北邮-微波测量实验报告

北邮-微波测量实验报告
北邮-微波测量实验报告

微波测量实验报告

班级:xxx

姓名:xxxx

学号:201221xxxx

《微波测量》课程实验

实验一熟悉微波同轴测量系统

一、实验目的

1、了解常用微波同轴测量系统的组成,熟悉其操作和特性。

2、熟悉矢量网络分析仪的操作以及测量方法。

二、实验内容

1、常用微波同轴测量系统的认识,简要了解其工作原理。

微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元

件或测量元件。各部分功能如下:

1)矢量网络分析仪:对RF领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF器件进行幅频特性、反

射特性和相频特性测量。

2)同轴线:连接矢量网络分析仪和校准元件或测量元件。

3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误

差。测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。

2、掌握矢量网络分析仪的操作以及测量方法。

注意在实验报告中给出仪器使用报告包括下列内容:a)矢量网络分析仪的面板组成以及各部分功能

(11)电源开关打开或关闭整机电源。

(12)U盘接口Usb盘接口

(13)RF OUT

射频信号输出口,N型K头。

(射频输出)

(14)RF IN

射频信号输入口,N型K头。

(射频输入)

b)S参数测量步骤

1、将一个待测的二端口网络通过同轴线接入矢量网络分析仪,组成一个微波同轴测量系统,如下图所示:

2、在矢量网络分析仪上【measure】键选择测量参数,

按下后显示屏的软键菜单会显示[S11]、[S12]、[S21]、

被测

[S22]四个待选测试参数,通过按下相应软键来选择要测量的S参数。

利用光标读取测量结果:按下【marker】键就会在显示屏上的测试曲线上显示光标,对应显示屏的软键菜单处会显示光标编号[1]、[2]、[3]、[4]、[5],按下相应软键会显示对应编号的光标,默认会显示1号光标。通过旋转旋钮键就会移动光标的位置,而在显示屏右上角会显示光标对应位置的频率和测量值。而通过数字键输入频率值也可以确定光标的位置。

3、然后经过SOLT校准,消除系统误差;

4、在矢量网络分析仪上调处S参数测量曲线,读出相应的二端口网络的S参量,保存为s2p数据格式和cst数据格式的文件。

c)如何看开路校准件的电容值设定(校准系数)

当传输线中端开路或者短路时,所有输入信号功率被反射到入射端。造成全反射。传输线中断开路时,开路端电流为0,端点反射信号电流与输入信号电流

幅度相等,相位相反,而反射信号电压与输入电压同相。信号关系满足欧姆定理。

d)如何看短路校准件的电感值设定(校准系数)

当传输线中端短路时,开路端电压为0,端点反射信号电压与输入信号电压幅

度相等,相位相反,而反射信号电流与输入电流同相。信号关系满足欧姆定理。

e)如何用Smith圆图显示所测结果以及如何与直角坐标转换

TOOLS工具栏下,下拉选项中可得到simth圆图的显示以及转换直角坐标。

f)如何保存所测数据,以及可存的数据格式

文件菜单下另存为功能,将数据保存为jpeg图片格式或s2p,s1p文件格式方

便后续分析。

g)了解仪器提供的校准方法(SOLT)

上述用短路、开路、负载三个标准件和直通校准的方法称为SOLT校准法,这是普遍使用的校准方法。

仪器提供SOLT校准方法,TRL校准方法等集中校准方法,实验中使用SOLT

校准方法。短接校准,开路校准。

三、思考题

1、是否可以直接进行电路参数的测量,为什么?如何从测量的S参数导

出电路参数。(给出S参数到Z参数的转换公式,以及如何在ADS中应用。)不可以,因为矢量网络分析仪是用来处理来自网络的透射波和反射波的幅值和相位,可以直接测

量得出S参数,通过S

参数导出电路参数。

实验二微波同轴测量系统校准方法

一、实验目的

1、了解常用微波同轴测量系统的校准方法。

2、熟悉矢量网络分析仪的SOLT校准步骤以及校准精度验证方法。

3、掌握并验证TRL校准方法。

二、实验内容

1、总结常用微波同轴测量系统的校准方法,比如TRL和SOLT,了解其

校准原理和优缺点。

用短路、开路、负载三个标准件和直通校准的方法称为SOLT校准法,这是普遍使用的校准方法。大多数网络分析仪用户最先熟悉的校准方法是SOLT。SOLT校准能够提供优异的精度和可重复性。这种校准方法要求使用短路、开

路和负载标准校准件。如果被测件上有雌雄连接器,还需要分别为雌雄连接提供对应的标准件,连接两个测量平面,形成直通连接。

SOLT校准方法使用12项误差修正模型,其中被测件的正向有6项,反

向有6项。操作正确的话,SOLT可以测量百分之一分贝数量级的功率和毫度

级相位。常用的校准套件中都包含SOLT标准校准件。这些校准件包括各种连接器类型,并且价格相对便宜,小心使用的话可以用很多年。

有的SOLT校准套件包含滑动负载,因此可改变路径的线路长度,同时保持恒定的负载阻抗(通常为50Ω或75Ω)。滑动负载在高频时尤为重要,因

为在这种情况下很难实施良好的固定负载。线路长度的变化会直接成比例地改变电长度,导致测量路径中发生相移。通过在校准过程中使用几种不同长度的线路和相应的相移,可以更精确地测量网络分析仪的方向性。

双向直通SOL通常称为“未知直通”。这种方法允许在遵守一些基本原则的条件下,在校准过程中使用电缆、电路板线轨或Ecal模块作为直通路径。当处理非插入式设备(具有同性或不兼容的连接器,在校准期间需要使用适配器才能建立直通连接)时,未知直通尤为有用。该适配器会给校准带来一个误差。未知直通因为无需使用精密的或经过校准的适配器,并且可以最大限度地减少校准期间的电缆移动,所以非常有用。它通常比其他需要去除适配器的方法

更方便、更精确。

另一个二端口校准形式称为TRL校准(直通、反射和空气线)。TRL校准主

要用在非同轴环境,如对波导进行测试、利用测试夹具或用探针进行晶片上测量。TRL校准极为精确,在大多数情况下,精确度甚至超过SOLT校准。然而绝大多数校准套件中都不包含TRL标准件。在要求高精度并且可用的标准校准件与被测件的连接类型不同的情况下,一般采用TRL校准。使用测试夹具进行测量或使用探头进行晶圆上的测量,通常都属于这种情况。因此,某些情况下

需要构建和表征与被测件配置介质类型相同的标准件。制造和表征三个TRL标准件比制造和表征四个SOLT标准件更容易。

TRL校准还有另一个重要优势:标准件不需要像SOLT标准件那样进行

完整或精确的定义。虽然SOLT标准件是完全按照标准的定义进行表征和储存,而TRL标准件只建立模型而不进行完整表征,但是TRL校准的精度与TRL标

准件的质量和可重复性成正比。物理中断(例如传输线路弯曲和同轴结构中的焊缝)将会降低TRL校准的精度。接口必须保持清洁并允许可重复的连接。

在同轴应用中,SOLT通常是优先使用的校准技术。尽管不常用的同轴TRL比SOLT能提供更高的精度,但只有在使用质量很高的同轴传输线(如空气线)时才能实现。对于SOLT法,相位测试精度主要取决于开路器和短路器的精度,幅度的测试精度取决于所使用的匹配负载。用滑动负载的SOLT法,通过多次测量找圆心,测量精度高于用固定负载的SOLT法。

2、掌握矢量网络分析仪的SOLT校准步骤以及校准精度验证方法。

校准步骤:响应→校准→校准向导→校准类型→选择双端口SOLT→测量机械标准→依次选择1端口短路、开路、负载,直通,2端口短路、开路、负载进行校准。

1、用开路器校准件校准

网络仪端口一般都是N型50欧姆或75欧姆端口,如果被测件端口也是

50欧姆或75欧姆,并且阴阳极性匹配,这时只需校准网络仪内部的系

统误差。以下分析都假设被测件是二端口器件,系统误差模型采用全二

端口模型。将已知标准校准件开路器的两端接入实际参考面PA1和

PA2,即把开路校准件接入矢量网络分析仪。

2、用短路器校准件校准

与1原理相同,将已知标准校准件短路器的两端接入实际参考面PA1和

PA2,即把短路校准件接入矢量网络分析仪。

3、用匹配器校准件校准

与1原理相同,将已知标准校准件匹配器的两端接入实际参考面PA1和PA2,即把匹配器校准件接入矢量网络分析仪。

4、用匹配器校准件校准与1原理相同,将矢量网络分析仪的两个参考面

PA1和PA2直接相连即可。

注意在实验报告中包括下列内容:

a)校准前测量各校准件(开路、短路、匹配和直通)S参数,并保存数据开路:

短路:匹配:

b)矢量网络分析仪S O L T的校准步骤

见实验内容2.

c)校准后测量各校准件(开路、短路、匹配和直通)S参数,并保存数据开路:

s参数初始在1位置,随着频率变话顺时针沿边缘移动,校准后曲线严格沿边缘移动,并且曲线较平滑。

短路:

s参数初始在-1位置,随着频率变话顺时针沿边缘移动,校准后曲线严格沿边缘移动,并且曲线较平滑。

匹配:

s参数始终位于S m i t h原图中心。校准后参数不在发散,位于单位圆中心。

d)比较校准前后校准件(开路、短路、匹配和直通)的S参数,解释说明各

条曲线,并指出所做校准的精度情况

分析比较校准前后的数据可以发现,经过校准后有效的减少了原来的误差,带宽的微弱变化虽然很小,但是对于误差来说还是足够证明每次连接测量器件之前校准步骤都是必要的,而且在校准过程中,有校准之后的图形可分析:在

S m i t h圆图上,开路和短路不再是一圈圈缠绕的线,已经减少到靠近开路和短路点的一段线,匹配点经过校准后已经非常接近理论上的一个点而不是一个区域。所以,校准之后的测量才是符合实际的近乎标准值,在未校准时进行的测量只能大概估计下元件的类型及带宽,对于精确的参数测量未校准时是完全不符合标准的。

3、利用已加工的TRL校准件,进行TRL校准。保存各测量数据,计算出其

误差模型(附编程程序)。

实验三利用微波同轴测量系统进行实际器件测量

一、实验目的

1、利用SOLT校准方法进行微波同轴测量系统的校准。

2、测量各加工器件(天线、滤波器、功分器和耦合器等)的实际性能。

3、验证TRL校准方法,并和利用SOLT校准方法测量的结果进行对比。

二、实验内容

1、做完实验二的实验内容3后,测量各器件的S参数,并保存测量结果,通过去嵌误差模型,得到真实的器件S参数。报告中要给出具体编程计算过程(附编程程序)。

2、利用机器自带SOLT校准后,存储测量结果,并通过测量结果了解所

测器件的工作原理以及性能,报告中包括以下内容

a)器件的S参数测量曲线;

b)通过分析其S参数,了解各器件所组成的网络的特性。

2、给出分别经过T R L和S O L T校准和没有校准的情况下各器件的测量性能,比较两类测量结果,给出实验报告,包括以下内容:

a)未校准和TRL校准后各器件测量曲线比较;

b)未校准和SOLT校准后各器件测量曲线比较;

c)比较分析TRL和SOLT校准方法的测量精度。

MATLAB代码:———————————————————————main.m———————————————————————

clc;

clear all;

[S11,S22,S12,Freq] = TRL();

[A,B,C,D] = SPara_TransferToABCD(S11,S22,S12,S12);

[invA,invB,invC,invD] = invABCD(A,B,C,D);

while 1

disp(‘1、滤波器');

disp(‘2、功分器');

disp(‘3、耦合器隔离端');

disp(‘4、耦合器耦合端');

disp(‘5、耦合器直通端');

disp(‘6、天线');

DeviceNumber = input('请输入要处理的微波器件,输入0退出:');

if DeviceNumber == 0

return;

end

[ S11Device,S21Device,S12Device,S22Device ] = getSPara(DeviceNumber);

[Am,Bm,Cm,Dm] = SPara_TransferToABCD( S11Device,S22Device,S12Device,S21Device );

%计算DUT的ABCD参量

AF = zeros(201,1);

BF = zeros(201,1);

CF = zeros(201,1);

DF = zeros(201,1);

for N = 1:201

ABCD = [A(N),B(N);C(N),D(N)]; %误差盒ABCD矩阵

ABCDinv = [invA(N),invB(N);invC(N),invD(N)]; %误差盒ABCD逆矩阵

ABCDm = [Am(N),Bm(N);Cm(N),Dm(N)]; %DUT的ABCD矩阵

ABCDf = ABCDinv*ABCDm*ABCD;

AF(N) = ABCDf(1,1);

BF(N) = ABCDf(1,2);

CF(N) = ABCDf(2,1);

DF(N) = ABCDf(2,2);

end

[S11F,S21F] = ABCD_TransferToSPara( AF,BF,CF,DF );

subplot(1,2,1);

plot(Freq,-20*log10(abs(S11F)));axis([3*10^5 3*10^9 -50 50]);

subplot(1,2,2);

plot(Freq,-20*log10(abs(S21F)));axis([3*10^5 3*10^9 -50 50]);

end

———————————————————————TRL.m———————————————————————

function [S11,S22,S12,Freq] = TRL()

%导入T部分数据

Data_T_S11 = read(rfdata.data,'TRL-T-S11.s2p');

Data_T_S21 = read(rfdata.data,'TRL-T-S21.s2p');

Freq = Data_T_S11.Freq;

S11_2 = Data_T_S11.S_Parameters(1,1,:);

T11 = reshape(S11_2,201,1);

S21 = Data_T_S21.S_Parameters(2,1,:);

T12 = reshape(S21,201,1);

%导入R部分数据

Data_R_S11 = read(rfdata.data,'TRL-R-S11.s1p');

S11_2 = Data_R_S11.S_Parameters(1,1,:);

R11 = reshape(S11_2,201,1);

%导入L部分数据

Data_L_S11 = read(rfdata.data,'TRL-L-S11.s2p');

Data_L_S21 = read(rfdata.data,'TRL-L-S21.s2p');

S11_2 = Data_L_S11.S_Parameters(1,1,:);

L11 = reshape(S11_2,201,1);

S21 = Data_L_S21.S_Parameters(2,1,:);

L12 = reshape(S21,201,1);

clear S11;

clear S21;

%计算传播因子e^(-γl)

l = 66.1*10^(-3); %传输线长度66.1mm

One = ones(201,1);

%Propagation1为取正好的传播因子e^(-γl),2为取负号的传播因子e^(-γl)

Propagation1 = ((L12.^2+T12.^2-(T11-L11).^2+((L12.^2+T12.^2-(T11-L11).^2).^2-4.*(L12.^2).*(T12.^2)).^0.5))./(2.*L12.*T12);

Propagation2 = ((L12.^2+T12.^2-(T11-L11).^2-((L12.^2+T12.^2-(T11-L11).^2).^2-4.*(L12.^2).*(T12.^2)).^0.5))./(2.*L12.*T12);

%分别计算两种情况的S22,S11,S12,Γ值

S22_1 = (T11-L11)./(T12-L12.*Propagation1);

S11_1 = (T11-S22_1.*T12);

S12_1 = (T12.*(One-S22_1.^2)).^0.5;

GammaL1 = (R11-S11_1)./(S12_1.^2+S22_1.*(R11-S11_1));

S22_2 = (T11-L11)./(T12-L12.*Propagation2);

S11_2 = (T11-S22_2.*T12);

S12_2 = (T12.*(One-S22_2.^2)).^0.5;

GammaL2 = (R11-S11_2)./(S12_2.^2+S22_2.*(R11-S11_2));

%求两种情况的Γ的相位以取舍

AngleGammaL1 = angle(GammaL1);

AngleGammaL2 = angle(GammaL2);

Angle = zeros(201,1);

S22 = zeros(201,1);

S11 = zeros(201,1);

S12 = zeros(201,1);

%遍历两种情况下的Γ相位矩阵,挑选相位[0,π]内的情况,取出其S22,S11,S12值

for N = 1:201

if AngleGammaL1(N)>0

Angle(N) = AngleGammaL1(N);

S22(N) = S22_1(N);

S11(N) = S11_1(N);

S12(N) = S12_1(N);

end

if AngleGammaL2(N)>0

Angle(N) = AngleGammaL2(N);

S22(N) = S22_2(N);

S11(N) = S11_2(N);

S12(N) = S12_2(N);

end

end

end

———————————————————————getSPara.m———————————————————————

function [ S11Device,S21Device,S12Device,S22Device ] = getSPara( DeviceNumber ) %UNTITLED4 Summary of this function goes here

% Detailed explanation goes here

switch DeviceNumber

case 1

Data_S = read(rfdata.data,'Filter.s2p');

case 2

Data_S = read(rfdata.data,'GongFenqi.s2p');

case 3

Data_S = read(rfdata.data,'GeliDuan.s2p');

case 4

Data_S = read(rfdata.data,'OuheDuan.s2p');

case 5

Data_S = read(rfdata.data,'ZhitongDuan.s2p');

case 6

Data_S = read(rfdata.data,'TianXian.s1p');

otherwise

disp(‘输入不正确,请重新输入');

end

S11 = Data_S.S_Parameters(1,1,:);

S21 = Data_S.S_Parameters(2,1,:);

S22 = Data_S.S_Parameters(2,2,:);

S12 = Data_S.S_Parameters(1,2,:);

S11Device = reshape(S11,201,1);

S21Device = reshape(S21,201,1);

S22Device = reshape(S22,201,1);

S12Device = reshape(S12,201,1);

end

—————————————————SPara_TransferToABCD.m—————————————————

function [ A,B,C,D ] = SPara_TransferToABCD( S11,S22,S12,S21 )

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

A = zeros(201,1);

B = zeros(201,1);

C = zeros(201,1);

D = zeros(201,1);

for N = 1:201

S = S11(N)*S22(N)-S12(N)*S21(N);

A(N) = (1+S11(N)-S22(N)-S)/(2*S21(N));

B(N) = (1+S11(N)+S22(N)+S)/(2*S21(N));

C(N) = (1-S11(N)-S22(N)+S)/(2*S21(N));

D(N) = (1-S11(N)+S22(N)-S)/(2*S21(N));

end

end

—————————————————ABCD_TransferToSPara.m—————————————————

function [ S11,S21 ] = ABCD_TransferToSPara( A,B,C,D )

%UNTITLED5 Summary of this function goes here

% Detailed explanation goes here

S11 = zeros(201,1);

S21 = zeros(201,1);

for N = 1:201

S11(N) = (A(N)+B(N)-C(N)-D(N))/(A(N)+B(N)+C(N)+D(N));

S21(N) = 2/(A(N)+B(N)+C(N)+D(N));

end

end

—————————————————invABCD.m—————————————————

function [ invA,invB,invC,invD ] = invABCD( A,B,C,D )

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

invA = zeros(201,1);

invB = zeros(201,1);

invC = zeros(201,1);

invD = zeros(201,1);

for N = 1:201

ABCD = [A(N),B(N);C(N),D(N)];

inverseABCD = inv(ABCD);

invA(N) = inverseABCD(1,1);

invB(N) = inverseABCD(1,2);

invC(N) = inverseABCD(2,1);

invD(N) = inverseABCD(2,2);

end

end

微波器件的S参数

1、滤波器

SOLT校准:

S11 S21

TRL校准:

2、功分器

SOLT校准:

TRL校准:

3、耦合器隔离端SOLT校准:

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北邮微波实验报告

信息与通信工程学院电磁场与微波技术实验报告 班级学号班序号亚东2011211116 2011210466 22

实验二微带分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 实验原理 1.支节匹配器 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+YY形式,即Y=Y0+YY,其中Y0=1/Y0 。并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为Y0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为?YY,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。 双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 2.微带线 微带线是有介质Y Y(Y Y>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质Y Y,可以近似等效为均匀介质填充的传输线,等效介质电常数为Y Y,介于1和Y Y之间,依赖于基片厚度H和导体宽度W。而微带线的特性阻抗与其等效介质电常数为Y Y、基片厚度H和导体宽度W有关。 实验容 已知:输入阻抗Zin=75Ω 负载阻抗Zl=(64+j35)Ω 特性阻抗Z0=75Ω 介质基片εr=2.55,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

综合课程设计实验报告 课程名称:微波方向综合课程设计 实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院 专业班级: 姓名: 学号: 指导教师: 2011年12月22日

一、实验目的和要求 1、目的: 通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。 2、要求: 从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se 将其绘制成电路版图(PCB)。(器件的工作频率和学号相关) 1)3dB微带功率分配器; 2)微带短截线滤波器 3)3dB微带定向耦合器 PCB板采用介电常数为4.5,厚度为1mm的FR4基片; 电路尺寸必须按照自己相应的MWO设计结果绘制; 电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm; 每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。 二、实验内容和原理 1、内容: 在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。 2、原理:

(1)Richards 变换: 集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards 提出了一种变换方法,这种变换可以将集总元件变换成传输线段。如图1所示,电感L 可等效为长为λ/8,特性阻抗为L 的短路线;电容C 可等效为长为λ/8,特性阻抗为1/C 的开路线。 图1 (2)Kuroda 规则: 采用Richards 变换后,串联元件将变换为串联微带短截线,并联元件将变换为并联短截线。由于串联微带短截线是不可实现的,所以需要将其转变为其它可实现的形式。为了方便各种传输线结构之间的相互变换,Kuroda 提出了四个规则,如图2所示。其中,2211/n Z Z =+;U.E.是单位元件,即电长度为λ/8、特性阻抗为UE Z 的传输线。选用合适的Kuroda 规则,可以将串联短截线变换为容易实现的并联短截线。

极化波实验报告

内蒙古工业大学信息工程学院 实验报告 课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生 与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实 验室班级:电子10-1班学号:201010203008 姓名:苏宝组别: 同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验 实验一:反射实验 实验目的 熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波 反射定律的方法 实验设备与仪器 dh926ad型数据采集仪 dh926b型微波分光仪 dh1121b型三厘米固态信号源金属板 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍 物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和 通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折 射波可用下列式子表示为 平行极化波的斜入射示意图 实验内容与步骤 系统构建时,如图1,开启dh1121b型三厘米固态信号源。dh926b型微波分光仪的两喇 叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作 平台的0-180刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉 起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。反射全属板放到支座上时,应 使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。 将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接 图1 反射实验 到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯 亮(蓝色),表示已连接好。然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红 色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅 通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。最后,察看dh1121b 型三厘米固态信号源的“等幅”和“方波”档的设置,将dh926ad型数据采集仪的“等幅/ 方波”设置按钮等同于dh1121b型三厘米固态信号源的设置。 转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数, 然后转动活动臂在dh926ad型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动 臂上的指针所指的刻度就是反射角度数。如果此时表头指示太大或太小,应调整微波分光仪 微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。入射角最好取 30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。做这项实验时应 注意系统的调整和周围环境的影响。 采集过程中,dh926ad型数据采集仪的usb指示灯连续闪动(蓝色),表示采集过程正在 继续。应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。您需要顺时针

微波实验报告

之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对, 还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己 做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~ 实验2 微带分支线匹配器 一.实验目的: 1.熟悉支节匹配的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二.实验原理: 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达GHz以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 本次实验主要是研究了微带分支线匹配器中的单支节匹配器和双支节匹配器,我都采用了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,用附加的反射来抵消主传输线上原来的反射波。 单支节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。然后,此短截线的电纳选择为-JB,然后利用Smith圆图和Txline,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,比单支节匹配器增加了一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配,但需要注意的是,由于双支节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。 2.微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H 为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE 波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 3.微带线的模型

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

北邮-微波测量实验报告

微波测量实验报告 班级:xxx 姓名:xxxx 学号:201221xxxx

《微波测量》课程实验 实验一熟悉微波同轴测量系统 一、实验目的 1、了解常用微波同轴测量系统的组成,熟悉其操作和特性。 2、熟悉矢量网络分析仪的操作以及测量方法。 二、实验内容 1、常用微波同轴测量系统的认识,简要了解其工作原理。 微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元 件或测量元件。各部分功能如下: 1)矢量网络分析仪:对RF领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF器件进行幅频特性、反 射特性和相频特性测量。 2)同轴线:连接矢量网络分析仪和校准元件或测量元件。 3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误 差。测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。 2、掌握矢量网络分析仪的操作以及测量方法。

注意在实验报告中给出仪器使用报告包括下列内容:a)矢量网络分析仪的面板组成以及各部分功能

(11)电源开关打开或关闭整机电源。 (12)U盘接口Usb盘接口 (13)RF OUT 射频信号输出口,N型K头。 (射频输出) (14)RF IN 射频信号输入口,N型K头。 (射频输入) b)S参数测量步骤 1、将一个待测的二端口网络通过同轴线接入矢量网络分析仪,组成一个微波同轴测量系统,如下图所示: 2、在矢量网络分析仪上【measure】键选择测量参数, 按下后显示屏的软键菜单会显示[S11]、[S12]、[S21]、 被测 [S22]四个待选测试参数,通过按下相应软键来选择要测量的S参数。

微波实验报告

实验2 微带分支线匹配器 一、实验目的: 1.熟悉支节匹配器的匹配原理 2. 了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二、实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB形式。然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 三、实验内容 已知:输入阻抗Zin=75欧 负载阻抗Zl=(64+j35)欧 特性阻抗Z0=75欧 介质基片εr=2.55,H=1mm 假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化 四、实验步骤 (一)单支节 1.在Smith导纳圆图上画出负载ZL所处的VSWR圆,标出其与单位电导圆的交点。这里可以有两个交点,选择离负载较近的那个点进行计算。角度为-105.4°。 -105.4°-93.31°=-198.71° 198.71°/2=99.35°

2.已知角度后,用TXLINE算出负载距离支节间的微带线的参数。W=28.877mm,L=1.4373mm。

北邮天线实验报告

北邮天线实验报告 篇一:北京邮电大学电磁场与电磁波实验报告《天线部分》《电磁场与微波实验》 ——天线部分实验报告 姓名:班级:序号:学号: 实验一网络分析仪测量振子天线输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随振子电径变化的情况。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h ?2。由于天 线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称

振子天线的一半,为 ?2h??60?ln()?1?。 a?? 三、实验步骤 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同电径(φ1,φ3,φ9)的天线,分析两个谐振点的阻抗变化情况; 设置参数:BF=600,?F=25,EF=2600,n=81。 校正图: 测量图 1mm天线的smith圆图: 3mm天线的smith圆图: 9mm天线的smith圆图: 篇二:北邮电磁场与微波实验天线部分实验报告一信息与通信工程学院 电磁场与微波实验报告 实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的:

微波测量实验报告四

近代微波测量实验报告四 :学号: 学院:时间:年月 一实验名称 微波放大器测量 二实验目的 熟悉微波测试仪器;掌握微波放大器测试方法。 三实验容 1、用矢网测试放大器的增益和输入回波损耗; 2、用信号源和频谱分析仪测试放大器某频点上的输出1dB压缩点及压缩点的二 次和三次谐波抑制比。 四实验器材 矢量网络分析仪、放大器、频谱分析仪、信号源、微波同轴电缆、微波转接头。 五实验原理及实验步骤 1、放大器的增益和输入回波损耗测量 1)校准; 2)连接矢量网络分析仪和放大器,设置矢量网络分析仪的起始频率为100MHz,终止频率为6GHz,信号功率为-15dBm; 3)分别测试1G~6GHz频率点的增益S21,和回波损耗S11。 2、放大器输出1dB压缩点及谐波测量 1dB压缩点:当放大器的输入功率增加到使放大器的增益降低且引起输出功率呈非线性增大时,便发生增益压缩。这定义为导致放大器增益有 1dB 减小(相对于放大器的小信号增益)的输入功率(或有时为输出功率)。 1)信号源产生频率为1GHz的信号; 2)连接信号源、频谱分析仪,将频谱仪所读参数与原信号比较即可得电缆和接头损耗; 3)接入放大器,改变信号源的信号功率,记录频谱仪上放大器输出功率数值,

计算放大器增益,直至放大器增益有1 dB衰减,便可得1 dB衰减点。 4)在输出1dB压缩点处,测量二次和三次谐波抑制。 六实验结果 1、增益及回波损耗测试结果 测试曲线S21、S11 增益: 回波损耗:

2、P-1及谐波测试结果 测试频率1000 MHz,测试电缆和接头的损耗大约为0.6dB。(Pin和Pou分别是为信号 源输出功率和谱仪测试功率) Pin(dBm)-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 Pout(dBm)-3.33 -2.32 -1.33 -0.35 0.61 1.67 2.67 3.63 4.60 5.64 G(dB)18.37 18.38 18.37 18.35 18.31 18.37 18.37 18.33 18.30 18.34 Pin(dBm)-10 -9 -8 -7 -6 -5 -4 Pout(dBm)6.61 7.55 8.48 9.32 10.12 10.75 11.23 G(dB)18.31 18.25 18.18 18.02 17.82 17.45 16.93 由上表可得在1000MHz时该放大器输出1dB压缩点为 10.75 dBm, 在输出1dB压缩点处,二次和三次谐波抑制分别为 29.54 dB和 26.49 dB。 测试图片: 电缆和接头损耗: -20dBm -19dBm

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

北邮 微波工程基础ADS仿真实验报告

微波工程基础仿真 实验报告 学院:电子工程学院 班级:2012211xxx 学号:201221xxxx 姓名:xxxx 班内序号:xx

一、实验题目 实验一 1.了解ADS Schematic的使用和设置 2.在Schematic里,分别仿真理想电容20pF和理想电感5nH,仿真频率为(1Hz-100GHz),观察仿真结果,并分析原因。 3.Linecalc的使用 a)计算中心频率1GHz时,FR4基片的50Ω微带线的宽度 b)计算中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的横截面 尺寸(中心信号线宽度与接地板之间的距离) 4.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长开路CPW线的性能参数,中心工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith 圆图变化,分析原因。 5.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长短路CPW线的性能参数,中心工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith 圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。6.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长开路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变

化原因。 7.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长短路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变化原因。 8.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长开路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变化原因。 9.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长短路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变化原因。 实验二 10.用一段理想四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz。 11.用一段FR4基片上四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz,比较分析题1和题2的结果。

北邮电磁场与微波实验5.3微波单元项目

邮电大学 电子工程学院 电磁场微波测量实验 5.3微波实验单元项目 组员: 2015-5-3 执笔:

目录 5.3.1频谱分析仪的使用 (1) 一、实验目的 (1) 二、实验设备 (1) 三、实验原理 (1) 四、实验容 (2) A. 单载波信号的频谱测量 (2) B. 带载波信号的杂散测量 (3) C. 相位噪声测量 (4) D. 幅频特性测量 (5) 5.3.2衰减器的特性测量 (7) 一、实验目的 (7) 二、实验仪器 (7) 三、实验容 (7) 5.3.3定向耦合器特性测量 (8) A. 耦合度测量 (8) B. 插入损耗测量 (9) C. 定向耦合器的隔离度测量 (10) 5.3.4滤波器的特性及测量 (11) 实验总结 (12)

5.3.1频谱分析仪的使用 一、实验目的 1.了解频谱分析仪的工作原理,熟悉它的使用方法 2.了解微波信号发生器的使用方法 二、实验设备 1.频谱分析仪 2.微波信号发生器 三、实验原理 频谱分析系统主要的功能是在频域里显示输入信号的频谱特性。频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT或液晶等显示仪器上进行显示,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限于频宽围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。

相关文档
最新文档