二重积分的计算方法(1)

二重积分的计算方法(1)
二重积分的计算方法(1)

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。 一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数 (,)f x y 在积分区域D 上连续时,若 D 为x 型区域(如图1),即{}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=??? ? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2 D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 22 2 1221x x D y y dxdy dx dy x x =???? 32 121 3x x y dx x ??= ???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

2 51 133x dx x ?? =- ???? 22 1 412761264 x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计算,这是可以将复杂的积 分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是 y 型区域,但是将可D 划分为 ()(){} 12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 12 D D D d d d σσσ=+??????12230122x x x x dx dy dx dy -=+???? 120112322x x dx x dx ???? =-+-- ? ??????? 12 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 二重积分化为二次定积分后的计算可以按定积分的求解进行,但是当被积函数较为复杂,虽然能定出积分限,但被积函数的原函数不易求出或根本求不出,这时可根据被积函数划分积分区域,然后 y 图 4

[整理]三重积分的计算方法小结与例题76202

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

(精选)三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

二重积分的计算法教案

教 案 参赛教师: 职称: 助教 所在院系: 数学与统计学院 所授课程: 高等数学 20XX年5月 第十章重积分 第二节二重积分的计算法 (第1课时) 教学目的:理解二重积分计算公式导出的方法,理解公式中符号的意义;熟练掌握X-型区域与Y-型区域上的积分公式,并能根据条件选择恰当的积分次序计算二重积分.重点:X-型区域上二重积分的积分公式;根据条件选择恰当的积分次序计算二重积分. 难点:选择合适的方法计算二重积分. 教学方法:直观教学,启发式讲授. 教学过程: 一、利用直角坐标系计算二重积分 1.积分区域D的分类

(1)积分区域D 为X-型区域 图1 图2 图1,图2表示的区域都是X-型区域. X-型区域的特点:穿过D 的内部平行于y 轴的直线与D 的边界的交点个数不超过两个. 用不等式组表示为 ).()(21x y x b x a D ??≤≤≤≤,: (2)积分区域D 为Y-型区域 图3 图3,图4表示的都是Y-型区域. Y-型区域的特点:穿过D 的内部平行于y 轴的直线与D 边界交点的个数不多于两个. 当积分区域为Y-型区域时,即 12:,()() D c y d y x y ψψ≤≤≤≤ 2.二重积分计算公式 (1)积分区域D 为X-型区域时 (,)D f x y d σ ??的计算公式. 当0),(≥y x f 时,由二重积分的几何意义 (,)D f x y d σ ??的值等于以D 为底,以(,)z f x y =为顶的 曲顶柱体(图5)的体积V . 即 ??=D d y x f V σ ),(. 过x 轴上 x 点作平行于yOz 的平面 x π, 0a x b ≤≤ . 图5 x π截V 得一以1020[(),()]x x ??长为底,0(,)z f x y =为曲边的曲边梯形, 其面积为 2010() 00() ()(,)x x A x f x y dy ??=? . y x O ) (2y d c

二重积分计算中的积分限的确定

二重积分计算中积分限的确定 摘要:二重积分计算中积分限的确定对于初学者是一个重点更是一个难点.本文旨在介绍一种二重积分计算中确定积分限的简单易行的方法. 关键词:二重积分累次积分积分限积分次序 引言:高等数学学习过程中,二重积分计算是个难点。原因在于将二重积分化为累次积分时,对于积分限的确定学生难以掌握。本人结合自己的教学过程和自己的学习体会总结出一个口诀,发现在教学过程中效果不错可以很好的帮助学生解决这一难题。 1.高等数学中计算二重积分的方法 在高等数学课本中,在直角坐标系下计算二重积分的步骤为:]1[。 (1)画出积分区域 (2)确定积分区域是否为X-型或Y-型区域,如既不是X-型也不是Y-型区域,则要将 积分区域化成几个X-型和Y-型区域,并用不等式组表示每个X-型和Y-型区域. (3)用公式化二重积分为累次积分. (4)计算累次积分的值. 在教学的过程中我发现学生对于此种方法掌握的很不好,尤其是在第二步中,确定积分区域从而确定累次积分的积分限是一个薄弱环节.下面就本人在教学中的体会谈谈在这方面的一点心得. 2.教学过程中总结的方法 本人的心得可用下面的口诀概括:后积先定限,限内画条线,先交下限取,后交上限见.下面简单解释一下该口诀,然后以具体的例题加以说明.在将二重积分转化为累次积分的时候对于两个积分变量必然会有个先后顺序,这就要求对后积分的那个变量我们要根据积分区域确定其上下限(所谓确定是指根据积分区域图将其上下限定为常数).确定了这个变量的上下限以后,我们在其上下限内画一条和上下限平行的直线,该直线沿着坐标轴的正方向画过来,这样该直线如果和积分区域总是有两个交点,先交的即为另一个积分变量的积分下限,后交的即为其积分上限. 3.例题解析 例1 计算?? D xydxdy,其中D是由直线x y y x= = =,1 ,2所围成的区域. 解:作出积分区域D的图形 x 页脚内容1

(初稿)三重积分计算方法小结

江西师范大学数学与信息科学学院 学士学位论文 三重积分的计算方法小结Methods of Calculation of Triple Integral 姓名:蒋晓颖 学号: 1007012048 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:蒋新荣(副教授) 完成时间:2014年1月23日

三重积分的计算方法小结 蒋晓颖 【摘要】三重积分的计算是数学分析中的难点,本文结合教材以及相关资料较全面地给出了三重积分计算中的四种处理方法。第一,利用降低三重积分重数的思想,将其化为累次积分;第二,采用坐标变换的方法,将积分体表示成适当的形式;第三,充分运用被积函数的奇偶性和积分区域的对称性,简化计算;第四,利用高斯公式将三重积分的计算转化成曲面积分计算。希望这几种方法能对学习者具有一定的指导意义。 【关键词】三重积分累次积分坐标变换对称性高斯公式

Methods of Calculation of Triple Integral Jiang Xiaoying 【Abstract】The calculation of triple integral is the difficulty in Mathematics analysis.In this paper,unifying the teaching and related materials ,we give four instructive methods of the calculation of triple integral for learner.The four methods are as follows:the first,lower the multiplicity of triple integral and replace it with iterated integral;the second,with the method of coordinate alternate,we can transform the integral volume into appropriate form;the third,fully use the parity of integrand and symmetry of integral area to simplify calculation;finally,we can calculate the triple integral with the Gauss formula that could transform triple integral into a surface integral. 【Key words】triple integral iterated integral coordinate alternate symmetry Gauss formula

高等数学三重积分计算方法总结

高等数学三重积分计算方法总结 1、利用直角坐标计算三重积分: (1)投影法(先一后二): 1)外层(二重积分):区域Ω在xoy 面上的投影区域Dxy 2)内层(定积分): 从区域Ω的底面上的z 值,到区域Ω的顶面上的z 值。 (2)截面法(先二后一): 1)外层(定积分): 区域Ω在z 轴上的投影区间。 2)内层(二重积分):Ω垂直于z 轴的截面区域。 2、利用柱坐标计算三重积分 3、利用球面坐标计算三重积分 定限方法: (1)转面定θ(2)转线定φ (3)线段定r 4、利用对称性化简三重积分计算 设积分区域Ω关于xoy 平面对称, (1)若被积函数 f (x,y,z ) 是关于z 的奇函数,则三重积分为零。 (2)若被积函数 f (x,y,z ) 是关于z 的偶函数,则三重积分等于:在xoy 平面上方的半个Ω,区域上的三重积分的两倍. 使用对称性时应注意: 1)积分区域关于坐标面的对称性; 2)被积函数关于变量的奇偶性。 (cos ,sin ,)f z d d dz ρθρθρρθΩ???(,,)f x y z dv Ω=??? (,,)f x y z dxdydz Ω??? (sin cos ,sin sin ,cos )f r r r φθφθφΩ=???2 sin r drd d φφθ

例 计算 ,其中Ω是由曲面z = x 2 + y 2和x 2 + y 2 + z 2 =2所围成的空间闭区域. 解: 是关于x 的奇函数,且Ω关于 yoz 面对称 故其积分为零。 2x 2 y 是关于y 的奇函数,且关于 zox 面对称 ???Ω++dxdydz z y x x 2)(2 )(z y x x ++ 22222222)(zx xyz y x z y x x +++++=xyz z y x x 2)(222+++ ,022???Ω=∴ydv x ???Ω++=∴dxdydz z y x x I 2)(,22???Ω=zdxdydz x ???Ωθρρ??θρ=dz d d z 22cos 2????θρρθ=zdz d d 23cos 2 ??πρρ-ρ-θρθ=20104 223)2(cos d d 245π=222ρ-ρπ20

二重积分计算方法

这里讨论的计算方法指的是利用现有的MATLAB函数来求解,而不是根据具体的数值计算方法来编写相应程序。目前最新版的2009a有关于一般区域二重积分的计算函数quad2d(详 细介绍见https://www.360docs.net/doc/459773856.html,/viewthread.php?tid=873479),但没有一般区域三重 积分的计算函数,而NIT工具箱似乎也没有一般区域三重积分的计算函数。 本贴的目的是介绍一种在7.X版本MATLAB(不一定是2009a)里求解一般区域二重三重积 分的思路方法。需要说明的是,上述链接里已经讨论了一种求解一般区域二重三重积分的 思路方法,就是将被积函数“延拓”到矩形或者长方体区域,但是这种方法不可避免引入 很多乘0运算浪费时间。因此,新的思路将避免这些。由于是调用已有的MATLAB函数求解,在求一般区域二重积分时,效率和2009a的quad2d相比有一些差距,但是相对于"延拓"函数的做法,效率大大提高了。下面结合一些简单例子说明下计算方法。 譬如二元函数f(x,y) = x*y,y从sin(x)积分到cos(x),x从1积分到2,这个积分可以 很容易用符号积分算出结果 1.syms x y 2.int(int(x*y,y,sin(x),cos(x)),1,2) ] 3.结果是 -1/2*cos(1)*sin(1)-1/4*cos(1)^2+cos(2)*sin(2)+1/4*cos(2)^2 = -0.635412702399943 复制代码 如果你用的是2009a,你可以用 1.quad2d(@(x,y) x.*y,1,2,@(x)sin(x),@(x)cos(x),'AbsTol',1e-12) 复制代码 得到上述结果。 如果用的不是2009a,那么你可以利用NIT工具箱里的quad2dggen函数。 那么我们如果既没有NIT工具箱用的也不是2009a,怎么办呢? 答案是我们可以利用两次quadl函数,注意到quadl函数要求积分表达式必须写成向量化 形式,所以我们构造的函数必须能接受向量输入。见如下代码 1.function IntDemo 2.function f1 = myfun1(x) 3.f1 = zeros(size(x)); 4.for k = 1:length(x) 5.f1(k) = quadl(@(y) x(k)*y,sin(x(k)),cos(x(k))); 6.end 7.end 8.y = quadl(@myfun1,1,2) 9.end

二重积分计算方法

1利用直角坐标系计算1.1 积分区域为X型或Y型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,) f x y在积分区域D上连续时,若D为x型区域(如图1),即 {} 12 (,)()(), D x y x x x a x b ?? =≤≤≤≤,其中 12 (),() x x ??在[,] a b上连续,则有 2 1 () () (,)(,) b x a x D f x y d dx f x y dy ? ? σ= ????;(1) 若D为y型区域(如图2),即{} 12 (,)()(), D x y y y y c y d ψψ =≤≤≤≤,其中 12 (),() y y ψψ在[,] c d上连续,则有 2 1 () () (,)(,) d y c y D f x y d dy f x y dx ψ ψ σ= ????.[1](2)例1 计算 2 2 D y dxdy x ??,其中D是由2 x=,y x =,及1 xy=所围成. 分析积分区域如图3所示,为x型区域()1 D=,12, x y x y x x ?? ≤≤≤≤ ?? ?? .确定了积分区

域然后可以利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ??≤≤≤≤???? 则 1.2 积分区域非X 型或Y 型区域二重积分的计 算 当被积函数的原函数比较容易求出, 是简单的x 型或y 型区域,不能直接使用公式(1行计 算,这是可以将复杂的积分区域划分为若干x 型或 y 型区域,然 后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是y 型区域,但是将可D 划 分为()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型 区域, 进而通过公式(3)和(1)可进行计算. 解 D 划分为

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域D 可用不等式 a x b x y x ≤≤≤≤??12()()表示, 其中?1()x , ?2()x 在[,]a b 上连续 这个先对 y , 后对x 的二次积分也常记作 f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12 如果积分区域D 可以用下述不等式 c y d y x y ≤≤≤≤,()()φφ12 表示,且函数φ1()y ,φ2()y 在[,]c d 上连续, f x y (,)在D 上连续,则 f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212 (2)

显然,(2)式是先对x ,后对 y 的二次积分. 几何法.画出积分区域D 的图形(假设的图形如下 ) 在],[b a 上任取一点x ,过x 作平行于y 轴的直线,该直线穿过区域D ,与区域D 的边界有两个交点))(,(1x x ?与))(,(2x x ?,这里的)(1x ?、)(2x ?就是将x ,看作常数而对 y 积分时的下限和上限;又因x 是在区间[,] a b ,所以再将x 看作变量而对x 积分时,积分的下限为a 、上限为b . 例1计算xyd D ?? σ, 其中D 是由抛物线 y x 2=及直线y x =-2所围成 的区域.

D y y x y :,-≤≤≤≤+1222 xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212 [] =+-=-?12245 8 2512y y y dy () 2.利用极坐标计算二重积分 1、rdrd θ就是极坐标中的面积元素. x r →cos θ y r →sin θdxdy rdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ?? 2、极坐标系中的二重积分, 可以化归为二次积分来计算. αθβ?θ?θ≤≤≤≤12()()r 其中函数?θ1(), ?θ2()在[,]αβ上连续. f r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() ()θθθθθθα β ?θ?θ????=12 注:本题不能利用直角坐标下二重积分计算法来求其精确值.

三重积分的计算方法

三重积分的计算方法 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积 分)和一个二重积分。从顺序看:如果先做定积分?21 z z dz )z ,y ,x (f ,再做二重积分 ??σD d )y ,x (F ,就是“投影法” ,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二” 这一步。σ=???Ω???d ]dz )z ,y ,x (f [dv )z ,y ,x (f D z z 21 如果先做二重积分??σz D d )z ,y ,x (f 再做定积分?21c c dz )z (F ,就是“截面法”,也 即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即]c ,c [z 21∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??σz D d )z ,y ,x (f ,完成了“先二”这一步(二重积分); 进而计算定积分?21 c c dz )z (F ,完成“后一”这一步。 dz ]d )z ,y ,x (f [dv )z ,y ,x (f 2 1z c c D σ=???Ω???。当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)z (σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲面中有较多的平面时,常用直角坐标系计算) D 是圆域(或其部分),且被积函数形如)x y (f ),y x (f 22+时,可选择柱面坐标系计算(当Ω为圆柱体或圆锥体时,常用柱面坐标计算) (3)Ω是球体或球顶锥体,且被积函数形如)z y x (f 222++时,可选择球

三重积分的计算方法与例题

三重积分得计算方法: 三重积分得计算就是化为三次积分进行得。其实质就是计算一个定积分(一重积分)与一个二重积分。从顺序瞧: 如果先做定积分,再做二重积分,就就是“投影法”,也即“先一后二”。步骤为:找及在xoy面投影域D。多D上一点(x,y)“穿线”确定z得积分限,完成了“先一”这一步(定积分);进而按二重积分得计算步骤计算投影域D上得二重积分,完成“后二”这一步。 如果先做二重积分再做定积分,就就是“截面法”,也即“先二后一”。步骤为:确定位于平面之间,即,过z作平行于xoy面得平面截,截面。区域得边界曲面都就是z得函数。计算区域上得二重积分,完成了“先二”这一步(二重积分);进而计算定积分,完成“后一”这一步。 当被积函数f(z)仅为z得函数(与x,y无关),且得面积容易求出时,“截面法”尤为方便。 为了简化积分得计算,还有如何选择适当得坐标系计算得问题。可以按以下几点考虑:将积分区域投影到xoy面,得投影区域D(平面) (1)D就是X型或Y型,可选择直角坐标系计算(当得边界曲面中有较多得平面时,常用直角坐标系计算) (2)D就是圆域(或其部分),且被积函数形如时,可选择柱面坐标系计算(当为圆柱体或圆锥体时,常用柱面坐标计算) (3)就是球体或球顶锥体,且被积函数形如时,可选择球面坐标系 计算

以上就是一般常见得三重积分得计算方法。对向其它坐标面投影或不易作出得情形不赘述。 三重积分得计算方法小结: 1、对三重积分,采用“投影法”还就是“截面法”,要视积分域及被积函数f(x,y,z ) 得情况选取。 一般地,投影法(先一后二):较直观易掌握; 截面法(先二后一): 就是在z 处得截面,其边界曲线方程易写 错,故较难一些。 特殊地,对积分时,f(x,y ,z)与x,y 无关,可直接计算。因而中只要, 且 f(x,y,z)仅含z 时,选取“截面法”更佳。 2、对坐标系得选取,当为柱体,锥体,或由柱面,锥面,旋转抛物面与其它曲面所围 成得形体;被积函数为仅含z 或时,可考虑用柱面坐标计算。 三重积分得计算方法例题: 补例1:计算三重积分,其中为平面与三个坐标面围成得闭区域。 解1“投影法” 1、画出及在xoy 面投影域D 、 2、 “穿线” X 型 D: ∴: 3、计算 ???? ?? ???-----Ω +---=--===1 0103221 10 10 1 10 2]3 1)1()1[(21)1(21dx y y x y x dy y x dx zdz dy dx zdxdydz I x x y x x 解2“截面法”1、画出。2、 过点z 作垂直于z 轴得平面截得。 就是两直角边为x,y 得直角三角形, 3、计算??????????====Ω 1 1 1 0][][z z z D D D dz zS dz dxdy z dz zdxdy zdxdydz I ???=+-=--==1 0321010241 )2(21)1)(1(21)21(dz z z z dz z z z dz xy z 补例2:计算,其中就是与z=1围成得闭区域。 解1“投影法” 1、画出及在xo y面投影域D、 由消去z, 得即D: 2、 “穿线”, X 型 D: ∴ 3、计算

相关文档
最新文档