跳频

跳频
跳频

(1) 1:3跳频模式指在跳频中1块载频使用3个频点工作。

(2) 1×3复用就是1个基站的3个小区为一个频率复用簇,每个基站的同向小区所使用的频率组相同【2】。

图6 1×3复用方式频率配置

这种复用方式下,N的取值为1,则

根据式(3),

载干比远远低于系统要求的载干比保护值。必须采用跳频、功率控制、DTX等抗干扰技术提高载干比,以满足系统的通信要求。

假设可使用频带宽度为10MHz,可使用的频点为45~94。由于1×3复用方式必须使用射频跳频,而BCCH不能参与射频跳频,因此在规划时,BCCH采用4×3复用,而TCH采用1×3复用。

BCCH按4×3复用,使用的频点为81~94,共14个。TCH使用频点45~80,共36个频点。

TCH使用的频点有两种分组方式:间隔分组和顺序分组。间隔分组方式如下:表1.1×3复用间隔分组

频率组号频点号MAIO

A 80,77, 74,71,68,65,62,59,56,53,50,470,2,4,6,8,10

B 79,76, 73,70,67,64,61,58,55,52,49,461,3,5,7,9,11

C 78,75,72,69,66,63,60,57,54,51,48,450,2,4,6,8,10

顺序分组方式如下:

表2.1×3复用顺序分组

频率组号频点号MAIO

A 80,79,78,77,76,75,74,73,72,71,70,690,2,4,6,8,10

B 68,67,66,65,64,63,62,61,60,59,58,570,2,4,6,8,10

C 56,55,54,53,52,51,50,49,48,47,46,450,2,4,6,8,10

按照配置载频数与跳频频点数之比为1:2的规则,10MHz带宽,1×3可以实现的最大站型是S7/7/7。频率复用度为7.14。

同一基站内部各小区之间通过合理的配置跳频偏移量MAIO来避免同邻频干扰。假设可使用频带宽度为6MHz,可使用的频点为96~124。BCCH采用4×3复用,使用的频点为111~124,共14个。而TCH采用1×3复用,TCH使用频点96~110,共15个频点。

间隔分组方式如下:

表3.1×3复用间隔分组

频率组号频点号MAIO

A 96,99, 102,105,1080,2,4

B 97,100, 103,106,1091,3

C 98,101,104,107,1100,2

在6MHz带宽下,1×3间隔分组方式可实现的最大站型为S4/3/3。频率复用度为7.25/9.67/9.67,平均频率复用度为8.86。

顺序分组方式如下:

表4.1×3复用顺序分组

频率组号频点号MAIO

A 96,97,98,99,1000,2

B 101,102,103,104,1050,2

C 106,107,108,109,1100,2

按照配置载频数与跳频频点数之比为1:2的规则,6MHz带宽,1×3顺序分组可实现的最大站型是S3/3/3。频率复用度为9.67。

1*3特点:

● 1*3的复用度更加紧密,容量大大提高;

● 间隔分组比顺序分组的容量略高一些;

● 频率规划简单,在规划一个网络时,只需规划BCCH频点即可。在优化需调整或增扩载频时,无须重新规划频率;

● 该技术可以极大地提高规划效率;

● 需要使用宽带合路器,具有频率选择性的空腔合路器不适用;

● 对频率选择性直放站影响较大,使用1*3后应更换成宽频直放站;

● 随着复用距离的减小,同邻频干扰也显著增加;

● 采用1*3时,网络需要细致的优化调整,尤其要控制住越区覆盖;

● 必须使用射频跳频,参与跳频的频点应大于载频数目至少两倍;

● 在实际使用1×3频率复用方式时,因为BCCH不能使用射频跳频、DTX、功率控制等抗干扰措施,所以BCCH只能用较宽松的4×3复用方式,以保证网络质量。

跳频系统概述

6.1 跳频系统概述 6.1.1 为什么要跳频 通常我们所接触到的无线通信系统都是载波频率固定的通信系统,如无线 对讲机,汽车移动电话等,都是在指定的频率上进行通信,所以也称作定频通信。这种定频通信系统,一旦受到干扰就将使通信质量下降,严重时甚至使通信中断。 例如:电台的广播节目,一般是一个发射频率发送一套节目,不同的节目占用不同的发射频率。有时为了让听众能很好地收听一套节目,电台同时用几个发射频率发送同一套节目。这样,如果在某个频率上受到了严重干扰,听众还可以选择最清晰的频道来收听节目,从而起到了抗干扰的效果。但是这样做的代价是需要很多额谱资源才能传送一套节目。如果在不断变换的几个载波频率上传送一套广播节目,而听众的收音机也跟随着不断地在这几个频率上调谐接收,这样,即使某个频率上受到了干扰,也能很好地收听到这套节目。这就变成了一个跳频系统。 另外在敌我双方的通信对抗中,敌方企图发现我方的通信频率,以便于截获所传送的信息内容,或者发现我方通信机所在的方位,以便于引导炮火摧毁。定频通信系统容易暴露目标且易于被截获,这时,采用跳频通信就比较隐蔽也难以被截获。因为跳频通信是“打一枪换一个地方”的游击通信策略、使敌方不易发现通信使用的频率,一旦被敌方发现,通信的频率也已经“转移”到另外一个频率上了。当敌方摸不清“转移规律”时,就很难截获我方的通信内容。 因此,跳频通信具有抗干扰、抗截获的能力,并能作到频谱资源共享。所以在当前现代化的电子战中跳频通信已显示出巨大的优越性。另外,跳频通信也应用到民用通信中以抗衰落、抗多径、抗网间干扰和提高频谱利用率。 6.1.2 什么是跳频图案? 为了不让敌方知道我们通信使用的频率,需要经常改变载波频率,即“打一枪换一个地方”似地对载波频率进行跳变,跳频通信中载波频率改变的规律,叫作跳频图案。

扩频 LoRa跳频扩频通信(FHSS)的原理

扩频LoRa跳频扩频通信(FHSS)的原理 LoRa的扩频技术:LoRa是基于扩频的调制方案,通过扩频将信号扩展到宽带噪声,以获得扩频增益。 扩频的概念和原理 扩频通信(SSC)或扩频通信技术具有其用于传输信息的信号带宽远远大于其本身带宽的基本特征。信号带宽较大可以降低信噪比的要求。如果带宽增加到一定水平,则可进一步降低信噪比。扩频通信的优点是利用宽带传输技术交换信噪比,是扩频通信的基本思想和理论基础。 扩频技术是将信息信号的带宽进行多次扩展来进行通信的技术。传输信号的带宽远大于信息信号的带宽。例如,如果发送64Kbps的数据流,则基带带宽约为64KHz,但是在使用扩频技术的情况下,它占用的信道带宽可以被增加到5MHz和10MHz以上。同时,发射到宇宙的无线功率谱(单位带宽内的功率)也大幅度减少。 扩频信号的解扩过程

信息的频谱扩展过程 常规数字数据通信的原理是使用适配于数据率的最小可能的带宽。这是因为带宽数量有限,很多用户共享。扩频通信的原理是尽可能多地使用最大带宽,并且相同能量分布在宽带宽上。 另外,扩频通信具有以下特征 ●数字传输方式 ●使用与要发送的信息无关的功能(扩展功能)对要发送的信息进行调制,从而实现带宽的扩大●在接收侧使用相同扩频功能来解调扩频信号,恢复传输到的信息 ●扩频通信的优点 ●发送功率密度低,不易对其他设备造成干扰。 ●机密性很高,被监听的可能性极低。 ●具有较强的抗干扰能力,和很强的抑制同频噪声和各种噪声的能力。 ●具有良好的抗多径衰落能力。 LoRa跳频通信(FHSS)原理 FHSS跳频方式的工作原理是,各LoRa分组的内容的一部分在MCU管理中设定的跳频信道中

跳频是最常用的扩频方式之一

跳频 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。 通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频(Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。 在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。 在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。 90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。 与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。

快速跳频系统设计管理论文

快速跳频系统设计管理论文 摘要:介绍基于高性能、低成本的ML2724和DSP的2.4GHz快速跳频系统设计,探讨跳频信道的分配、跳频图案的设计,以及跳频同步问题,并给出了部分软件实现的流程图。 关键词:跳频技术扩频通信无线局域网ML2724DSP 2.4GHz是无线产品开发使用最为广泛的公用频段。目前很热门的技术话题——无线局域网的802.11标准就是采用2.4GHz这段频段。针对无线局域网,最大的争论便是其安全性和稳定性,国内外诸多文献指出:除了在无线局域网中采用更佳的密钥机制,应该广泛使用扩频和跳频等技术,增加其在无线信道上的稳定性和安全性。比较无线局域网中采用直接序列扩频和跳频两种方式的性能,可以得出:在无线局域网中采用跳频方式更佳。目前,对于跳频系统的设计通常采用CPLD+FPGA+DSP协同频率合成器实现,这样既增大了系统的体积,更导致系统的成本很高。本文介绍了基于高性能、低成本的ML2724和DSP的2.4GHz快速跳频系统设计。由于ML2724集成了可编程频率合成器、正交调制器和各种滤波器,并具有方便的控制接口,这样既可以减小体积,又可以降低成本;详细介绍了信道的分配和PN码的设计,以及跳频同步问题,并给出了部分软件实现的流程图。 图1 1ML2724简介 ML2724是MicroLinear公司的一款高性能的广泛应用于2.4GHz快速跳频通信系统的单片集成收发芯片,它集成了本振、抗镜像Ⅳ滤波器和基带低通滤波器、限幅器、数据判决器,并且自带了一个可编程控制的频率合成器,具有同步指示和与基带处理相接的各种端口。它具有以下主要特点: (1)能够完成2.4GHz通信系统的收发功能的集成单芯片; (2)信道间隔为2.048MHz,具有80个信道; (3)完全集成了所有的Ⅲ滤波器和数据滤波器; (4)灵敏度为-90dBm; (5)内部集成了完整的1.6GHz的频率合成器;

跳频通信技术及其应用与发展

跳频通信技术及其应用与发展 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70 年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代, 跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30 年间,倍受世界各国,特别是几大军事强国的青睐。 2跳频通信的基本概念 2.1定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。

2.2同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3跳频通信的主要特点 3.1抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。 另外,跳频频率受伪随机码控制而不断跳变,在每一个频率 的驻留时间内,所占信道的带宽是很窄的。由于频率跳变的速率非常快,因而从宏观上看,跳频系统又是个宽带系统,即扩展了频谱。事实上,跳频的带宽就是频率的数目与每个频率所占信道带宽的乘积。由扩频通信理论可知,扩展频谱的好处可以换取更好的信噪比。也就是说,如果扩展了频带,

蓝牙跳频算法.

蓝牙跳频算法 1. 引言 “蓝牙”,英文名称为“Bluetooth”,是一种开放性短距离无线通信技术标准。其宗旨是提供一种短距离、低成本的无线传输应用技术。它同IEEE802.11b一样,使用2.4GHz ISM(即:工业、科学、医学)频段。跳频是蓝牙的关键技术,对应于单时隙分组,蓝牙的跳频速率为1600跳/秒;对应于多时隙分组,跳频速率有所降低;但在建立链接时则提高为3200跳/秒。以2.45GHz为中心频率,来得到79个1MHz带宽的信道。在发射带宽为1MHz时,其有效数据速率为721kbps。蓝牙跳频技术,是实现蓝牙扩谱的关键技术。由于2.4GHz ISM频段是对所有无线电系统都开放的频段,而蓝牙系统不是工作在该频段的第一个系统,大多数无线局域网、某些无绳电话以及某些军用或民用通信都在使用该频段,微波炉、高压钠灯的无线电波也在此频率范围之内,所以ISM频谱已变得相当拥挤而嘈杂,使用ISM频段的任何系统都会遇到干扰。蓝牙技术通过使用扩频的方式,使得系统所传输的信号工作在一个很宽的频带上,传统的窄带干扰只能影响到扩频信号的一小部分,这就使得信号不容易受到电磁噪声和其他干扰信号的影响,从而更加稳定。同时,蓝牙以跳频技术作为频率调制手段,如果在一个频道上遇到干扰,就可以迅速跳到可能没有干扰的另一个频道上工作;如果在一个频道传送的信号因受到干扰而出现了差错,就可以跳到另一个频道上重发,从而加强了信号的可靠性和安全性。 2. 蓝牙跳频算法 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多个频率频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中,跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率。 2.1 蓝牙跳频序列标准 蓝牙基带标准共定义了10种类型跳频序列,其中79跳系统和23跳系统各有5种类型(欧洲/美国使用的是79条系统,日本/法国/西班牙使用的是23跳系统)。呼叫(paging)跳频序列为32(16)个不同唤醒频率(不同的系统对应的频点数不同),均匀分布在79(23)MHz范围内,周期为32(16)。呼叫响应序列为32(16)个不同响应频率,与当前呼叫频率序列一一对应,主,从单元使用不同规则得到该序列。查询(inquire)跳频序列为32(16)个不同唤醒频率,均匀分

跳频扩频系统

跳频扩频系统 一、定义及原理 跳频扩频系统: 采用码序列控制信号的载波,使之在多个频率上跳变而产生扩频信号。接收端产生一个与信号载波频率变化相同移频信号,用它作变频参考,再把信号恢复到原来的频带。调频系统可随机选取的频率数通常是几百个或更多。 跳频系统的载频受一个伪随机码控制,不断地、随机地跳变,因此跳频系统可视作载频按照一定规律变化的多频频移键控(MFSK)。与直扩系统不同,跳频系统中的伪随机序列并不直接传输,而是用来选择信道。跳频系统主要由PN码产生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。频率跳变系统的发射机在一个预定的频率集中,由PN码序列控制频率合成器,使发射频率能随机地由一个跳到另一个。接收机中的频率合成器也按相同的顺序跳变,产生一个与发射频率只差一个中频的本振频率,经混频后得到固定的中频信号,该中频信号经放大后送到解调器,恢复传送的信息。此处,混频器实际上担当了解调器角色,只要收发双方同步,就可将频率跳变信号转换为一个固定频率的信号。 二、跳频系统的结构

三、跳频系统的波形 发送端的波形

接收端的波形 四、跳频系统的优点 跳频扩频技术的优点如下: (1)抗单频干扰,部分带宽干扰能力强 跳频系统的抗干扰原理和直扩系统不同,直扩是靠频谱的扩展和解扩处理来提高信噪比的;跳频是靠躲避干扰,来达到提高信噪比的。虽然不能像直扩系统那样,但由于载波频率是跳变的,减少了单频干扰和窄带干扰进入接收机的概率。故调频系统具有抗单频及部分带宽干扰的能力。当跳频的概率数目足够多、跳频的带宽足够宽时,其抗干扰能力是很强的。 (2)抗多径衰落的能力强 利用载波频率的快速跳变,具有频率分集的作用,从而增强了系统抗多径衰落的能力。 (3)便于实现多址通信 应用跳频通信可以很容易地组建一个多址网络,网络内的各

跳频和扩频通信

跳频通信和扩频通信 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。 2 跳频通信的基本概念 2.1 定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。 2.2 同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3 跳频通信的主要特点 3.1 抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。

nRF24L01点对点跳频技术应用

nRF24L01点对点跳频技术应用(转载) 分类:技术应用 关键字:nRF24L01;射频;无线通信;跳频 1 nRF24L01概述 nRF24.L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。 nRF24L01主要特性如下: GFSK调制: 硬件集成OSI链路层; 具有自动应答和自动再发射功能; 片内自动生成报头和CRC校验码; 数据传输率为l Mb/s或2Mb/s; SPI速率为0 Mb/s~10 Mb/s; 125个频道: 与其他nRF24系列射频器件相兼容; QFN20引脚4 mm×4 mm封装; 供电电压为1.9 V~3.6 V。 2 引脚功能及描述 nRF24L01的封装及引脚排列如图1所示。各引脚功能如下:

图(1) CE:使能发射或接收; CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01: IRQ:中断标志位; VDD:电源输入端; VSS:电源地: XC2,XC1:晶体振荡器引脚; VDD_PA:为功率放大器供电,输出为1.8 V; ANT1,ANT2:天线接口; IREF:参考电流输入。 3 工作模式 通过配置寄存器可将nRF241L01配置为发射、接收、空闲及掉电四种工作模式,如表1所示。

跳频图案的产生及跳频同步方法

1 跳频图案的产生 1.1 什么是跳频图案? 为了不让敌方知道我们通信使用的频率,需要经常改变载波频率,即“打一枪换一个地方”似地对载波频率进行跳变,跳频通信中载波频率改变的规律,叫作跳频图案。 通常我们希望频率跳变的规律不被敌方所识破,所以需要随机地改变以至无规律可循才好。但是若真的无规律可循的话,通信的双方(或友军)也将失去联系而不能建立通信。因此,常采用伪随机改变的跳频图案。 只有通信的双方才知道此跳频图案,而对敌方则是绝对的机密。所谓“伪随机”,就是“假”的随机,其实是有规律性可循的,但当敌方不知跳频图案时,就很难猜出其跳频的规律来。 图1-1所示为一个跳频图案。图中横轴为时间,纵轴为频率。这个时间与频率的平面叫作时频域。也可将这个时频域看作一个棋盘,横轴上的时间段与纵轴上的频率段构成了棋盘格子。阴影线代表所布棋子的方案,就是跳频图案;它表明什么时间采用什么频率进行通信,时间不同频率也不同。

图1-1 图1-1中所示为一跳频图案,它是在一个时间段内传送一个或多个比特信息。通常称此时间段叫跳频的驻留时间,称频率段为信道带宽。 在时频域这个“模盘”上的一种布子方案就是一个跳频图案。当通信收发双方的跳频图案完全一致时,就可以建立跳频通信了。图1-2所示就是建立跳频通信的示意图。

图1-2 其中t表示时间,s表示空间,f表示频率。当收、发双方在空间上相距一定距离时,只要时频域上的跳频图案完全相重合,就表示收、发双方同步跳频地进行通信。 1.2 跳频图案与跳频频率表 跳频图案是由跳频指令控制频率合成器所产生的频率序列。跳频系统中,跳频带宽和可供跳变的频率(频道)数目都是预先定好的。 比如说,跳频带宽为5MHz,跳频频率的数目是64个,频道间隔是25kHz。这样,在5MHz带宽内可供选用的频道数远大于64个,那么你怎样选择出64个频率来呢? 这就是所谓的跳频频率表。 根据电波传播条件、电磁环境条件以及敌方干扰的条件等因素来制定一张或几张具有64个频率的频率表,即f1,f2,…f64,另一

跳频通信技术的研究

跳频通信技术的研究 当今信息时代,如何有效的利用宝贵的频带资源,如何进行准确可靠的信息通信是通信领域中至关重要的问题。扩频通正是在这种背景下迅速发展起来的。从20世纪40年代起,人们就开始了对扩频技术的研究,其抗干扰、抗窃听、抗测向等方面的能力早已为人们所熟知。但由于扩频系统的设备复杂,对各方面的要求都很高,在当时的技术条件下,要制成适应军事和民用需要的扩频系统是不可能的,因而扩频技术发展缓慢。进入20世纪60年代后,随着科学技术的迅速发展,许多新型器件的出现,特别是大规模、超大规模集成电路、微处理器、数字信号处理(DSP)器件、扩频专用集成电路(ASIC)以及像声表面波(SAW)器件、电荷耦合器件(CCD)这样的新型器件的问世,使扩频技有了重大的突破和发展,许多新型系统相继问世,兵在实际的使用和实验中显示出了它们的优越性,使扩频通信成为未来通信的一种重要方式。并因此受到了人们极大的重视。扩展频谱系统主要包括以下几种扩频方式: (1)直接序列扩频(DS) (2)跳频(FH) (3)跳时(TH) (4)线性调频(Chirp) 本文中主要讲述对跳频通信的研究。本论文共分X章, 第一章扩频技术及其理论基础 1.1概论 扩展频谱系统具有很强的干扰性,其多址能力、保密、抗多径等功能也倍受人们的关注,被广泛地应用于军事通信和民用通信中。 扩展频谱系统是指发送的信息被展宽到一个很宽的频带上,这一频带比要发送的信息的带宽宽得多,在接收端通过相关接收,将信号恢复到信息带宽的一种系统,简称为扩频系统或SS(Spread Spectrum)系统。

1.2 扩频通信的理论基础 扩频通信技术是把要发送的信号扩展到一个很宽的频带上,然后再发送出去,系统的射频带宽比原始信号的带宽宽得多。这样做,系统的复杂度比常规系统的复杂度要高得多,付出的代价是昂贵的,能得到什么好处呢?可以从著名的香农定理来看。 香农定理指出:在高斯白噪声干扰条件下,通信系统的极限传播速率(或称信道容量)为 C=B lb(1+S/N)b/s (1-1)式中:B为信号带宽,S为信号平均功率,N为噪声功率。若白噪声的功率谱密度可为,噪声功率N= B,则信道容量C可表示为 (1-2) 由上式看出,B、、S确定后,信道容量C就确定了。由香农第二定理知,若信源的信息速率R小于或等于信道容量C,通过编码,信源的信息能以任意小的差错概率通过信道传输。为使信源产生的信息以尽可能高的信息速率通过信道,提高信道容量是人们所期望的。 由香农公式可以看出: (1)要增加系统的信息传输速率,则要求增加信道容量。增加信道容量的方法可以通过增加传输信号带宽B,或增加信噪比S/N来实现。由式(1-1)可知,B与C成正比,而C与S/N呈对数关系,因此,增加B比增加S/N 更有效。 (2)信道容量C为常数时,带宽B与信噪比S/N可以互换,即可以通过增加带宽B来降低系统对信噪比S/N的要求;也可以通过增加信号功率,降低信号的带宽,这就为那些要求小的信号带宽的系统或对信号功率要求严格的系统找到了一个减小带宽或降低功率的有效途径。 (3)当B增加到一定程度后,信道容量C不可能无限地增加。由式(1-1)可知,信道容量与信号带宽成正比,增加B,势必会增加C,但当B增加到一定程度后,C增加缓慢。由式(1-2)知,随着B的增加,由于噪声功率N= B,因而N也要增加,从而信噪比S/N要下降,影响到C的增加。1-2扩频系统的物理模型

跳频同步技术及其干扰措施

跳频通信同步技术及其干扰措施 摘要:跳频通信是短波通信抗干扰技术中应用最广泛、最为有效的技术,它的特点决定了它具有较强的抗干扰能力。本文论述了通信对抗中跳频技术的原理、特点、关键技术及其发展方向等,并就如何对跳频通信实施干扰进行了初步探讨。 一、跳频通信技术原理 跳频就是用伪码序列构成跳频指令来控制频率合成器,并在多个频率中进行选择的移频键控。所传递的信息码与伪随机序列模二相加(或波形相乘)构成跳频指令(即跳频图案),并由它随机选择发送频率。发送端的信息码序列与伪随机序列经过调制后,按不同的跳频图案控制频率的合成。在接收端,接收到的信号与干扰经高放滤波后送至混频器。接收机的本振信号也是一频率跳变信号,跳变规律是相同的,两个合成器产生的频率相对应,但对应的频率有一频差,正好为接收机的中频。只要收发方的伪随机码同步,就可使收发双方的跳频源一频率合成器产生的跳变频率同步,经混频后,就可得到一个不变的中频信号,然后对此信号进行解调,就可恢复出发送的信息。而对干扰信号而言,由于不知道跳频频率的变化规律,与本地的频率合成器产生的频率不相关,因此,不能进入混频器后面的中频通道,不能对跳频系统形成干扰,这样就达到了抗干扰的目的。其工作原理框图如1所示: 图1 跳频通信系统框图

与定频通信相比,跳频通信比较隐蔽也难以被截获,只要对方不清楚载频跳变的规律,就很难截获对方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其它未被干扰的频点上进行正常的通信。通信双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变,这种跳频方式称为常规跳频。随着现代战争中的电子对抗越演越烈!在常规跳频的基础上又提出了自适应跳频,它增加了频率自适应控制和功率自适应控制两方面。 二、跳频通信的抗干扰性能分析 跳频之抗干扰如同游击战中“打一枪换一个地方”的战术,携带信息的载频不断变化,使敌方的侦察和干扰跟不上通信载频的变化,从而无法施放干扰。所以,跳频性能好坏取决于频率点变化的多少(频率点越多,意味着信号带宽越宽)和频率点变化的快慢,即跳频速率(简称跳速)。跳频带宽越宽,跳速越高,则侦察和干扰越困难。跳频电台的抗干扰性能一般可以用处理增益来描述。跳频处理增益: G N =(1) ( ) lg 10dB F FH 式中 N为跳频信道数。 F 处理增益的物理意义是敌方采用宽带干扰方式干扰跳频电台时所需的功率,较之干扰一个窄带定频电台所需的功率大出的倍数。但是一旦跳频电台被对方的跟踪式干扰机所跟踪,则跳频处理增益不再能说明抗干扰能力。更有实际意义的 10-时,同步概率为95% (又是在干扰环境下的通信能力,例如当同步误码率在1 例如当跳频频率有30%受到干扰时,仍能保持话音通信,但话音质量有所下降。 三、跳频通信关键技术 3.1频率合成技术 频率合成技术是跳频系统的心脏,跳频系统的快慢决定于频率合成器换频时间的快慢,跳变频率的总数和跳频速率决定了系统的整体性能。频率合成器的频率偏差度则决定了跳频通信系统稳定工作的时间。因此,频率合成技术是跳频通信的关键点之一。 3.2跳频图案 跳频图案是通信双方频率跳变的规则,是通信双方事先约定和预置的相关频

GSM网络跳频原理介绍

题目:跳频原理介绍 内容简介: 跳频技术的性能,跳频原理的介绍,比较基带跳频与综合 跳频的优缺点,基本原理适用于所有系统。 目录1.序 (3)

2. 跳频的性能 (3) 2.1 频率分集 (3) 2.2 干扰分集 (4) 2.3 结论 (5) 3.技术描述 (6) 3.1跳频的方式 (6) 3.1.1 基带跳频 (6) 3.1.2 综合跳频 (7) 3.2 系统配置 (8) 3.2.1基带跳频 (8) 3.2.2综合跳频(配置成两个频率组) (9) 3.2.3综合跳频(包括BCCH频点) (10) 3.3跳频法则 (10) 3.3.1循环跳频 (10) 3.3.2随机跳频 (10) 3.3.3正交跳频序列 (11) 3.4通用分组无线服务(GPRS) (11) 4.工程指引 (12) 4.1应用 (12) 4.1.1概述 (12) 4.1.2跳频增益 (12) 4.1.3跳频和用户感觉的语音质量 (13) 4.2参数························································错误!未定义书签。 4.3跳频对GSM系统掉话的影响 (14) 4.4不同跳频频点数对系统质量掉话的改善程度 (15) 4.4.1两个跳频频点情况 (15) 4.4.2三个跳频频点惰况 (16)

4.4.3四个及四个以上跳频频点 (17) 1.序 移动无线传播在遇到障碍时会遭受短期的幅度变化,这些变化称为瑞利衰落。不同频率的信号的衰落特性不同。随着频率差别的增大,衰落更加独立。 GSM中通过跳频(载波频率跳变)频率分集技术,保证了一个信息按几个频率发送,使包含码字一部分的所有突发脉冲不会被瑞利衰落以同一种方式破坏,从而提高了传播性能。 在通话过程中,当移动台移动到正在使用频点的瑞利衰落谷点(fading dip)或者频点受到干扰时,脉冲非常容易丢失。如果采用跳频技术,同一个位置对于下一个脉冲来说,该位置具有很好的接收特性。由于采用了GSM原理中的编码和交织技术使单一脉冲的丢失对语音质量的影响达到最小。在跳频系统中,每一个小区(cell)都预先分配了一个频率集。通话过程中移动台在每个TDMA帧都改变频率,也就是每秒217跳。 2. 跳频的性能 2.1 频率分集

基于matlab的跳频通信系统的仿真

摘要 跳频通信系统是一种典型扩展频谱通信系统,它在军事通信、移动通信、计算机无线数据传输和无线局域网等领域有着十分广泛的应用,已成为当前短波保密通信的一个重要发展方向。本文介绍了跳频通信系统的基本工作过程,从跳频系统的结构组成、工作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理,并对跳频通信系统的抗干扰技术及其性能进行了仿真研究和理论分析。本文从理论上分析了跳频通信系统的抗干扰性能,其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分,并以2FSK系统为例,给出了上述通信干扰样式下的误码率理论分析结果,并利用Matlab中的Simulink仿真系统实现跳频系统的仿真和分析,达到了预期的效果。 关键词:跳频系统; 扩频通信; Matlab; Simulink仿真

目录 第1章绪论 (1) 1.1 概述 (2) 1.2 跳频通信简介 (1) 1.2.1 跳频通信系统概述 (1) 1.2.2 跳频技术的应用背景和发展趋势 (2) 1.3 MATLAB简介 (3) 1.4 本文研究内容及章节安排 (3) 第2章跳频通信系统的基本原理 (4) 2.1 跳频通信系统的结构组成 (4) 2.1.1 跳频系统的发送部分 (4) 2.1.2 跳频系统的接收部分 (5) 2.2 跳频通信系统的性能指标 (6) 2.3 跳频通信系统的调制方式 (7) 2.4 频率合成器 (8) 2.5 跳频信号的解跳与解调 (8) 2.5.1 跳频信号的解跳 (8) 2.5.2 跳频信号的解调 (9) 第3章跳频通信系统仿真及性能分析 (10)

利用MATLAB实现跳频通信系统

利用MATLAB实现跳频通信系统 摘要:随着无线通信不断快速的发展,跳频调制技术越来越受到人们的重视。跳频通信是一种具有较强抗干扰能力的通信体制。其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,即通信中使用的载波频率受伪随机变化码的控制而随机跳变。跳频技术是一种具有高抗干扰性、高抗截获得能力的扩频技术。由于它的技术优势,跳频技术不仅在军事通信领域得到广泛的运用,在民用领域也有很好的表现。 本课题要求构建蓝牙跳频通信系统的各组成模块,包括信号传输,信号接收,谱分析和误码分析部分,了解和熟悉蓝牙跳频系统的特点,分析系统的运行及性能。主要研究方法是MATLAB软件进行蓝牙跳频通信系统的仿真,通过各组成模块的连接与封装,运行并分析结果。 关键词:蓝牙,跳频,MATLAB,无线通信

Realize Frequency Hopping Communication System Based on MATLAB Abstract:With the rapid development of the wireless communications, people pay more and more attention to frequency hopping modulation techniques. Frequency hopping communication is a strong anti-interference communication system. The working principle is a communication mode which refers to the carrier frequency that sends and receives the signal according to rule to do dispersant change, that is applying the carrier frequency used in communication by pseudo-random code control and random changes hopping. Frequency hopping technology is a spread spectrum with high anti-interference and resistance ability. Frequency hopping technology not only being widely used in military communication areas, but also in civilian areas due to its technique advantages. This paper is to make up composed modules for the Bluetooth frequency hopping communication system, which including signal transmission, signal reception, spectral analysis and error analysis, as well as to know and have a deep understanding of the characteristics of this system, and also including analyzing the performance and its performance. The main research method is using matlab to make the simulation of the Bluetooth frequency hopping communication systems, run and analysis results by the simulation of each of the modules connection and encapsulation. Keywords: Bluetooth, frequency hopping, MATLAB, wireless communication

差分跳频的解调窗口同步算法

差分跳频的解调窗口同步算法 差分跳频的解调窗口同步算法 摘要:差分跳频是一种数字通信系统,其频率跳变速度快,通信保密性好。接收机采用软件无线电的技术解调。解调窗口的同步是关键技术,是正确解调的前提。推导出同步算法的计算公式,给出相应的数据图表和流程图。该算法同步建立时间短,运算量小,并且可以实时调整,在仿真中取得成功。关键词:同步算法差分跳频软件无线电1差分跳频简介差分跳频系统工作于短波波段(2MHz~30MHz),频率跳变速度5000跳/s,最高数据传输速度为19.2kbps。5000跳/s的频率跳变使得频率不易被跟踪,通信保密性好。差分跳频不同于传统的模拟跳频,发射机采用DDS直接合成发送频率,接收机采用软件无线电方法解调。简单说明系统的工作方式,见图1频率转移图。系统待发数据为0110……。当第一个bit'0'到来时,频率点由f1转移到f2,该bit'0'用频率f2发送;当第二个bit'1'到来时,频率点由f2转移到f4,以此类推解调时,将接收信号采样的数字信号,对采样数据进行快速傅立叶变换(FFT)运算,识别当前的频率点,然后保护频率转移图和前一次的频率点解调原始数据。实际系统的参数如下:将2.56MHz~28.16MHz的频带等间隔划分为10个信道,每个信道以5kHz等间隔取256频率点。通信开始前,系统扫描10信道,动态决定一个特性最好的信

道用来通信,收发双方按协议从选定信道的256个频率点中取64作为工作频率,按存储在系统中的频率转移图进行通信。该系统支持三种数据传输速率:4.8kbps、9.6kbps和19.6kbps。 2同步策略差分跳频系统采用软件无线电的方法进行数据解调。软件无线电结构降低了系统硬件的复杂性,接收机不需要传统模拟跳频系统中的频率合成电路和硬件的同步电路。但没有硬件的同步电路后,采用何种软件算法快速实现同步成为关键技术之一。如图2所示,接收信号经过A/D采样变为数字信号,然后对一跳时间内(以下称为解调窗口)的采样数据进行FFT运算,识别当前的频率点,依据频率转移图和前一次的频率点解调原始数据。如果解调窗口不同步,则窗口内会出现两个频率点,无法判定该用哪个工作为解调频率点。因此必须将不同步的解调窗口滑动到同步位置,才能正确解调数据。笔者设计的同步方法简述如下:(1)随机选择初始窗口,对采样数据作FFT运算,识别可能出现的两个频率点f1和f2以及FFT 后的相应幅度P1和P2(在频域中频率点的能量与幅度的平方成正比,为简化以幅度代替能量计算)。(2)判断这两个频率点在时域波形上的顺序。(3)频率点f的幅度P(请注意,这里指FFT后的频域幅度)只与两个因素有关:采样前模拟信号的时域振幅和该频率点在解调窗口内点据的'时间长度。模拟信号的时域振幅可以在接收端采用自动增益控制保持常数值。那么,P只要频率点在解调窗口内点据时间长度(也就是该频率点

短波通信组网技术

短波通信组网技术

————————————————————————————————作者:————————————————————————————————日期: 2

短波通信组网技术 摘要:短波通信是历史上最为悠久的通信手段之一,短波是人类最早开发利用的无线电频段。与卫星通信、地面微波通信相比,短波通信的建设和维护费用很低,建设周期短,设备简单、体积小、易于隐蔽,电路调度容易,临时组网方便、迅速,具有很大的使用灵活性。本文分析了短波在电离层传播的模式,阐述了短波通信常用的调制技术,介绍了短波通信组网的信道类别和相关组网技术。 关键词:短波通信;电离层;组网;信道;技术 1 短波通信概述 短波是指波长在100m~10m之间(频率为3MHz~30MHz)的电磁波。短波通信是利用无线电电磁波短波,传播电话、电报、传真及低速数据等信息。短波通信不需要建立中继站即可实现远距离通信,便于改变工作频率躲避干扰和窃听,破坏后易恢复。但短波通信也有一些不足之处,可供使用的频段窄,通信容量小,信号传输的稳定性差,抗干扰能力差。 2 短波电离层的传播模式 短波通信中的天波传播,是靠电离层反射的。电离层由围绕地球的处于不同高度的3个导电层组成的,这3个导电层分别称为D层、E层、F层。 短波在电离层的传播,其传输模式有单跳、多跳。依靠单电离层或多电离层反射构成电磁波传输路径。当通信距离>2500km时,往往采用多跳,以获得较大的仰角。如利用F2反射一次,称为1F2传输模式。

3 短波通信常用的调制、解调技术 调制的目的就是要利用频带,高频无线传输,将消息变换为便于传送的形式,提高短波通信的抗干扰性能,使其能够频分复用。短波通信常用的调制、解调技术有调幅AM、单边带SSB、频率调制FM。常用调制技术如下表: 调制方式用途 连续波调制线性调制常规双边带调幅 广播 AM 立体声广播 抑制载波双边带 调幅DSB 单边带调幅SSB 载波通信、无线电 台、数传 残留边带调幅VSB 电视广播、数传、 传真 非线性调制频率调制FM 广播、微波中继、 卫星通信 相位调制PM 中间调制方式 数字调制幅度键控ASK 数据传输 频率键控FSK 数据传输

关于跳频同步的研究

关于跳频同步的研究 1.引言 跳频是用于展频信号传输中的两种基本调制技术中的一种,展频调制技术在近几年越来越普及,它是一种码控载频跳变的通信方式,其独特的抗干扰性能使其在军事和民用领域都得到了越来越广泛的应用。而无线自组织网络是一种移动通信和计算机网络相结合的网络,整个网络没有固定的基础设施,节点之间通过多跳的无线链路相连接,具有自组织、自修复、自配置、自管理等特点,可以广泛应用于国防战备、抢险救灾、应对突发事件等环境,并在下一代网络中占有重要地位。 跳频方式可提高网络的抗干扰能力,自组织网络技术则可提高网络的灵活性和抗毁性,因此,这种军事网络具有在移动中通信的特点,而且建网时间短、能够极大地提升通信的可靠性、抗干扰性和网络的健壮性,它在无线电传输过程中反复转换频率,通常能将电子对抗,即未经授权的对无线电通讯的中途拦截或人为干扰的影响减少到最小。 由于跳频通信体制对节点的跳频同步有严格的要求,在较大程度上制约着无线自组网各节点间的灵活、自由地通信和自主地组网需求,使得采用跳频体制构建高性能的自组织网络存在较大的困难。跳频体制下严格同步的节点通信方式制约着Ad Hoc 网络的通信能力和路由中继能力,使得多跳节点的自组织网络变化灵活的节点间链路构建、自适应动态拓扑结构与动态路由、灵活自适应组网的优势难以发挥,很多问题需要研究解决。 2.跳频同步 要实现跳频通信,关键在于跳频系统的同步。跳频同步是跳频自组网的关键技术, 是网络通信的基础。它是通过调整网络中各节点的时钟并使其一致来达到全网同步的。如果网络中各节点的时钟不一致, 那么通信双方的可靠性、连续性、完整性就无法保障。 跳频系统通过跳频图案进行同步,也就是频率的同步,而时间信息TOD是用来实现收发双方的精同步。通过对TOD信息完整的接收,采用TOD与跳频频率之间的映射关系来实现跳频图案的同步。同步包括捕获与跟踪两部分。由搜索状态进入捕获状态是同步的第一步,即完成了收发双方的跳频图案在频率上的同步,同时还需要进一步调整本地跳频图案与发射方图案的相位差,使收发双方的跳频图案在时间上同步,所以TOD是一个时间变量,随着时间的变化而变化,它是由电台内的高精度时钟提供的。由于各电台的内部时钟独立,加上时钟的累积误差,所以各电台的TOD有差别。如果能使收发双方的TOD保持完全一致,就可使跳频图案同步,跳频同步就归结为TOD的同步。 跳频时钟同步技术是跳频自组网的一种常用机制, 现已成为跳频组网中不可或缺的技术手段,同步方式主要有主从式同步技术、分布式同步技术、以及多种同步技术的结合。 主从同步方式是在网络内规定一个主节点时钟作为基准, 其它节点无作为从节点来接收主节点的定时基准, 从而把从节点时钟锁定到主节点基准时钟上, 使从节点时钟与主节点基准时钟达到相同的频率精度, 最终实现定时同步而分布式同步技术的基本思想是通过网络中相邻节点之间的时间基准的相互交换和相互控制来实现整个网络节点的同步。分布式同步又叫互同步。在互同步过程一开始, 通常认为全网都不同步, 然后所有的节点都按照事先规定好的准则依次发送同步时标, 并不断监控信道。接着需要设定一个监控周期, 系统将在一个监控周期内使每一个节点都测量所有可探测到的同步时标的功率和相对延迟。通过这个值来提前或推迟下一个周期的同步时标传输时间。分布式同步技术凭借它的组网速度快、抗毁性强、适于节点的快速移动等特点已经逐渐成为国内外研究的热点。可见分布式同步更加有效,不需要依赖于主节点,可以节点之间进行同步信息交换来同步,目前的802.11TSF算法的思想是利用时间采样的方法来把时间信息扩散及全网,时间采样指的是通过在beacon帧的时间戳字段设置当前节点时钟时间的方法,这个时间会扩散及全网以达到同步效果。 3. 现存算法 存在的问题IEEE802.11最先提出TSF算法,奠定了后继算法的基础,并定义了802.11的标准跳频同步算法主要是解决全局时间不同步的问题,一个无线自组织网络中最快时钟与最慢时钟的差称之为最大时钟偏差,把这个偏差以尽可能的并且尽快地缩小是衡量一个时钟同步算法好快的至关重

相关文档
最新文档