法

手性助剂法利用手性辅助剂和底物作用生成手性中间体,经不对称反应后得到新的反应中间体,回收手性剂后得到目标手性分子。以酮类化合物为原料,利用手性助剂——酒石酸酯制备药物(S )—荼普生是工业生产的一个实例【4】。缩酮的取代反应主要生成非对映异构体RRS ,经重排和水解生成(S )—萘普生。

CH3O CH3O

O

CH3

MPN

1)R,R-dimethyl

tartrate

2)Br2

O

O

CH3O Br

Br CH3

HOOC COOH EtCOCl

AlCl3

O

O

CH3O Br

Br

CH3

ROOC COOR

90℃

H2O

CH3O

Br

H

CH3

O

O

COOH

COOH

OH

1)H2

2)H3O+

S-naproxen

>98% ee

70-75%

4.3 手性试剂法

此方法是用手性试剂和前手性化合物作用生成新的手性化合物,例如手性硼

烷基化试剂的应用。地诺帕明(Denopamine, 13)、异丙基肾上腺素(Isoproterenol, 14)、沙美特罗(Salmeterol, 15)、福莫特罗(Formoterol, 16)等β肾上腺素受体激动剂R 型异构体的合成方法, 其关键步骤是采用 R 型的手性噁唑硼烷 19,20 或 21 催化 2-卤代-取代苯乙酮(17)与 BH3·THF 的立体选择性还原反应, 得到(R)-2-卤代-1-取代苯基乙醇(18). 18 再经后续反应可分别制得(R)-地诺帕明(13),97% ee 值, (R)-异丙基肾上腺素(14), 96% ee 值, (R)-沙美特罗(15), 94% ee 值和(R,R)-福莫特罗(16), 94% ee值.(猪,这里,你按顺序重新排下数字,譬如,13就是1,14就是2)

N

B O

H Nap

Nap

Bu-n N

B

O

H Ph

Ph CH3

7

(R)-Denopamine (R)-Isoproterenol

9

(R)-Salmeterol O

B

N

CH3

8

(R,R)-Formoterol

R

O

X

X=Cl,Br

5

7,8or 9

BH3 THF

R

OH

H

X

6

H

N

H OH

OMe

OMe

HO

Yield 96%,97% ee

1

OH

HO

OH

H H

N

CH3

CH3

2

Yield 96%,97% ee

HO

OH

H H

N Ph

O

64

HO3

94% ee

NHCHO

HO

OH

H H

N

CH

3

OMe

4

Yield>98%,94% ee

4.4不对称催化反应

在不对称合成的诸多方法中,最引入注目的是不对称催化法【】,它具有手性增殖、高对映选择性、经济,易于实现工业化的优点,是最有希望、最有前途的合成手性药物的方法。不对称催化最强有力而独特的优势是手性增殖,通过催化反应量级的手性原始物质来立体选择性地生产大量目标手性产物,不需要像化学计量不对称合成那样消耗大量的手性试剂,日本高砂(Takasago)公司利用BINAP-Rh催化的亚胺不对称异构化反应技术,在1983~1996年间已生产了近三万吨薄荷醇及其中间体,而消耗掉的手性配体仅250Kg[15]。另外,不对称催化反应的普遍特点是潜手性底物来源广泛,价廉易得,立体选择性好,即可生成R-异构体也可生成S-异构体,可适用于生产不同需要的目的产物。目前,已进行研究不对称催化氢化、不对称氧化、金属催化的不对称合成、不对称傅克烷基化反应等多种不对称催化反应。

4.4.1不对称催化氢化

第一个通过不对称催化反应(见图)合成的商品药物是诺尔斯采用[ Rh (R ,R)-DiPAMP) COD] +BF-4 为催化剂,从非手性的烯胺出发,经过一步催化不对称氢化反应和一步简单的酸性水解反应而得到L-Dopa (治疗帕金森综合症的有效药物)[6]。而野依良治与合作者发现的手性双膦配体——BINAP ,其中任何一个对映体与铑( Ⅰ) 的配合物都比其他多种催化不对称氢化反应的催化剂具有明

显更强的活性。

不对称催化第一个工业化例子,L-Dopa(Monsanto,1995)

CO 2H NHAc

AcO

H 2(3bar)/50℃Rh(COD)2BF 4/L*

CO 2H NHAc MeO AcO

95% ee

CO 2-NH 3+

HO

HO L-Dopa

O

P

CH 3P MeO O CH 3

(R,R)-DIPAMP

4.4.2不对称催化氧化

1980 年,夏普莱斯及其合作者发现:在少量四异丙氧基钛和光学纯的酒石酸二烷基酯存在情况下,叔丁基过氧化氢能够高度立体选择性地将烯丙醇中的碳碳双键环氧化得到环氧醇(一类活泼的手性中间体),可用于生产治疗心脏病的心得安等药物。

4.4.3不对称傅克烷基化反应

吲哚骨架广泛存在于3000多种天然产物和40多种具有不同药效的药物中。MacMillan小组【8】报道了用咪唑酮类催化剂实现了吲哚与α,β-不饱和醛的高对映选择性的傅克烷基化反应.(这个我自己画好了)

N CH3

N

O

H3C

82% yield

92% ee

H3C

20ml%3-TFA

O

H3C

CH2Cl2-i-PrOH

-87℃ , 19h

N

CH3H3C O

20mol%3-TFA

CH2Cl2-i-PrOH

-87℃,19h N

H3C

O

H3C

82%yield

92%ee

4.4.4过渡金属手性催化剂催化的不对称合成

用金属镱催化的具有高度对应选择性的比吉内利(Biginelli)[9]反应.Monastrol (4-(3-羟苯基)-6-甲基-2-硫基-1,2,3,4-四氢化-4H-嘧啶-5-羧酸乙基酯)是迄今一直的唯一一个具有细胞渗透性的分子,能够有效地抑制病变细胞的分列运动,引领了抗癌药物的发展。在乙酰乙酸酯,苯甲醛以及硫代尿素混合的比吉内利冷凝液中加入Yb(OTf)

3

催化剂反应制得。

Me

OEt

O O +3-(OH)-C 6H 4CHO NH 2

S NH 2

+

Yb(OTf)3,HCL

THF,RT

N N H S

Me

H

EtO 2C

3-(OH)-C 6H 4

*N

N

N

N HO

Ph

Ph

HCL

OH yield 80%, ee 99%

5 展望

据报道,当今世界常用的化学药物约1850种。其中523种是天然及半合成药物,除6种非手性药物外,其余(517种)为手性药物;另外1327种为全合成药物,其中799种(60%)为非手性药物,有528种(40%)为手性药物,但以单一对映体药物批准上市的为数较少,约为61种,而大多数(467种)是以外消旋体形式投放市场,因此尚有很多机会将外消旋体发展为手性药物。其开发前景十分广阔,目前吸引了不少的厂商正在从事手性药物的开发和研究,不断有新的手性药物陆续上市。手性药物不但具有极大的社会效益还具有可观的经济效

益,开发手性药物的不但能促进人类的健康长寿、服务于社会,也会为企业的发展及经济的繁荣作出巨大的贡献。

注释及参考文献

1、STU BORMAN Chem. Eng. News,2001, 79 (42), pp 5–6Publication Date (Print):October 15, 2001 (News) DOI:10.1021/cen-v079n042.p005

3 、Hong Z, Liu LH, Su CC, Wong CH. Three-step synthesis of sialic acids and derivatives. Angew Chem Int Ed, 2006, 45: 7417—7421

4、Peter J.Harrington and Eric Lodewijk. Twenty Years of

https://www.360docs.net/doc/455941835.html,anic Process Research & Development 1997, 1, 72-76

6、Knowles W S. Acc Chem Res. 1983 ,16 :106

8、Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc.2002,124, 1172.

9、Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360. (b) Kappe, C. O. Acc.Chem. Res. 2000, 33, 879. (c) Lusch, M. J.; Tallarico, J. A. Org. Lett.2004, 6, 3237.

10、Yijun Huang, Fengyue Yang, and Chengjian Zhu.J. Am. Chem. Soc.,2005, 127(47), pp 16386–16387 Publication Date (Web):November 08, 2005 (Communication)DOI:10.1021/ja056092f

15、Akutagawa.S.Topics in catalysis 1997.4;275

16、殷元琪蒋耀忠.不对称催化反应进展[M].科学出版社 2002 第331页

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性药物的不对称合成90 (3)

手性药物及其不对称合成 [摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。 [关键词]手性药物;制备;不对称合成;不对称催化 Chiral Drugs and Asymmetric Synthesis Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed . Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis 1 引言 2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】 :2手性药物 手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

不对称合成的发展与应用

不 对 称 合 成 的 发 展 与 应 用 专业:化学 姓名:史茹月 学号:2013296043

不对称合成的发展与应用 摘要:本文介绍了手性药物的重要性与类型;结合实例对不对称催化法合成手性药物作简要概述,尤其就是化学不对称催化技术,包括不对称催化氢化、羰基的不对称催化还原、不对称催化氧化、不对称环丙烷化、不对称催化羰基化及不对称催化加成反应等;展望了不对称催化反应在手性药物合成中的发展方向。 1、概述 手性就是自然界与生命休戚相关的基本属性之一。近年来,人们对单一手性化合物及手性功能材料的需求推动了手性科学的蓬勃发展,手性物质的合成与医药、农药、精细化工与材料科学的密切关系也显示出重要的应用前景。 近年来,研究者设计合成了一系列高选择性的手性配体与催化剂,其中螺环型手性配体已成为优势手性配体之一;她们发展了多个高选择性的不对称催化反应,并发展了手性催化剂负载化、分离回收新方法。 生命体系的大部分基本单元都就是手性分子,其所涉及的生命过程及相互作用也大多以手性方式进行。因此,具有生物活性的物质,如手性药物的对映体都以不同方式参与生命过程并对生物体产生不同的作用效果。 2、“完美合成化学”的重要途径 低成本、高药效的手性药物开发为不对称催化合成的发展提供了

巨大的吸引力,其广阔的市场需求更就是不对称催化发展的强劲动力。 人工合成就是获得手性物质的主要途径。外消旋体拆分、底物诱导的手性合成与手性催化合成就是获得手性物质的三种方法,其中,手性催化合成方法被公认为学术与经济上最为可取的手性技术,因而得到广泛的关注与深入的研究。因为一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。 因此,如何设计合成高效、新型的手性催化剂,探讨配体与催化剂设计的规律,解决手性催化剂的选择性与稳定性,以及研究手性催化剂的设计、筛选、负载与回收的新方法,发展一系列重要的不对称反应就是该研究领域面临的新挑战。 3、科学基金布局手性合成研究 手性催化剂的研究目前还缺少系统的理性指导以及规律性可循,手性催化剂及高效催化反应的开发大都凭借经验、运气与坚持不懈的努力。因此,要实现手性催化反应的高选择性、高效率,需要从基础研究入手,通过理论、概念与方法的创新,解决这一挑战性问题。 上世纪80年代,我国科学家就开始注意到手性合成这一重要研究方向,并陆续有出色的成果出现。国家自然科学基金委员会适时组织了我国化学与生物学两个学科的研究人员,集中力量在手性药物的化学与生物学领域开展基础研究。 国家自然科学基金“九五”计划期间,由中国医学科学院药物研

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

手性药物的合成综述

手性合成的综述 姓名: 学号: 专业: 院系: 目录 手性合成的概念与简介 (2) 手性药物的合成的发展历程 (3) 手性合成的方法 (5) 几种手性药物合成方法的比较 (7) 化学—酶合成法合成手性药物的实例 (7) 手性药物的研究现状和展望 (10) 参考资料 (13) 手性药物的概念与简介 手性(英文名为chirality, 源自希腊文cheir)是用来表达化合物分子结构不对称性的术语。人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。 化合物的手性与其空间结构有关,因为化合物分子中的原子的排列是三维的。例如,图1中表示乳酸分子的结构式1 a和1 b,虽然连接在中心碳原子上的4个基团,即H, COOH, OH和CH3都一样,但它们却是不同的化合物。它们之间的关系如同右手和左手之间的关系一样,互为对映体。 手性是人类赖以生存的自然界的本质属性之一。生命现象中的化学过程都是在高度不对称的环境中进行的。构成机体的物质大多具有一定空间构型,如组成蛋白质和酶的氨基酸为L-构型,糖为D-构型,DNA的螺旋结构为右旋。在机体

的代谢和调控过程中所涉及的物质(如酶和细胞表面的受体)一般也都具有手性,在生命过程中发生的各种生物-化学反应过程均与手性的识别和变化有关。 由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物,其中只含有效对映体或者以有效的对映体为主。这些对映异构体的理化性质基本相似,仅仅是旋光性有所差别,分别被命名为R-型(右旋)或S-型(左旋)、外消旋。药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的。 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。自然界里有很多手性化合物,这些手性化合物具有两个对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。当一个手性化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效甚至是有害的。手性制药就是利用化合物的这种原理,开发出药效高、副作用小的药物。在临床治疗方面,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。因而具有十分广阔的市场前景和巨大的经济价值。目前世界上使用的药物总数约为1900种手性药物占50%以上,在临床常用的200种药物中,手性药物多达114种。全球2001年以单一光学异构体形式出售的市场额达到1 472亿美元,相比于2000年的1 330亿美元增长了10%以上。预计手性药物到2010年销售额将达到2 000亿美元。 在许多情况下,化合物的一对对映异构体在生物体内的药理活性、代谢过程、代谢速率及毒性等存在显著的差异。另外在吸收、分布和排泄等方面也存在差异,还有对映体的相互转化等一系列复杂的问题。但按药效方面的简单划分,可能存在三种不同的情况:1、只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用,如治疗帕金森病的L-多巴(图2中a),其对映异构体对帕金森病无治疗效果,而且不能被体内酶代谢,右旋体聚积在体内可能对人体健康造成影响;2、一对对映异构体中的两个化合物都有等同的或近乎等同的药理活性,如盖替沙星(图2中b),其左旋体和右旋体的活性差别不大;3、两种对映体具有完全不同的药理活性,如镇静药沙利度胺(又名反应停,图2中c),(R)-对映体具有缓解妊娠反应作用, (S)-对映体是一种强力致畸剂[1,2]。因此,1992年3月FDA发布了手性药物的指导原则,明确要求一个含手性因素的化学药物,必须说明其两个对映体在体内的不同生理活性,药理作用,代谢过程和药物动力学情况以考虑单一对映体供药的问题。目前,手性药物受到世界各国的关注和重视,手性药物的合成也成为目前各国研究的一项迫切的任务。 手性药物的合成的发展历程

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

手性分子与手性药物

. 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

手性药物发展趋势_附件

手性药物的发展趋势 手性药物在新药的设计、研究、开发、上市是一个主要的课题[1–4]。立体化学结构是药理学的一个重要方面[1]。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加[2-4]。 立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[3-5]。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计[3,4]。这些因素导致在企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明[6]。紧接着,1994年欧盟发表了手性活性药物的研究[7]开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。 单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)[8-13]。 排名前十的单一对映体药物(每年销售额大于10亿美元)是:阿托伐他汀

手性药物的合成与生物转化

手性药物的合成与生物转化 摘要:药物分子的立体化学决定了其生物活性,手性已成为药物研究的一个关键因素,生物技术在手性药物合成中具有重要意义,利用酶催化的相关性质,通过酶拆分外消旋体酶法不对称合成等方法合成手性药物,采用定向进化技术酶分子修饰辅酶再生等方法对手性药物合成方法进行改进。 关键词:手性药物生物转化生物合成 手性(Chirality) 是自然界的本质属性之一。构成生命有机体的分子都是不对称的手性分子,生命界中普遍存在的糖为D型,,氨基酸为L型,蛋白质和DNA的螺旋构象又都是右旋的。手性药物( Chiral drug) 是指有药理活性作用的对映纯化合物。 手性药物的制备方法包括化学制备法和生物制备法,生物转化具有一些化学方法无可比拟的优点:反应条件比较温和;产物比较单一,具有很高的立体选择性(Enantioselectivity)、区域选择性(Regioselectivity)和化学选择性(Chemoselectivity);并且能完成一些化学合成难以进行的反应。目前,生物转化已涉及羟基化、环氧化、脱氢、氢化等氧化还原反应;水解、水合、酯化、酯转移、脱水、脱羧、酰化、胺化、异构化和芳构化等各类化学反应。 生物合成手性药物法主要包括酶拆分外消旋体法、酶法不对称合成和微生物发酵法。 1 酶法拆分外消旋体合成手性药物 近年来随着酶技术的发展,利用酶的高度立体选择性进行外消旋体的拆分从而获得光活性纯的化合物是得到手性药物的重要途径。酶是由L-氨基酸组成,其活性中心构成了一个部队称环境,有利于对消旋体的识别,属于高度手性的催化剂,催化效率高,有很强的专一性,

反应产物的对映体过量百分率(ee)可达100%。因此,在售性药物合成过程中,用酶拆分消旋体是理想的选择。D-苯甘氨酸金额D-对羟基苯甘氨酸是生产半合成青霉素和头孢菌类抗生素的重要侧链。DSM公司(Geleen,荷兰)利用恶臭假单胞菌(Pseydomonas putida)和L-氨肽酶拆分DL-氨基酸酰胺获得了D-苯甘氨酸和D-对羟基苯甘氨酸。拆分过程中生成的不要的对映体可通过与苯甲醛形成的酰胺的Schiff碱性成加合物,在升高pH值时发生外消旋化,外消旋后的氨基酸酰胺可重复利用。 如果想成功地提供药物中间体和药物活性组分,就必须有供选用的大量合成平台,生物催化仅是其中的一个办法。虽然产生一种现代的药物活性组分中通常只有一步是采用生物催化的,但这常常是把手性引入到化合物中的关键一步,并且由于药物结构中,分子手性部分变得越来越重要,随着分子中手性中心的增多,生物转化方法的良好专一性和选择,就必然要比其他手性合成方法发展得更快。 2 酶法不对称合成手性药物 将具有氧化或还原作用的酶及相关微生物作的手性合成催化剂,催化前手性底物,从而构建药物的手性中心的反应,利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酯、酰胺等衍生物以及各种含硫、磷、氮及金属的手性化合物和药物。Pfizer等采用脱氧核糖-5-磷酸醛缩酶来催化连续的醇醛缩合反应,利用1mol氨基醛和2mol乙醛反应形成氨基内酯,随后通过常规氧化、保护和酯化形成他汀侧链,这一生物催化

不对称反应及应用—手性合成前沿研究

- 14 - 第2期2019年4月No.2 April,2019 1 什么是手性化合物 手性是三维物体的基本属性。如果一个物体不能与其镜像重合,该物体就称为手性物体。1848年,法国化学家巴斯德(L.Pasteur ,1822~1895)发现酒石酸两种不同的存在形式:左旋酒石酸、右旋酒石酸;发现手性分离方法—镊子。世界上大多数的有机物都是有手性的,即有光学活性。大多数氨基酸是D 型,大多数的单糖是L 型。手性化合物在我们身边无处不在。 2 手性合成的农业应用 农药残留引起的食品安全问题一直是社会关注的热点问题。在中国,目前生产的农药中,40%以上是手性农药,这一比例还在不断上升。手性化合物由一对或多对对映体组成。然而,无论是制备技术还是经济原因,大多数农药都是以消旋体的形式生产的。据报道,目前科学家们已提出了一种新的多残留分析方法,用于黄瓜、番茄、卷心菜、葡萄桑、苹果和梨中22种手性农药的对映体选择性分析。以石墨烯为吸附剂,采用磁性固相萃取技术对农药进行高效提取,采用响应面法进行多变量优化。例如,我们采用反相液相色谱—串联质谱联用技术,在Chiralpak IG 柱上47 min 内实现了对映体的完美手性拆分,拆分大量手性化合物具有显著的改善作用。该方法在选择性、线性、灵敏度、真实感、精密度等方面进行了验证,均满足农药残留分析的要求。该方法成功地应用于监测不同果蔬中农药的发生和对映体组成。有机农药广泛应用于农业中,以控制霉菌、害虫、杂草,从而保证世界各地蔬菜、水果和农作物的高品质和高产。由于农药的大量消耗,农药在农产品中经常被检测到,这可能对人体健康造成潜在的威胁。采用手性液相色谱法在美国马萨诸塞州米尔福市Waters Corp 的AcquityTM UPLC 系统上进行分析,该系统包括一个AcquityTM UPLC 双泵溶剂管理系统、一个AcquityTM UPLC 自动取样器和一个恒温柱室。采用Chiralpak IG 柱对22种农药进行手性分离,柱长250 mm ×4.6 mm ,I.D.5 m ,Daicel ,日本,柱长10 mm ×4 mm ,I.D.5 um ,Daicel ,日本。该手 性固定相的选择是基于其良好的对映体识别和分离能力。 Chiralpak IG 柱可用于正相、反相或极性有机相,但由于移动相组成与质谱仪具有较好的相容性,因此采用反相模式分离农药对映体。对映体拆分的最佳色谱条件在混炼上测定了化学成分。有效地对消旋体进行手性拆分,对于人类生活具有重大的意义。 3 手性合成在医药化学中的应用 医药工业对光学纯有机化合物的需求日益增大。生命体系是一个手性环境,比如20种最基本的天然氨基酸中除结构最简单的甘氨酸之外,其他19种均是含手性中心的单一异构体,由这些手性的单元连接起来组成的蛋白质就必然是手性的环境(见表1)。 表1 1994~1996年世界新药(NCE )上市情况分析药物199419951996手性药物262329混旋体药物756非手性药物141116合计 47 39 51 从1 850种常用药物看,大多数天然药物和半合成药物是手性化合物,以单一立体异构体存在并注册为药物,成为手性药物。由于手性药物具有副作用少、使用剂量低和疗效高等特点,颇受市场欢迎,销量迅速增长,近年来催化不对称全合成具有复杂结构的生物活性天然产物的研究进展飞速。催化不对称合成天然产物,用于开发新型抗感染和抗癌药物的天然产物是生物活性化合物的丰富来源,经常被开发成药物。 此外合成有机化学在天然产物结构的基础上,拓宽了可获得的化学实体的渠道,为药物和天然产物化学架起了桥梁。比如,Caprazamycin B 被发现是一种抗结核抗生素,并被开发为CPZEN-45,对广泛耐药株(XDR-TB )亮氨酸抑素A 具有活性,在相应基质细胞存在的情况下对肿瘤细胞具有 作者简介:孙阿强(1995— ),男,汉族,安徽阜阳人,本科生;研究方向:有机化学不对称合成。 不对称反应及应用—手性合成前沿研究 孙阿强 (河南师范大学 化学化工学院,河南 新乡 453007) 摘 要:通过研究近年以来的手性合成—不对称合成及应用发现,手性合成前沿研究的领域不再局限于传统的从自然界 直接分离提取手性药物,而是与生物、药物、计算机等多学科交叉应用,达到手性合成的高效合成和分离应用。不对称合成应用在药物开发、医学等领域是当今手性合成前沿研究的热点。对手性合成—不对称合成研究领域进行探讨,介绍了手性药物的发展历程、研究价值、应用方向,并对手性药物的手性合成未来趋向做出了展望。关键词:不对称反应;手性合成;应用现代盐化工 Modern Salt and Chemical Industry

手性合成手性识别手性拆分及在医药学中应用_张来新

收稿日期:2016-02-29 基金项目:陕西省重点实验室科学研究计划基金资助项目(2010JS067); 陕西省教育厅自然科学基金资助课题(04JK147);宝鸡文理学院自然科学基金资助课题(zk12014) 作者简介:张来新(1955-),男,汉族,陕西周至人,教授,硕士研究生 导师,主要从事大环化学研究及天然产物分离提取。 DOI :10.16247/https://www.360docs.net/doc/455941835.html,ki.23-1171/tq.20160753 Sum 250No.07 化学工程师 Chemical Engineer 2016年第07 期 手性是人类赖以生存的自然界的属性之一,也是生命体系中最重要的属性之一。作为生命体三大 物质基础的蛋白质、核酸及糖类均是由具有手性的结构单元组成的。如组成蛋白质的氨基酸除少数例外,大多是手性的L-氨基酸; 组成多糖和核酸的天然单糖大都是手性的D-构型。因此,生物体内所有的生化反应、生理反应无一不表现出高度的手性立体特异性,而外源性物质进入体内所发生的生理生化反应过程也具有高度的立体选择性。医药学所有的手性药物是指分子结构中含有手性中心或不对称中心的药物,它包括单一的立体异构体、两个或两个以上立体异构体的混合物。手性化合物除了通常所说的含手性中心的化合物外,还包括含手性轴、手性平面、螺旋手性等因素的化合物。由于药物作用的靶点(如受体、酶或通道)结构上的高度立体 特异性,手性药物的不同立体异构与靶点的相互作 用有所不同,从而产生不同的药理活性,故表现出立体专一性和立体选择性。同样,药物进入体内后与机体内具有高度立体特异性的代谢酶及血浆蛋白或转运蛋白等相互作用,手性药物的不同异构体在体内也将表现出不同的药代动力学特征,并具有 立体专一性和立体选择性。但值得注意的是,有些手性化合物在体内甚至可能发生构型变化而改变 其药效或产生毒副作用。 由于手性药物是医药行业的主体和前沿阵地,故2001年诺贝尔化学奖就授予了分子手性催化剂的主要贡献者。自然界中有众多手性化合物,这些不同构型的化合物具有一对对映异构体。当一个手性化合物进入生命时,它的两个对眏异构体通常会表现出不同的生物生理活性。对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效的甚至是有害的(如青霉素),这就需要对对眏体进行拆分。手性制药就是利用化合物的拆分原理,开发出药效高、副作用小的药物。在临床治疗方面,服用一对对眏体中的一种单一构型的纯手性药物可以排除由无效或不良对眏体的另一种而引起的毒副作用,不仅如此,还可以减少药剂用量和人体对 手性合成手性识别手性拆分 及在医药学中应用 * 张来新*,陈 琦 (宝鸡文理学院化学化工学院,陕西宝鸡721013) 摘要:简要介绍了手性物质的合成、手性识别、手性拆分及在医药学上的应用。详细综述了:(1)手性合成手性识别手性拆分及在医药学中的应用;(2)新型金属手性超分子配合物的合成及应用;(3)手性杯芳冠醚的合成分子识别及应用。并对手性化学的发展进行了展望。 关键词:手性合成;手性识别;手性拆分;应用中图分类号:O658 文献标识码:A Chiral synthesis,chiral recognition,chiral separation and their applications to medeicine * ZHANG Lai-xin ,CHEN Qi (Chemistry &Chemical Engineering Department,Baoji University of Arts and Sciences,Baoji 721013,China ) Abstract :This paper introduces synthesis of chiral materials,chiral recognition,chiral separation,and their applications to medicine.Emphases are put on three parts :(1)chiral synthesis,chiral recognition,chiral separa -tion,and their applications to medicine ;(2)synthesis and applications of new metal chiral supramolecular com -plexes ;(3)synthesis,molecular recognition,and applications of chiral calix crown ethers.Future developments of charal chemestry are prospected in the end. Key words :chiral synthesis ;chiral recognition ;chiral separation ;application

手性与手性药物

【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为d-构型,氨基酸为l-构型,蛋白质和dna的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对l一氨基酸和d一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺r型具有镇静作用,而s型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是s型还是r型,作为药物都有致畸作用。1984年荷兰药理学家ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他的一系列论述的发表,引起药物部门广泛的重视。2001年诺贝尔化学奖授予了3位美日科学家,表彰他们在手性催化氢化反应和手性催化氧化反应领域所做出的重大贡献。目前,研究和发展新的手性技术,借此获得光学纯的手性药物,已成为许多实验室和医药公司追求的目标。 2 药物的手性 据统计,1800个药物,具有手性中心的就有1026种,占57%。现在市场上只有61种药物是以单对映体形式存在,其余均为外消旋体(左、右旋各半)混合形式。研究表明,不同的对映体在人体内的药理,代谢过程,毒性和疗效存在着显著差异[2-5],大致有以下几个类别: 2.1 对映体之间有相同或相近的某一活性 2.2 一个对映体具有显著的活性但其对映体活性很低或无活性 一般认为若某一对映体只有外消旋体的1%的药理活性,则可以认为其无活性。因为这微小的活性可能来源于掺杂于该单一对映体中微量的活性单一对映体。例如氯苯吡胺(扑尔敏,ehlorpheniramine)右旋体的抗组胺作用比左旋体强100倍。抗菌药氧氟沙星的s-(-)-异构体是抗菌活性体,而r-(+)-异构体则无活性。属于这一类的药物还有是氯霉素、芬氟拉明、吲哚美辛等。 2.3 对映体有相同、但强弱程度有差异 某一活性抗癌药环磷酰胺(ey-elophosphamide),其手性中心不是在通常的碳原子,而在磷原子。其(s)-异构体活性是(r)-异构体的2倍,然而,对映体毒性几乎相同。有时一个异构体具有较强的副作用,也应予考虑。如氯胺酮(ketamine)是以消旋体上市的麻醉镇痛剂,但具有致幻等副作用,进一步的药理研究证实(s)-异构体活性是(r)-异构体的三分之一,却伴随着较强的副作用。

不对称合成综述

手性药物及其不对称催化合成的研究进展 【摘要】本文介绍了手性药物的重要性和类型;结合实例对不对称催化法合成 手性药物作简要概述,尤其是化学不对称催化技术,包括不对称催化氢化、羰基的不对称催化还原、不对称催化氧化、不对称环丙烷化、不对称催化羰基化及不对称催化加成反应等;展望了不对称催化反应在手性药物合成中的发展方向。 【关键词】手性药物;不对称催化反应;合成 手性是自然界的普遍特征。作为生命活动重要基础的生物大分子,如蛋白质、多糖、核酸和酶等几乎全是手性的。当今世界常用的化学药物中手性药物占据了超过60%的比例,它们的药理作用是通过与体内大分子之间严格手性匹配与分子识别实现的。近年来,世界手性药物的销售总额也在不断增加,据资料统计,1995年为425亿美元,1997年为900亿美元,2000年已超过1200亿美元[1],2010年可望超过2500亿美元。由于市场巨大,已经引起了学术界和工业界的极大重视,并在国际上兴起手性技术的热潮。 1 手性药物及其药理活性 在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界存在的糖为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的。所以,当手性药物、农药等化合物作用于这个不对称的生物界时,由于它们的分子的立体结构在生物体内引起不同的分子识别造成“手性识别”现象,两个异构体在人体内的药理活性、代谢过程及毒性往往存在显著的差异,具体可能存在以下几种情况[2]: 1. 1 一个对映体具有显著的活性,另一对映体活性很低或无此活性例如普萘洛尔(propranolol)的(-阻滞作用中,S-普萘洛尔的活性是其R-普萘洛尔的100倍以上。 1. 2 对映体之间有相同或相近的某一活性例如噻吗洛尔(timolol)两个对映体都具有降低眼压治疗青光眼的作用,其中S-噻吗洛尔为(-阻滞剂,用它制备滴眼液治疗青光眼时,曾引起支气管收缩,使有支气管哮喘史的患者致死,所以仅R-噻吗洛尔治疗青光眼是安全的。因此从全面平衡仍宜选用单一对映体。 1. 3 对映体活性相同,但程度有差异例如S-氯胺酮(ketamine)的麻醉镇痛作用是R-氯胺酮的1/3,但致幻作用较R型强。 1. 4 对映体具有不同性质的药理活性例如(2S,3R)-丙氧芬(右丙氧芬)是止痛药,(2R,3S)-丙氧芬(左丙氧芬)是镇咳药。 1. 5 一个对映体具有疗效,另一对映体产生副作用或毒性-个典型的例子是20世纪50年代末期发生在欧洲的“反应停”事件,孕妇因服用沙利度胺(俗称“反应停”)而导致海豹畸形儿的惨剧。后来研究发现,沙利度胺包含两种不同构型的光学异构体,(R)-对映体具有镇静作用,而(S)-对映体具有强致畸作用。 以前由于对此缺少认识,人类曾经有过惨痛的教训。因此,如何合成手性分子的单一光学异构体就成了化学研究领域的热门话题,同时也是化学家面临的巨大挑战。近年来各大制药公司正在研发的和已上市的药物中,以单一对映异构体上市或研究的药物分别占到相当大比例。由于手性药物市场前景看好,巴斯夫、陶氏化学、罗地亚等国际知名企业均成立了各自的手性中间体开发机构。但是我国手性药物工业与世界发展水平尚有较大差距。

相关文档
最新文档