差分跳频技术综述

差分跳频技术综述
差分跳频技术综述

差分跳频技术综述

摘要:差分跳频是一种新型扩频通信技术,它集跳频图案、信息调制与解调等功能于一体,构成与传统跳频技术完全不同的技术体制。文章介绍了差分跳频的基本原理及特点,并在此基础上对差分跳频系统的抗干扰能力进行了分析,最后说明该技术的优势及其仍需解决的问题。

关键词:扩频通信 差分跳频(DFH ) 跳频图案 抗干扰

一、引言

通常大家所遇到的无线通信系统都是载波频率固定的通信系统,这种定频通信系统一旦受到干扰,通信质量就会严重下降,甚至可以中断通信。在敌我双方的通信对抗中,敌方企图发现我方通信频率以截获我方消息,或是对其实施干扰时,固定频率的通信系统就会显示其严重的弊端,容易暴露目标或被截获,这时采用跳频通信就比较隐蔽,难以被截获,因为采用跳频技术,它的载波频率会不停的跳变,即使被敌方发现,当其实施干扰时,我方频率早已跳变,敌方就很难实施干扰或截获我方消息内容。

差分跳频技术是一种新型的跳频技术,其频率跳变速度快,通信保密性好,抗跟踪干扰和克服多径衰落的能力强。自从1995年2月美国的Signal 杂志报道了美国Sanders 公司成功研制一种相关跳频增强型扩谱电台(Correlated Hopping Enhanced Spread Spectrum)简称CHESS 电台以来,CHESS 技术在国内受到广泛关注。CHESS 电台采用了多项先进技术,其中差分跳频(differential~equency hopping ,DFH)是CHESS 电台的核心技术,是实现高速跳频的关键,该技术体制和原理与常规跳频完全不同,对于未来短波通信抗干扰体制的研究具有重要的意义。

二、差分跳频技术的基本原理

1、基本原理

差分跳频(DFH )是一种全新的跳频技术,与传统方式不同的是,差分跳频系统当前时刻频率n f 的生成由上一跳的频率值1n f 和当前数据符号n X 决定,因

此实质上是一种相关跳频,即数据流与相邻或多跳频率之间具有了某种相关性,并且利用其相关性携带了待发送的数据信息,收端也可根据其相关性还原数据信息。此外,由于发送信息的不确定性,因此DFH 系统的跳频图案完全没有规律,收端无法知道每个时刻发端的频率值,只能在工作带宽内进行宽带数字化接收,也就是说不可能实现收发跳频图案同步。以上特点使得DFH 系统的设计与传统跳频电台有很大差异,因此其核心技术及着眼点亦有诸多不同。

在发送端,当前时刻的频率值n f 由上一跳的频率值1n f -和当前时刻的数据符

号Xn 共同决定,可用一个隐式差分方程表式为 ()1,n n n f G f X -=,式中G(·)表示一种函数变换关系,简称G 函数,由它决定差分跳频的数据(频率)映射关系。由此可见,相邻跳变频率之间通过数据序列建立了一定的相关性,亦即相邻频率的相关性携带了待发送的数据信息,所以也将这种跳频称之为相关跳频。

在接收端,通过数字化宽带接收,经FFT 分析跳频带宽内的所有信号 特征,确定1n f -和n f ,由G 函数的逆变换即可恢复出发送端的数据信息,即

()

11,n n n X G f f --=,式中()1G -?表示G 函数的逆变换,即要求G 函数必须具有可

逆性。 2、G 函数的基本特点

从以上差分跳频原理可知,G 函数是DFH 的核心技术,由它决定DFH 的算法,即数据和频率之间的映射关系,这种跳频体制和传统短波跳频体制相比发生了根本的变化,是一个全新的概念,具有许多特点:

(1)G 函数具备可逆性,其逆变换即为跳频的解跳过程

(2)G 函数及其逆函数具备数据信息的调制解调功能。差分跳频不需要传统定频或跳频体制中的基带和中频调制,发端经G 函数变换,实现数据与频率之间的“数一频”编码,收端先对接收到的直接携带信息的射频频率进行有效检测,再经过G 函数的逆变换恢复出数据信息。

(3)G 函数具备了产生跳频图案的功能。差分跳频体制不需要设置专门的跳频图案产生器,而在跳频控制和数传过程中经G 函数变换后,自动产生了跳频图案,跳频图案直接受发端数据流和G 函数的控制。由于数据流是无法控制的,要提高差分跳频图案的性能,需要对G 函数算法进行深入研究。

(4)由G函数生成的跳频图案尽可能以相同的概率使用各个频点,以保证跳频图案的一维均匀性。

(5)由G 函数生成的跳频图案不存在原始密钥(如与TOD等信息无关),数据流即相当于跳频密钥,是一种典型的实时变化的流运密钥。

三、差分跳频图案的几点初步结论

1、时间相邻的频率相同的概率为零

无论每跳携带几比特信息,差分跳频图案从当前频率向下一个频率转移时,必将选择另一个频率子集中的一个频率,不会转移到相同的频率上,即不会出现相邻频率相同的情况,这是差分跳频图案产生的机理决定的,在传统跳频图案中不能保证这一点。

2、跳频图案与起始频率和数据有关

在G函数变换关系确定的条件下,差分跳频图案不仅与发端数据流有关,还与最初的起始频率有关。必须确保起始频率的一次性相关同步,即收端必须获得起始频率的信息,否则收端不能正确恢复发端数据信息。因此,起始频率信息获取不能出现错误。

3、跳频图案没有实时时间参与运算

在传统跳频图案产生过程中,除了跳频时序控制以外,原始跳频密钥Pk和时间参数TOD参与跳频图案运算。而在差分跳频图案产生过程中,数据流参与跳频图案的运算,相当于跳频密钥,与实时时间TOD无关。数据流对于跳频通信的接收端是未知的。

4、跳频图案一维、二维及随机性能

跳频图案表现出随时间频率递增的关系,导致普通差分跳频图案的一维均匀性(每个频率平均出现的概率)较好。而二维连续性(某一频率出现后紧接着出现某一特定频率的概率)和随机性(由当前频率预知下一个频率的概率)较差。

四、差分跳频技术的抗干扰性能

1、抗跟踪干扰能力

短波差分跳频形成了抗跟踪干扰的绝对优势,一是由于短波差分跳频实现了高跳速,远远大于干扰机的跟踪跳速;二是由于完全随机的数据流控制跳频图案,且跳频图案不重复,使得干扰方难以预测跳频路径。

2、抗阻塞干扰能力

在传统跳频体制中,干扰频率与跳频频率不同时,不会形成干扰,在其频率驻留时间小于多径时延时,本跳信号只有极小的概率落到后续相同的频率上形成干扰。因此在常规跳频中是同频干扰形成威胁,而在差分跳频中主要是异频干扰形成威胁,对于同频干扰,只在干扰频率与有用频率的相位相反、造成信号幅度减弱时,才形成干扰威胁。差分跳频可以依靠较大的跳频带宽,相应地提高抗阻塞干扰能力,但干扰频率数和跳频频率数的比例关系和常规跳频没有什么本质的区别。

3、抗多径干扰能力

一般情况,频率驻留时间短有利于提高抗多径干扰的能力。在差分跳频体制中,尽管频率驻留时间远远小于多径时延,本跳信号不会经多径后落人到本跳内,但过小的驻留时间使得本跳信号经多径传输后以较大的概率落人到后续跳中。由于差分跳频接收端对信息的恢复是基于正确的频率检测,当本跳频率与后续跳的频率不相同时,就会造成频率检测的误判,即形成干扰。所以,差分跳频体制本身并不能完全解决抗多径干扰问题,其机理也不同于常规跳频需要采取进一步的技术措施。

实际上,差分跳频体制提高抗阻塞干扰能力与提高抗多径干扰能力是一致的,其本质都是提高抗异频干扰能力。

五、结束语

差分跳频技术集跳频图案、信息调制与解调于一体,是一个全新概念的通信技术,其技术体制和原理与常规跳频完全不同,具有数字化程度高、极易实现高跳速和高数据率、抗跟踪干扰能力强、跳频图案的一维均匀性好、跳频图案不重复以及流动密钥特性等优点,但存在跳频图案的二维连续性和随机性较差、宽带频率选择困难、误码传播以及组网困难等问题,尽管该技术目前还不太成熟,离实际应用还有一段距离,但它代表了新一代短波通信技术的重要发展方向,对于未来短波通信抗干扰体制的研究具有重要的意义,由于我国对该体制和技术的研究还处于初始阶段,对系统及体制的有些问题认识还不够深入或不尽一致,因此有必要对其进行深入研究和必要的总结,理清一些概念,正确认识这一新技术。参考文献:

[1]Mills Diane G,Edelson Geoffrey S,Egnor Dianne E.A multiple access differential

frequency hopping system[A].IEEE MILCOM 2003[C],2003:1184-1189.

[2]D L Herrick,P K Lee.Correlated Frequency Hopping:An Improved Approach to HF Spread Spectrum Communications[A].Proceedings of the 1996 Tactical Communications Conference[C].1996.

[3]汲万峰,夏惠诚,朱永松。短波差分跳频系统抗干扰性能分析,现代防御技术2006.12

[4]田玉良,姚英。差分跳频技术分析,现代电子技术,2006,(19)

[4] 潘武.相关跳频通信系统的性能分析[J].现代军事通信,1999,(3):19—24.

[5]刘忠英,姚富强.短波CHESS电台跳频性能分析[J].解放军理工大学学报(自然科学版),2000,(5)

[7]曾兴雯,刘乃安,孙献璞。扩展频谱通信及其多址技术。西安:西安电子科技大学出版社,2004

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

基本差分进化算法

基本差分进化算法 基本模拟退火算法概述 DE 算法是一种基于群体进化的算法,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。由于DE 算法操作简单,寻优能力强,自提出以来引起了国内外学者的高度关注,目前已在电力系统优化调度、配网重构等领域得到了应用。 1、算法原理 DE 算法首先在N 维可行解空间随机生成初始种群P 0001[,,]N =X x x L ,其中000T 1[,,]i i iN x x =x L ,p N 为DE 种群规模。DE 算法的核心思想在于采取变异和交叉操 作生成试验种群,然后对试验种群进行适应度评估,再通过贪婪思想的选择机制,将原种群和试验种群进行一对一比较,择优进入下一代。 基本DE 算法主要包括变异、交叉和选择三个操作。首先,在种群中随机选取三个个体,进行变异操作: 1123()t t t t i r r r F +=+-v x x x 其中1t i +v 表示变异后得到的种群,t 表示种群代数,F 为缩放因子,一般取(0,2],它的大小可以决定种群分布情况,使种群在全局范围内进行搜索;1t r x 、2t r x 、3t r x 为从种群中随机抽取的三个不同的个体。 然后,将变异种群和原种群进行交叉操作: 1,R 1 ,,R () or () () and ()t i j t i j t i j v rand j C j randn i u x rand j C j randn i ++?≤=?=?>≠?? 其中t 1,i j u +表示交叉后得到的种群,()rand j 为[0,1]之间的随机数,j 表示个体的第j 个分量,R C 为交叉概率,()randn i 为[1,,]N L 之间的随机量,用于保证新个体至少有一维分量由变异个体贡献。 最后,DE 算法通过贪婪选择模式,从原种群和试验种群中选择适应度更高的个体进入下一代: 11t 11 ()() ()()t t t i i i i t t t i i i f f f f ++++?<=?≥?u u x x x u x 1()t i f +u 、()t i f x 分别为1t i +u 和t i x 的适应度。当试验个体1t i +u 的适应度优于t i x 时,

进化计算综述

进化计算综述 1.什么是进化计算 在计算机科学领域,进化计算(Evolutionary Computation)是人工智能(Artificial Intelligence),进一步说是智能计算(Computational Intelligence)中涉及到组合优化问题的一个子域。其算法是受生物进化过程中“优胜劣汰”的自然选择机制和遗传信息的传递规律的影响,通过程序迭代模拟这一过程,把要解决的问题看作环境,在一些可能的解组成的种群中,通过自然演化寻求最优解。 2.进化计算的起源 运用达尔文理论解决问题的思想起源于20世纪50年代。 20世纪60年代,这一想法在三个地方分别被发展起来。美国的Lawrence J. Fogel提出了进化编程(Evolutionary programming),而来自美国Michigan 大学的John Henry Holland则借鉴了达尔文的生物进化论和孟德尔的遗传定律的基本思想,并将其进行提取、简化与抽象提出了遗传算法(Genetic algorithms)。在德国,Ingo Rechenberg 和Hans-Paul Schwefel提出了进化策略(Evolution strategies)。 这些理论大约独自发展了15年。在80年代之前,并没有引起人们太大的关注,因为它本身还不够成熟,而且受到了当时计算机容量小、运算速度慢的限制,并没有发展出实际的应用成果。

到了20世纪90年代初,遗传编程(Genetic programming)这一分支也被提出,进化计算作为一个学科开始正式出现。四个分支交流频繁,取长补短,并融合出了新的进化算法,促进了进化计算的巨大发展。 Nils Aall Barricelli在20世纪六十年代开始进行用进化算法和人工生命模拟进化的工作。Alex Fraser发表的一系列关于模拟人工选择的论文大大发展了这一工作。 [1]Ingo Rechenberg在上世纪60 年代和70 年代初用进化策略来解决复杂的工程问题的工作使人工进化成为广泛认可的优化方法。[2]特别是John Holland的作品让遗传算法变得流行起来。[3]随着学术研究兴趣的增长,计算机能力的急剧增加使包括自动演化的计算机程序等实际的应用程序成为现实。[4]比起人类设计的软件,进化算法可以更有效地解决多维的问题,优化系统的设计。[5] 3.进化计算的分支 进化计算的主要分支有:遗传算法GA ,遗传编程GP、进化策略ES、进化编程EP。下面将对这4个分支依次做简要的介绍。 1遗传算法(Genetic Algorithms): 遗传算法是一类通过模拟生物界自然选择和自然遗传机制的随机化搜索算法,由美国John HenryHoland教授于1975年在他的专著《Adaptation in Natural and Artificial Systems》中首次提出。[6]它是利用某种编码技术作用于称为染色体的二进制数串,其基本思想是模拟由这些串组成的种群的进化过程,通过有组织地然而是随机地信息交换来重新组合那些适应性好的串。遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染

差分跳频的解调窗口同步算法

差分跳频的解调窗口同步算法 差分跳频的解调窗口同步算法 摘要:差分跳频是一种数字通信系统,其频率跳变速度快,通信保密性好。接收机采用软件无线电的技术解调。解调窗口的同步是关键技术,是正确解调的前提。推导出同步算法的计算公式,给出相应的数据图表和流程图。该算法同步建立时间短,运算量小,并且可以实时调整,在仿真中取得成功。关键词:同步算法差分跳频软件无线电1差分跳频简介差分跳频系统工作于短波波段(2MHz~30MHz),频率跳变速度5000跳/s,最高数据传输速度为19.2kbps。5000跳/s的频率跳变使得频率不易被跟踪,通信保密性好。差分跳频不同于传统的模拟跳频,发射机采用DDS直接合成发送频率,接收机采用软件无线电方法解调。简单说明系统的工作方式,见图1频率转移图。系统待发数据为0110……。当第一个bit'0'到来时,频率点由f1转移到f2,该bit'0'用频率f2发送;当第二个bit'1'到来时,频率点由f2转移到f4,以此类推解调时,将接收信号采样的数字信号,对采样数据进行快速傅立叶变换(FFT)运算,识别当前的频率点,然后保护频率转移图和前一次的频率点解调原始数据。实际系统的参数如下:将2.56MHz~28.16MHz的频带等间隔划分为10个信道,每个信道以5kHz等间隔取256频率点。通信开始前,系统扫描10信道,动态决定一个特性最好的信

道用来通信,收发双方按协议从选定信道的256个频率点中取64作为工作频率,按存储在系统中的频率转移图进行通信。该系统支持三种数据传输速率:4.8kbps、9.6kbps和19.6kbps。 2同步策略差分跳频系统采用软件无线电的方法进行数据解调。软件无线电结构降低了系统硬件的复杂性,接收机不需要传统模拟跳频系统中的频率合成电路和硬件的同步电路。但没有硬件的同步电路后,采用何种软件算法快速实现同步成为关键技术之一。如图2所示,接收信号经过A/D采样变为数字信号,然后对一跳时间内(以下称为解调窗口)的采样数据进行FFT运算,识别当前的频率点,依据频率转移图和前一次的频率点解调原始数据。如果解调窗口不同步,则窗口内会出现两个频率点,无法判定该用哪个工作为解调频率点。因此必须将不同步的解调窗口滑动到同步位置,才能正确解调数据。笔者设计的同步方法简述如下:(1)随机选择初始窗口,对采样数据作FFT运算,识别可能出现的两个频率点f1和f2以及FFT 后的相应幅度P1和P2(在频域中频率点的能量与幅度的平方成正比,为简化以幅度代替能量计算)。(2)判断这两个频率点在时域波形上的顺序。(3)频率点f的幅度P(请注意,这里指FFT后的频域幅度)只与两个因素有关:采样前模拟信号的时域振幅和该频率点在解调窗口内点据的'时间长度。模拟信号的时域振幅可以在接收端采用自动增益控制保持常数值。那么,P只要频率点在解调窗口内点据时间长度(也就是该频率点

跳频扩频通信技术资料整理

3.1.3 自适应跳频adaptive frequency hopping 在WIA-PA超帧簇通信阶段的每个时隙,根据实际的信道状况更换通信信道。 3.1.20 跳频frequency hopping 收发信道切换方法,目的为抗干扰和减少信号衰落。 3.1.40 时隙跳频timeslot hopping 为了避免干扰和衰减,按照一定规律,在每个时隙改变收发频率。 AFH Adaptive Frequency Hopping 自适应跳频 AFS Adaptive Frequency Switch 自适应频率切换 FH Frequency Hopping 跳频 TH Timeslot Hopping 时隙跳频 WIA-PA 数据链路层支持基于时隙的跳频机制、重传机制、时分多路访问(TDMA)和载波侦听多路访问CSMA)混合信道访问机制,保证传输的可靠性和实时性。 --------------------------------------- 8.4.3 时隙通信

8.4.5 信道跳频 WIA-PA 支持跳频通信方式,跳频序列由网络管理者指定。 WIA-PA 支持以下3 种跳频机制:——自适应频率切换(AFS):在WIA-PA 超帧中,信标Beacon、CAP 和CFP 段在同一个超帧周期使用相同的信道,在不同的超帧周期根据信道状况切换信道。信道质量差时,即丢包率高于“PLRThreshold”时设备改变通信信道。参数“PLRThreshold”的容详见6.9.1.2.1;——自适应跳频(AFH):在WIA-PA 超帧的每个时隙,根据信道状况更换通信信道。信道状况通过重传次数进行评价。信道质量差时,如果发送端统计的重传次数达到了“ChannelThreshold”,则从可用信道“IntraChanel[ ]”中按顺序选择下一信道,同时在下一重传时隙利用主信道通知所在簇的接收端(通知过程详见图43)。如果接收端没有接收到信道切换通知,继续统计接收端的重传次数,达到“ChannelThreshold”时从可用信道“IntraChanel[ ] ”中按顺序选择下一信道在第(ChannelThreshold+2)个重传时隙进行通信。如果接收端接收到信道切换通知,则更换通信信道,且返回确认信息ACK。如果发送端没有收到确认信息ACK,则不更换信道,仍然采用主信道重传数据。如果发送端达到重传上限值“macMaxFrameRetries”,则丢弃当前包,且利用主信道发送下一个包。如果接收端在切换信道后仍然没有接收到发送端的包,则认为切换信道失败,返回主信道进行通信。如果发送端在达到重传上限值“macMaxFrameRetries”前与接收端在备选信道上通信成功,则发送端选用备选信道发送下一个包。非活动期的簇通信段采用AFH 跳频机制。

用于约束多目标优化问题的双群体差分进化算法

用于约束多目标优化问题的双群体差分进化算法 孟红云1 张小华2 刘三阳1 (1.西安电子科技大学 应用数学系,西安,710071; 2.西安电子科技大学 智能信息处理研究所,西安,710071) 摘 要:首先给出一种改进的差分进化算法,然后提出一种基于双群体搜索机制的求解约束多目标优化问题的差分进化算法.该算法同时使用两个群体,其中一个用于保存搜索过程中找到的可行解,另一个用于记录在搜索过程中得到的部分具有某些优良特性的不可行解,避免了构造罚函数和直接删除不可行解.此外,将本文算法、N SGA-Ⅱ和SPEA 的时间复杂度进行比较表明,NS GA-Ⅱ最优,本文算法与SPE A相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势. 关键字: 差分进化算法;约束优化问题;多目标优化问题; 中图分类号:TP18 1 引言 达尔文的自然选择机理和个体的学习能力推动进化算法的出现和发展,用进化算法求解优化问题已成为一个研究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结为求解一个带有约束条件的函数优化问题,因此研究基于进化算法求解约束优化问题是非常有必要的.不失一般性,以最小化问题为例,约束优化问题(Constrai ned Opti mizatio n Prob lem ,COP )可定义如下: )(COP ()()()()q j x h p i x g t s x f x f x f x F j i k R x n ,,1,0)( ,,1,0)( ..,,,)(min 21 ===≤=∈ (1) 其中)(x F 为目标函数,)(),(x h x g j i 称为约束条件,n n R x x x x ∈=),,,(21 称为n 维决策 向量.将满足所有约束条件的解空间S 称为(1)的可行域.特别的,当1=k 时,(1)为单目标优化问题;当1>k 时,(1)为多目标优化问题.)(x g i 为第i 个不等式约束,)(x h j 是第j 个等式约束.另一方面,对于等式约束0)(=x h j 可通过容许误差(也称容忍度)0>δ将它转化为两个不等式约束: ?????≤--≤-0 )(0)(δδx h x h j j (2) 故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果x 使得不等式约束0)(=x g i ,则称约束()x g i 在x 处是积极的.在搜索空间S 中,满足约束条件的决策变量x 称为可行解,否则称为不可行解. 定义1(全局最优解)() **2*1*,,,n x x x x =是COP 的全局最优解,是指S x ∈*且)(*x F 不劣于可行域内任意解y 所对应的目标函数)(y F ,表示为)( )(* y F x F . 对于单目标优化问题,)( )(*y F x F 等价为)()(*y F x F ≤,而对于多目标优化问题是指不存在y ,使得)(y F Pa re to 优于)(*x F . 目前,进化算法用于无约束优化问题的文献居多,与之比较,对约束优化问题的研究相对

社交网络数据隐私保护技术综述

社交网络数据隐私保护技术综述 孙悦 (三峡大学计算机与信息学院,湖北宜昌443000) 摘要:近年来,社交网络发展非常迅速,层出不穷的社交应用给用户带来了全方位的服务模式,人们在享受便利的同时也面临着数据泄露的风险。因此社交网络的数据隐私保护具有很大的研究意义。文章对社交网络隐私保护技术发展现状进行分类概括。 关键词:社交网络;隐私保护 中图分类号:TP393文献标识码:A文章编号:1673-1131(2019)01-0180-02 0引言 随着移动互联网的飞速发展,各种移动通讯应用和社交网络也日趋流行,社交已经不仅仅局限于以交友为目的的行为了,游戏社交,购物社交等社交形式的多样化也使社交数据爆发性增长,但是数据泄露的事故也比比皆是。国外最大的社交平台Facebook曾多次被曝信息泄露,今年十月,谷歌也因信息泄露事件宣布将收紧数据分析政策。如何对用户的社交信息中的敏感信息有效的保护起来还有很大的发展空间。本文针对不同的数据类型的隐私保护技术发展来进行分类总结。 社交网络数据的隐私保护是针对原始的网络数据进行一些人为操作,如增删或修改一部分,使攻击者无法获取用户的敏感信息,避免信息泄露。只有进行处理后的数据才能对外公布,当然在保护用户的敏感信息的同时使处理后的信息仍具有一定的可用性也是衡量数据匿名的一个重要因素。1关系型数据 目前针对关系型数据的隐私保护研究已经取得了很多成果。2002年Sweeney L[1]等人首次提出k-匿名模型。k-匿名的主要思想是使集合中每一个元素都有至少其他k-1个元素与之相似,这样精准地确定某一个元素的概率都小于1/k。但是k-匿名存在对敏感信息没有进行限制的缺陷,无法抵御同质攻击以及背景知识攻击。因此Machanavajjhala[2]等人提出l-多样性模型,针对敏感信息进行隐私保护,该模型使数据集匿名组中的元素每一个敏感属性值都有其他至少l-1个与之相似。从而使敏感信息泄露的概率小于1/l。随后Ninghui Li[3]等人针对相似性攻击提出了t-Closeness模型。 此外,针对关系型数据的隐私保护也常采用聚类的方法,将聚类和其他的匿名手段结合起来,使数据能够抵御不同类型的攻击。如基于聚类的k-匿名技术[4],基于聚类的l-多样性技术[5]。 2图结构数据 相比较关系型数据,图结构数据的隐私保护研究更有难度。因为关系型数据中的记录是独立存在的,相互之间没有联系,而对于图结构数据,不仅要考虑数据本身的语义信息,还要考虑用户之间的相关性和结构信息,其次很难对攻击者已知的辅助信息进行建模。因此,关系数据的匿名化技术不能直接套用在图数据的隐私保护方案中,研究人员针对此图结构设计了有效地保护手段。 2.1基于k-匿名的保护方案 k-匿名技术已被广泛应用于匿名化关系数据中,在图数据的隐私保护中很多研究者仍然引用k-匿名的技术思想将其拓展应用于图数据中。Zhou和Pei[6]提出k-近邻匿名,该方法将所有结点具有相似邻居结点(一跳邻居结点)提取出来编码并且分在同一组内,直到每个组至少有k个结点组成。然后将每个组匿名化使得同一组内的任何结点都有至少k-1个同构邻居结点,该方法能够有效地抵御邻域攻击。Liu和Terzi[7]针对度攻击提出了k-度匿名算法,使图中每个结点都有其他至少k-1个结点与其度数相同。该方法首先构造一个k-度匿名序列,根据该序列构建匿名图,然后将匿名图与原图进行匹配调整边,使图结构的数据可用性最大化。Zou[8]等人同时考虑到领域攻击、度攻击、子图攻击等多种攻击方式,为了能够同时抵御这些攻击,他们提出k-自同构,使得图中每个结点都有其他k-1个对称的结点,此外他们提出了图分割,块对齐和边缘复制三种技术手段用于实现k-自同构。随后Cheng[9]等人提出与之有些相似的k-同构,用于抵御结构攻击,k-同构是将一个图划分并匿名成k个不相交的子图,使得所有的子图都是同构的。Yuan[10]等人从语义和结构信息的角度分析研究,针对语义和结构上设计了不同的技术来实现图结构的k-匿名。 2.2差分隐私保护方案 为了解决大多数以匿名为基础的隐私保护模型由于均需特定的知识背景而不能对隐私保护的强度进行量化分析的局限性,Dwork[11]等人提出差分隐私模型,该模型是通过对数据添加随机噪声使数据失真,从而隐藏用户的敏感信息,使攻击者无法精准识别某一条记录。随后提高发布统计数据的可用 号质量的影响在可接受范围内。该模块经过测试验证后表明该种设计能够满足信号质量要求,满足系统对于数据处理和数据存储单元的使用要求。 参考文献: [1]Serial ATA International Organization.Serial ATA Re- vision2.0[S].USA,2005.08.[2]Krishma S K,Bhat M S.Minimization of via-induced signal reflection in on-chip high speed interconnect lines.Circuits, Sys-tems,and Signal Processing,2012,31(2):689. [3]Bockelman D E,Eisenstadt W https://www.360docs.net/doc/a32513850.html,bined Differential and Common-Mode Scattering Parameters:Theory and Simulation[J].IEEE Trans.Microwave Theory and Techni-ques,1995,43: 1530-1539. 180

跳频信号的侦察技术研究

跳频信号的侦察技术研究 跳频通信因其良好的抗干扰性、低截获概率及组网能力,在军事通信中得到了广泛的应用,也向通信侦察提出了严峻的挑战。开展对跳频信号侦察的研究,寻求截获、估计、分选跳频信号的方法,已成为当前通信侦察领域紧迫而艰巨的任务之一。论文研究了复杂电磁环境下跳频信号侦察的关键技术,主要包括跳频信号的检测、参数估计和信号分选三部分内容。首先,将各种时频表示应用于跳频信号的检测,仿真其性能,在时频聚焦性和抑制交叉项两项指标上定性和定量比较了各种时频表示的优劣,寻求综合性能较好的时频表示。建立了跳频信号的数学模型,给出了跳频信号各种参数的定义;重点研究了各种线性时频表示、二次时频分布、重排类时频分布、组合时频分布在跳频信号检测中的应用;利用信息熵,定量评价了各类时频分布的性能,并估算了几种典型时频分布的计算复杂度,给出了各类时频分布的综合评价。其次,针对单天线宽带数字接收系统,研究了复杂电磁环境下基于时频分析的跳频信号参数盲估计算法。针对跳频信号侦察,提出了“复合信息熵”的定量评估指标,该指标综合考虑电磁环境中的信号类型数、跳频信号数目、跳速和信道使用情况,由类型熵、密度熵和分布熵三部分组成;基于信道化门限和时频分析完成了去噪和信号预选;基于谱图对单个跳频信号的跳周期、跳时和载频进行了盲估计;基于组合时频分析(SP&SPWVD),对多个跳频信号的跳周期、跳时、载频和幅度参数进行了盲估计,并给出了各参数估计的仿真性能。再次,基于时频分析、空间谱估计,结合数字信道化、时频聚焦等技术对FH

信号、FH/DS信号进行空时频测向,实现了欠定条件下的高精度测向。根据传统的空时阵列模型,结合信号的时频分析,建立了空时频分布 的数学模型;分析了空时频测向能获得时频增益的原因,研究了增益 大小与哪些因素相关;利用空时频分析实现了多个跳频信号的DOA估计,提出了适合无“频率碰撞”情况下的线性空时频DOA估计算法; 虽然利用空时频技术能够实现欠定条件的多信号测向,但在N /M值较大情况因为信号之间的互扰较大使测向性能欠佳,故再结合数字信道 化技术,解决了N /M值较大情况信号之间互扰很大的问题,实现了多 个跳频信号的高精度测向;将空时频分析和宽带信号测向方法,实现 了欠定条件下多FH/DS信号的DOA高精度估计。最后对跳频信号分选技术进行了深入的研究,针对不同的应用场合提出了相应的分选算法。提出了一种适应于环境中仅存在异步组网电台的实时分选方法,该方 法计算量少,便于实时分选,适合应用于快速、高速跳频信号的侦察; 提出了一种类数目K值的估计和优选初始聚类中心的改进K-Means算法;初始聚类中心优选能使聚类迭代次数大为减少,并能避免聚类过 程中陷入局部最小,增强了聚类的鲁棒性;利用改进K-Means聚类算 法对HDW集合进行了聚类分选;针对高斯核参数σ的优选问题,提出 了粗搜索和精估计相结合的改进方法,在得到精确的σopt同时减少 了总搜索次数;利用密度分布图和领域半径、门限参数实现了KKM算 法中类数目K的估计和初始聚类中心的优选;利用基于高斯核函数的 K-Means对跳速和到达角均时变的跳频信号进行聚类分选,分选效果 良好。

跳频通信系统中同步技术研究

跳频通信系统中同步技术研究 作者:李娜 来源:《现代电子技术》2011年第01期 摘要:同步技术是跳频通信系统关键技术之一。针对跳频通信系统中同步的要求,采用同步字头与时间信息相结合的方法实现跳频同步。首先研究了跳频同步方法、同步信息格式和初始同步等问题,最后对同步性能进行了分析。结果表明,该跳频通信系统的同步时间短、捕获概率高、虚警概率低。 关键词:跳频通信;同步字头; 时间信息TOD; 同步方案;同步性能 中图分类号:TN914.41-34文献标识码:A 文章编号:1004-373X(2011)01-0095-02 Technology of Synchronization in Frequency-hopping Communication System LI Na (Beijing HAIGE SHENZHOU Communications Technology Co. Ltd., Guangzhou HAIGE Communications Group,Beijng 100070, China) Abstract: Synchronization is one of the key technologies of FH communication. The synchronization of frequency hopping is achieved by adopting synchronization head and time of day to meet the requirement of practical development of FH communication system. The method of frequency-hopping synchronization, the format of synchronization information and the capture of synchronization are studied, and the performance of synchronization is analyzed. The results show that the FH communication system has characteristics of short synchronization time, high capture probability and low false probability. Keywords: frequency-hopping communication; synchronization head; TOD; synchronization scheme; synchronization performance 0 引言 跳频通信是现代通信领域中一种有效的抗干扰通信手段,其独特的抗干扰性能使其在军事和民用领域都得到了越来越广泛的应用。由于定时时钟相对误差、传输信道的多普勒频移等因素,跳频通信系统存在时间和频率的不确定性,为保证正常工作,建立和实现准确的跳频同步是关键[1]。 1 跳频同步方法的研究

差分进化算法综述概况

差分进化算法(DE)[1]是Storn 和Price 在1995 年提出的一种基于种群差异的进化算法,DE是一种随机的并行搜索算法。差分进化计算和其他进化计算算法一样,都是基于群体智能理论的优化算法,利用群体内个体之间的合作与竞争产生的群体智能模式来指导优化搜索的进行。与其他进化计算不同的是,差分进化计算保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了进化操作的复杂性。差分进化计算特有的进化操作使得其具有较强的全局收敛能力和鲁棒性,非常适合求解一些复杂环境中的优化问题。 最初试图使用向量差进行向量种群的混洗,以此来解决切比雪夫多项式适应性问题。DE 通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质上是一种基于实数编码的具有保优思想的进化算法。该算法实现技术简单,在对各种测试问题的实验中表现优异,已经成为近年来进化算法研究中的热点之一。 差分进化算法基本原理 基本的差分进化算法是基于候选方案种群的算法,在整个搜索空间内进行方案的搜索,通过使用简单的数学公式对种群中的现有方案进行组合实现的。如果新的方案有所改进,则被接受,否则被丢弃,重复这一过程直到找到满意的方案。 设 f 是最小化适应度函数,适应度函数以实数向量的形式取一个候选方案作为参数,给出一个实数数值作为候选方案的输出适应值。其目的是在搜索空间的所有方案p 中找到m 使得f(m) ≤f(p)。最大化是找到一个m 使得f(m) ≥f(p)。 设X=(x1, x2,…, xn)∈?n是种群中一个个体,基本的差分进化算法如下所述: ?在搜索空间中随机地初始化所有的个体。 ?重复如下操作直到满足终止条件(最大迭代数或者找到满足适应值的个体) o 对于种群中的每个个体: ●随机地从种群中选择三个彼此不同的个体a,b 和c。 ●选择一个随机索引R ∈{1, ..., n},n 是被优化问题的维数。 ●通过对每个i ∈{1, ..., n}进行如下的迭代计算可能的新个体Y = [y1, ..., yn] 生成一 个随机数ri~U(0,1); ●如果(i=R)或者(ri3。差分进化算法作为一种新出现的优化算法在实际应用中表现出了优异的性能,被广泛应用到不同的领域,已经成为近年来优化算法的研究的热点之一。研究差分进化算法,探索提高差分进化算法性能的新方法,并将其应用到具体工程问题的解决中,具有重要的学术意义和应用价值。 差分进化计算的群体智能搜索策略分析 1 个体行为及个体之间信息交互方法分析 差分进化的个体表示方式与其他进化计算相同,是模拟生物进化中的关键因素,即生物的染色体和基因,构造每个解的形式,构成了算法的基础。一切的寻优操作都是在个体的基础上进行的,最优个体是搜寻到的最优的解。 差分进化的个体行为主要体现在差分变异算子和交叉算子上。

跳频信号 FPGA

于FPGA短波差分跳频信号发生器的设计 - 全文 来源:电子元器件应用作者:宋国伟张洪帅钱2011年08月13日 15:04 分享 订阅 [导读] 0 引言差分跳频(DFH)是一种新的短波跳频技术,它主要归结为一种G函数算法,这种G函数集跳频图案、信息调制与解调于一体。它的通信机理与常规跳频完 关键词:短波差分跳频信号发生器FPGA 0 引言 差分跳频(DFH)是一种新的短波跳频技术,它主要归结为一种G函数算法,这种G函数集跳频图案、信息调制与解调于一体。它的通信机理与常规跳频完全不同,较好的解决了数据速率和跟踪、干扰等问题,代表了当前短波通信的一个重要发展方向。鉴于此,在研究G 函数算法原理的基础之上,重点对短波差分跳频信号的发生器进行基于FPGA的整体优化设计,并在软件和硬件环境下进行仿真与实现,从而指导工程实践。 采用差分跳频技术不仅改变了短波电台由于信道带宽窄、空中信道时变多径特性而导致的低速率数据传输的局面,而且极大地提高了抗跟踪干扰的能力,代表了新一代短波通信技术的发展方向。考虑到使用FPGA器件进行数字系统设计,不仅可以简化设计过程,而且可以降低整个系统的体积和成本,增加系统的可靠性,本文对短波差分跳频信号的发生器进行基于FPGA的整体设计。 1 G函数算法原理 差分跳频系统的关键技术在于G函数的实现。差分跳频G函数的特点是利用跳频频率的相关性来携带待发送的数据信息,同时所产生的频率序列具有良好的随机性和均匀性。常规的G函数表达式为: 式(1)是利用前后跳频Fn,Fn-1之间的相关性来携带数据信息Dn,如图1所示。另一种G函数算法是由前一跳的频率、m序列和数据信息Dn来决定当前的频率值Fn,如图2所示,其数学表达式为:

差分进化算法-入门

基本差分进化算法 1基本差分进化算法的基本思想 DE 算法是一种基于实数编码的用于优化函数最小值的进化算法,是在求解有关切比雪夫多项式的问题时提出来的,是基于群体差异的进化计算方法。它的整体结构类似于遗传算法,一样都存在变异、交叉和选择操作,但是它又不同于遗传算法。与基本遗传算法的主要区别在于变异操作上,如: 1、传统的遗传算法采用二进制编码,而差分进化算法采用实数编码。 2、在遗传算法过两个父代个体的交叉产生两个子个体,而在差分进化算法过第两个或几个个体的差分矢量做扰动来产生新个体。 3、在传统的遗传算法中,子代个体以一定概率取代其父代个体,而在差分进化中新产生的个体只有当它比种群中的个体优良时才替换种群中的个体。 变异是DE 算法的主要操作,它是基于群体的差异向量来修正各个体的值,其基本原理是通过把种群中两个个体的向量差加权后,按一定的规划与第三个个体求和来产生新个体,然后将新个体与当代种群中某个预先决定的个体相比较,如果新个体的目标值优于与之相比较的个体的目标值,则在下一代中就用新个体取代,否则,旧个体仍保存下来。 差分进化算法其基本思想是:首先由父代个体间的变异操作构成变异个体;接着按一定的概率,父代个体与变异个体之间进行交叉操作,生成一试验个体;然后在父代个体与试验个体之间根据适应度的大小进行贪婪选择操作,保留较优者,实现种群的进化。 2 差分进化算法的基本操作 设当前进化代数为t ,群体规模为NP ,空间维数为D ,当前种群为 {}12(),, ,t t t NP X t x x x =,()12,, ,T t t t t i i i iD x x x x =为种群中的第i 个个体。在进化过程 中,对于每个个体t i x 依次进行下面三种操作。 2.1 变异操作 对于每个个体t i x 按下式产生变异个体12(,, ,)t t t t T i i i iD v v v v =,则 123() 1,2, ,D t t t t ij r j r j r j v x F x x j =+-= (1) 其中111112(,,,)t t t t T r r r r D x x x x =,222212(,,,)t t t t T r r r r D x x x x =和333312(,, ,)t t t t T r r r r D x x x x =是群 体中随机选择的三个个体,并且123r r r i ≠≠≠;1t r j x ,2t r j x 和3t r j x 分别为个体1r ,2r 和3r 的第j 维分量;F 为变异因子,一般取值于[0,2]。这样就得到了变异个体t i v 。

PINQ下K―means的差分隐私保护研究

PINQ下K―means的差分隐私保护研究 摘要:差分隐私保护是Dwork提出的基于数据失真技术的一种新的隐私保护模型,由于其克服了传统隐私保护需要背景知识假设和无法定量分析隐私保护水平的缺点,近年来迅速成为隐私保护领域研究热点。PINQ是最早实现差分隐私保护的交互型原型系统。介绍了差分隐私保护相关理论基础,分析了PINQ框架的实现机制。以PINQ中差分隐私保护下K-means聚类实现为例,研究了差分隐私在聚类中的应用。仿真实验表明,在不同的隐私预算下,实现的隐私保护级别也不同。 关键词:K-means;数据失真;差分隐私;PINQ DOIDOI:10.11907/rjdk.161175 中图分类号:TP309文献标识码:A文章编号:1672-7800(2016)006-0204-05 参考文献: [1]周水庚,李丰,陶宇飞,等.面向数据库应用的隐私保护研究综述[J]. 计算机学报,2009,32(5):847-861. [2]李杨,温雯,谢光强. 差分隐私保护研究综述[J].计算机应用研究,2012,29(9):3201-3205. [3]MCSHERRY F. Privacy integrated queries[C].In Proc. ACM SIGMOD International Conference on Management of Data,

2009. [4]MOHAN P,THAKURTA A,SHI E,et al. GUPT:privacy preserving data analysis made easy[C].Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. ACM,2012:349-360. [5]ROY I,SETTY S T V,KILZER A,et al. Airavat:security and privacy for mapreduce[J]. Usenix Org,2010:297-312. [6]DWORK C. A firm foundation for private data analysis[J]. Communications of the Acm,2011,54(1):86-95. [7]DWORK C,MCSHERRY F,NISSIM K,et al. Calibrating noise to sensitivity in private data analysis[M]. Theory of Cryptography,Springer Berlin Heidelberg,2006:265-284. [8]FRIEDMAN A,SCHUSTER A. Data mining with differential privacy[C].Acm Sigkdd International Conference on Knowledge Discovery & Data Mining,2010:493-502. [9]MCSHERRY F D. Privacy integrated queries:an extensible platform for privacy-preserving data analysis[J]. Proc,2011(1):26-30. [10]BLUM A,DWORK C,MCSHERRY F,et al. Practical privacy:the sulq framework[J]. In PODS ’05:Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,2005(6):128-138.

遗传算法综述

遗传算法综述 史俊杰 摘要:遗传算法来源于进化论和群体遗传学,是计算智能的重要组成部分,正受到众多学科的高度重视。本文主要回顾了遗传算法的起源和发展历程,并对遗传算法的基本原理及特点作了简要阐述。进一步指出了遗传算法存在的问题及相应的改进措施,讨论了遗传算法在实际中的应用,并对遗传算法的未来的发展进行了探讨。 关键字:遗传算法,适应度函数,神经网络 1.遗传算法的起源 遗传算法(Genetic Algorithm,GA)是模拟自然界生物进化机制的一种算法,即遵循适者生存、优胜劣汰的法则,也就是寻优过程中有用的保留,无用的则去除。在科学和生产实践中表现为,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法,即找出一个最优解。这种算法是1960年由Holland提出来的,其最初的目的是研究自然系统的自适应行为,并设计具有自适应功能的软件系统。 2.遗传算法的发展过程 从二十世纪六十年代开始,密切根大学教授Holland开始研究自然和人工系统的自适应行为,在这些研究中,他试图发展一种用于创造通用程序和机器的理论。在六十年代中期至七十年代末期,Bagly发明“遗传算法”一词并发表了第一篇有关遗传算法应用的论文。1975年竖立了遗传算法发展史上的两块里程碑,一是Holland出版了经典著作“Adaptation in Nature and Artifieial System”,二是Dejong完成了具有指导意义的博士论文“An Analysis of the Behavior of a Class of Genetie Adaptive System”。进入八十年代,随着以符号系统模仿人类智能的传统人工智能暂时陷入困境,神经网络、机器学习和遗传算法等从生物系统底层模拟智能的研究重新复活并获得繁荣。进入九十年代,以不确定性、非线性、时间不可逆为内涵,以复杂问题为对象的科学新范式得到学术界普遍认同,如广义进化综合理论。由于遗传算法能有效地求解属于、NPC类型的组合优化问题及非线性多模型、多目标的函数优化问题,从而得到了多学科的广泛重视。3.遗传算法特点 遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。遗传算法具有进化计算的所有特征,同时又具有自身的特点: (1)搜索过程既不受优化函数的连续性约束,也没有优化函数导数必须存在的要

差分跳频技术综述

差分跳频技术综述 摘要:差分跳频是一种新型扩频通信技术,它集跳频图案、信息调制与解调等功能于一体,构成与传统跳频技术完全不同的技术体制。文章介绍了差分跳频的基本原理及特点,并在此基础上对差分跳频系统的抗干扰能力进行了分析,最后说明该技术的优势及其仍需解决的问题。 关键词:扩频通信 差分跳频(DFH ) 跳频图案 抗干扰 一、引言 通常大家所遇到的无线通信系统都是载波频率固定的通信系统,这种定频通信系统一旦受到干扰,通信质量就会严重下降,甚至可以中断通信。在敌我双方的通信对抗中,敌方企图发现我方通信频率以截获我方消息,或是对其实施干扰时,固定频率的通信系统就会显示其严重的弊端,容易暴露目标或被截获,这时采用跳频通信就比较隐蔽,难以被截获,因为采用跳频技术,它的载波频率会不停的跳变,即使被敌方发现,当其实施干扰时,我方频率早已跳变,敌方就很难实施干扰或截获我方消息内容。 差分跳频技术是一种新型的跳频技术,其频率跳变速度快,通信保密性好,抗跟踪干扰和克服多径衰落的能力强。自从1995年2月美国的Signal 杂志报道了美国Sanders 公司成功研制一种相关跳频增强型扩谱电台(Correlated Hopping Enhanced Spread Spectrum)简称CHESS 电台以来,CHESS 技术在国内受到广泛关注。CHESS 电台采用了多项先进技术,其中差分跳频(differential~equency hopping ,DFH)是CHESS 电台的核心技术,是实现高速跳频的关键,该技术体制和原理与常规跳频完全不同,对于未来短波通信抗干扰体制的研究具有重要的意义。 二、差分跳频技术的基本原理 1、基本原理 差分跳频(DFH )是一种全新的跳频技术,与传统方式不同的是,差分跳频系统当前时刻频率n f 的生成由上一跳的频率值1n f 和当前数据符号n X 决定,因

相关文档
最新文档