CDMA的语音编码与信道编码

CDMA的语音编码与信道编码
CDMA的语音编码与信道编码

CDMA的语音编码与信道编码

摘要:随着3G移动通信技术的逐步实现以及移动通信与互联网的融合,全球正迅速步

入移动信息时代。CDMA已被广泛接纳为第三代移动通信的核心技术之一,它具有优越的性能。本文主要介绍CDMA中常用的语音编码技术与信道技术。

关键词:语音编码信道编码受激励线性编码码激励线性预测编码编码器解码器一、CDMA中的语音编码技术

语音编码为信源编码,是将模拟信号转变为数字信号,然后在信道中传输。在数字移动通信中,语音编码技术具有相当关键的作用,高质量低速率的话音编码技术与高效率数字调制技术相结合,可以为数字移动网提供高于模拟移动网的系统容量。目前,国际上语音编码技术的研究方向有两个:降低话音编码速率和提高话音质。

语音编码技术的分类

语音编码技术有三种类型:波形编码、参量编码和混合编码。

波形编码:是在时域上对模拟话音的电压波形按一定的速率抽样,再将幅度量化,对每个量化点用代码表示。解码是相反过程,将接收的数字序列经解码和滤波后恢复成模拟信号。参量编码:又称声源编码,是以发音模型作基础,从模拟话音提取各个特征参量并进行量化编码,可实现低速率语音编码,达到2kbit/s-4.8kbit/s。但话音质量只能达到中等。

混合编码:是将波形编码和参量编码结合起来,既有波形编码的高质量优点又有参量编码的低速率优点。其压缩比达到4kbit/s-16kbit/s。泛欧GSM系统的规则脉冲激励――长期预测编码(RPE-LTP)就是混合编码方案。.

CDMA的语音编码

CDMA系统如同其它数位式行动电话系统,它也采用语音编码技术来降低语音的资料速率。CDMA系统的语音编码主要有从线性预测编码技术发展而来的激励线性预测编码QCELP和增强型可变速率编码EVRC。

(1)QCELP 受激线性预测编码

QCELP,即QualComm Code Excited Linear Predictive(QualComm受激线性预测编码)。这种算法不仅可工作于4/4.8/8/9.6kbit/s等固定速率上,而且可变速率地工作于800bit/s~9600bit/s之间。Q4401、Q4413单片语音编码器就是基于这种编码算法。QCELP算法被认为是到目前为止效率效率最高的一种算法,它的主要特点之一,是使用适当的门限值来决定所需速率。I‘1限值懈景噪声电平变化而变化,这样就抑制了背景噪声,使得即使在喧闹的环境中,也能得到良好的话音质量,CDMA8Kbit/s的话音近似GSM 13Mbit/s的话音。CDMA采用QCELP编码等一系列技术,具有话音清晰、背景噪声小等优势,其性能明显优于其他无线移动通信系统,语音质量可以与有线电话媲美。

(2) CELP 码激励线性预测编码

CELP 码激励线性预测编码是Code Excited Linear Prediction的缩写。CELP是近10年来最成功的语音编码算法。CELP语音编码算法用线性预测提取声道参数,用一个包含许多典型的激励矢量的码本作为激励参数,每次编码时都在这个码本中搜索一个最佳的激励矢

量,这个激励矢量的编码值就是这个序列的码本中的序号。CELP (Code-Excited Linear Prediction) 这是一个简化的 LPC 算法,以其低比特率著称 (4800-9600Kbps),具有很清晰的语音品质和很高的背景噪音免疫性。CELP 是一种在中低速率上广泛使用的语音压缩编码方案。它综合使用了线性预测、矢量量化、感觉加权、A-B-S (综合分析法)等技术,在4~16kb/s 的速率上,是电话宽带语音编码得到很高的编码质量。编码器的基本原理框图如图1所示。与LPC 模型类似,CELP 模型中也有激励信号和声到滤波器,但它的激励信号不再是LPC 模型中的二元激励信号。在目前常用的CELP 模型中,激励信号来自两个方面:长时基音预测器(又称自适应码本)和随机码本。自适应码本被用来描述语音信号的周期性(基音信息)。固定的随机码本则被用来逼近语音信号经过短时和长时预测后的线性预测余量信号。从自适应码本和随机码本中搜索出的最佳激励矢量乘以各自的最佳增益后相加,便可得到激励e(n)。它一方面被用来更新自适应码本,另一方面则被输入到合成滤波器H(z)以得到合成语音^s(n)。^s(n)与原始语音s(n)的误差通过感觉加权滤波器W(z)后可得到感觉加权误差信号e(n)。使e(n)均方误差为最小的激励矢量就是最佳激励矢量。

L

I

图 1 CELP 编码其原理框图

CELP 的解码过程已经包含在编码过程中。在解码时,根据编码传输过来的信息从自适应码本和随机码本中找出最佳码矢量,分别乘以各自的最佳增益并相加,可以得到激励信号e(n),将e(n)输入到合成滤波器H(z),便可得到合成语音s(n)。可以看出,搜索最佳激励矢量是通过综合出重建语音信号进行的。这种通过综合来分析语音编码参数的优化方法称为综合分析法,即A-B-S 方法。采用这种方法明显提高了合成语音的质量,但也使编码运算量增加不少。固定码本采用不同的结构形式,就构成不同类型的CELP 。

CELP 算法简介:

线性预测:

y(n)

∑=--=p 1i i )

i n (y a

)n (y ?

CELP 语音合成示意图:

从语音产生的机理出发,对人发音模型的有关参数进行编码,即分析-合成编码,可获得较好音质的同时有效降低编码率,其中最具代表性的是线性预测编码(Linear Prediction Code-LPC)和码激励线性预测编码(Code Excited Linear Prediction Code-CELP)。 LPC 的基本原理是根据人发声特点来建立语音产生的数学模型。人发声时有清音和浊音之分,清音无基音,呈现与白噪声类似的平坦频谱,所以可用白噪声作为清音的激励;浊音则有振动的基本频率(基音),故可用具有一定基音频率的脉冲源作激励;而人的声管相当于一组滤波器,对不同的激励产生不同的响应,形成特定声音的输出。

为了提高重建话音的自然度,编码端可以增加一组预测滤波器,采用闭环LPC 结构,由特征参数激励得到预测信号,将此信号与原信号s(n)相减得到残差信号e(n),把此信号与有关参数一并编码传送,在解码端进行误差修正可有效改善语音质量。

但此时将降低编码效率。不过如果我们能对一定时间内残差信号可能出现的各种样值的组合按一定规则排列构成一个码本,编码时从本地码本中搜索出一组最接近的残差信号,然后对该组残差信号对应的地址编码并传送,解码端也设置一个同样的码本,按照接收到的地址取出相应的残差信号加到滤波器上完成话音重建,则显然可以大大减少传输比特数,提高编码效率。这就是CELP 编码的基本原理。

它有两个预测滤波器,短时预测计算每一采样的残差,长时预测计算每个子帧(5ms)的残差。由码本取出的激励e(n)经长短时预测后得到预测值,与输入信号s(n)相减得到差值,将此差值通过感知加权滤波器,以最小均方误差准则(LMS)判定最佳激励码本e(n)。 CELP 码激励线性预测编码的特点:

改善语音的质量:

对误差信号进行感觉加权,利用人类听觉的掩蔽特性来提高语音的主观质量;用分数延迟改进基音预测,使浊音的表达更为准确,尤其改善了女性语音的质量;使用修正的MSPE 准则来寻找 “最佳”的延迟,使得基音周期延迟的外形更为平滑;根据长时预测的效率,调整随机激励矢量的大小,提高语音的主观质量;使用基于信道错误率估计的自适应平滑器,在信道误码率较高的情况下也能合成自然度较高的语音。 索引a 增益a

0255子帧延迟自适应码本

?

索引s

随机码本

511增益s ?

⊕线性预测滤波器线谱参数

语音信号更新

(3) VSELP矢量和激励线性预测编码

VSELP 矢量和激励线性预测编码是Vector Sum Excited Linear Prediction的缩写。这种算法采用三个码本作为激励信号,其中两个是随机码本,一个是自适应码本,最终的激励信号是三个激励矢量的和。VSELP语音编码器可以利用合理的计算复杂性达到最高的可能的语音质量,同时提供给信道误差韧性,这些目标对于远程通信应用中的公认的低数据率(4.8 --- 8kpbs)语音编码至关重要。

图2是VSELP语音的解码器的方框图。VSELP codec总共利用三个激励源,其一来自长项(节距)预测状态或适应性码本;其余的源来自VSELP激励码本之一或之二。

对于8kbps编码器采用两个VSELP码本,每个码本包含的信息量相当于128个矢量;而4.8kbps的编码器仅利用一个VSELP码本,包含相当于2048个矢量的信息量。这两个或三个激励源与它们相应的增益相乘,并求和以出组合的激励序列ex(n),处理完每一子帧后,ex(n)用于更新长项滤波器状态,合成滤波器是直接十阶全极点滤波器,LPC系数每20ms帧编码一次,通过内插(对8kbps系统)每5ms子帧更新一次,激励参数每子帧内也更新。

4.8kbps系统利用帧长为30ms,子帧长为7.5ms,子帧内一采样数分别为:8kpbs为40,4.8kpbs为60,采样率为8kHz。节距(pitch)前置滤波器和频谱后置滤波器用于提高重建的语音质量。

图2 VSELP语音解码器

二、CDMA中的信道编码技术

信道编码技术是第三代移动通信的一项核心技术。在第三代移动通信系统主要提案中(包括W-CDMA和cdma2000等),除采用与IS-95CDMA系统相类似的卷积编码技术和交织技术之外,还建议采用Turbo编码技术机RS-卷积码级联技术。

(一)CDMA2000中的信道编码技术

Turbo码

为了适应高速数据业务的需求,CDMA2000中采用Turbo编码技术(编码速率可以是1/2、1/3或1/4)。Turbo编码器由两个递归系统卷积码(RSC)成员编码器、交织器和删除器构成,每个RSC有两路校验位输出,两上RSC的输出经删除复用后形成Turbo码。编码器一次输入Nturbobit,包括信息数据、帧校验(CRC)和保留bit,输出(Nburbo+6)/R 符号。Turbo译码器由两个软输入软输出的译码器、交织器和去交织器构成,两个成员译码

器对两个成员编码器分别交替译码,并通过软输出相互传递信息,进行多轮译码后,通过对软信息作过零判决得到译码输出。

Turbo码具有优异的纠错性能,但译码复杂度高,时延大,因此主要用于高速率,对译码时延要求不高的数据传输业务。与传统的卷积码相比,Turbo码可降低对发射功率的要求,增加系统容量。在CDMA2000中,Turbo码仅用于前向补充信道和反向补充信道中。

Turbo编码器采用两个并行相连的系统递归卷积编码器,并辅之以一个交织器。两个卷积编码器的输出经并串转换以及凿孔(Puncture)操作后输出。相应的,Turbo解码器由首尾相接、中间由交织器和解交织器隔离的两个以迭代方式工作的软判输出卷积解码器构成。虽然目前尚未得到严格的Turbo编码理论性能分析结果,但从计算机仿真结果看,在交织器长度大于1000、软判输出卷积解码采用标准的最大后验概率(MAP)算法的条件下,其性能比约束长度为9的卷积码提高1至2.5db。目前Turbo码用于第三代移动通信系统的主要困难体现在以下几个方面:1)由于交织长度的限制,无法用于速率较低、时延要求较高的数据(包括语音)传输;2)基于MAP的软输出解码算法所需计算量和存储量较大,而基于软输出Viterbi的算法所需迭代次数往往难以保证;3)Turbo编码在衰落信道下的性能还有待于进一步研究。

(一)RS编码

RS编码是一种多进制编码技术,适合于存在突发错误的通信系统。RS解码技术相对比较成熟,但由RS码和卷级码构成的级联码在性能上与传统的卷级码相比提高不多,故在未来第三代移动通信系统采用的可能性不大。

W-CDMA中的信道编码技术

W-CDMA信道编码类型主要有两种:正交短扩谱码和非正交的长、短置乱码。正交短扩谱码用于信道编码, W—CDMA的信道编码部分包含纠错编码和交织。E1SI和ARIB都提出了各自的方案,两方案的操作步骤基本相同。首先,业务直接进入信道编码器,或几种业务经过第一级业务复用进入信道编码器;接着在信道编码器中作第一级编码、交织和速率适配。ETSI建议先交织,再作静态速率适配;ARIB建议先作业务专用速率适配,再作可选的交织。接下来作第二级复用、速率适配和交织。ETSI称第二级速率适配为动态速率适配,为上行链路专有,且这一步的交织为帧内交织;而ARIB建议了一种新的交织方法,叫做多级交织方法(Multi—stage Interleaving Method,简称MIL);最后,数据映射到一个或多个DPD—CH。W—CDMA传输信道提供了两类纠错方式:前向纠错(FEC)和自动重发请求(ARQ)。FEC是无线业务最基本的纠错方式,ARQ作为一种补充方式尚未作详细讨论。在FEC方式中,ETSI 又建议了三种前向信道纠错码,它们分别是:

卷积码:用于误码率为10-3级别的业务,典型的有传统的话业务。类似于第二代移动通信系统,提案中用到了约束长度为9、码率为1/2和l/3的卷积码。典型情况下,1/3码率的卷积码用于正常(非打孔)模式下的专用传输信道(DCHs),而1/2码率的卷积码用于打孔模式下的DCHs。

外RS码+外交织+卷积码:典型应用是用于误码率为10-6的业务中。RS码为256进制,码率大约为4/5。信道编码中的级联用到基于256进制符号的外交织,交织的宽度等于RS 分组码的码长。交织的范围可在20ms和150ms之间变化,属于帧间交织。它的优点是有系统的编码理论基础,技术成熟;与turbo码相比,其缺点是硬件复杂,可能会引入较大的时延。

Turbo码:是ETSI提出的用于高数据率(32kbit/s以上)、高质量业务的备选方案。日本ARIB较晚的版本(1998年7月)已用Turbo码取代了串行级联码,作为高质量业务的纠错编

码方案。Turbo码的优点有性能接近香农限、译码算法的硬件实现较串行级联码简单等。缺点是目前缺乏理论依据,它的性能分析都是建立在仿真的基础上,有可能引入较大的时延。Turbo码最早由韩国和北美的cdma2000标准提出,用于第三代移动通信系统的信道编码方案,经研究发现有较好的性能后,W—CDMA等其它标准也纷纷转而采纳。从中可以看到信道编码在整个移动通信系统中具有相对独立的地位,也可以看到标准制定后并非一成不变,还需要不断跟踪并融合先进的技术,以求完善。

业务专用编码(例如某些类型的话音编解码的不等纠错保护)。业务专用编码允许除以上编码方案外的其它编码方案,为U—TRA第一层提供了更大的灵活性。

参考文献:

(1)郭梯云. 数字移动通信. 人民邮电出版社. 2001年

(2)陈显治. 现代通信技术. 电子工业出版社. 2001年

(3)朱旭红、卢学军(译). 宽带CDMA第三代移动通信技术. 人民邮电出版社. 2000年

(4)周胜军(译). WCDMA技术与系统设计. 机械工业出版社. 2002年

(5)曹雪虹,张宗橙. 信息论与编码(第二版)[M]. 清华大学出版社. 2008(10)

信道编码的发展

信道编码发展概述 摘要:信道编码为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。本文主要介绍几种主要的信道编码和译码原理和它们实现方法和性能和各种编码的优缺点,并介绍其在现代通信技术中的应用如WCDMA和3G通信技术。 关键词:分组码; 卷积码; 级联码; Turbo码;通信技术; 中图分类号:TP91811 Development of Channel Codes Abstract: Channel coding in order to match the statistic properties of channel, and to distinguish the pathway and improve the reliability of communication, and on the basis of the source code, add some new oversight element according to certain rule, in order to realize the error correction coding. This paper mainly introduces several main channel coding and decoding principle and their implementation methods and properties and the advantages and disadvantages of all kinds of coding, and introduces its application in the modern communication technologies such as WCDMA and 3G communications technology. Key words:block codes; convolution code; concatenation codesturbo code; communication technology; 0引言 一个完整的通信系统,在从信源至接收的全过程中,对信号进行的编码包括信源编码、信道编码以及加密与解密,其中信源编码与信道编码是对信号进行处理的重要步骤,而加密与解密则主要用于接收系统中。 信道编码又称为纠错编码,是指将信号进行编码处理,以使编码后的传送码流与信道传输特性相匹配,其根本目的是为了提高信息传输的可靠性,即提高系统的抗干扰能力。信道编码是数字通信区别于模拟通信的显著标志,其主要实现方法是通过增大码率或频带,即增大所需的信道容量。这一点恰好与信源编码为适应存储及信道传输要求而进行压缩码率或频带而相反。信道编码在当今的通信系统中有这至关重要的地位,TD-SCDMA中主要采用了卷积码和CRC检错码,而Turbo码在WCDMA的差错控制技术中和4G通信中起着至关重要的作用。 1分组码 将信源的信息序列按照独立的分组进行处理和编码,称为分组码。编码时将每k个信息位分为一组进行独立处理,变换成长度为n(n>k)的二进制码组。 简单实用编码包括奇偶监督码、二维奇偶监督码、恒比码、正反码,其中奇偶监督码和分组码又同属于代数码。分组码一般用符号(n,k)表示,其中n是码组的总位数,又成为码组的长度(码长),k是码组中信息码元的数目,– n k r 为码组中的监督码元数目。在分组码中,把码组中“1”的个数目称为码组的重量,简称码重。把两个码组中对应位上数字不同的位数称为码组的距离,简称码距又称海明距离。分组码线性是指码组中码元的约束关系是线性的, 而分组则是对编码而言。他可以用近似代数理论中有限维有限域的矩阵来描述。线性分组码实际上是利用线性空间的扩展, 即由原来的k维扩展到n 维, 利用被扩展的(n - k ) 维来发现、纠正信道传输中的差错。 1.1 循环码 循环码是一种无权码,每位代码无固定权值,任何相邻的两个码组中,仅有一位代码不同。而纠错码的译码是该编码能否得到实际应用的关键所在。译码器往往比编码较难实现,对于纠错能力强的纠错码更复杂。根据不同的纠错或检错目的,循环码译码器可分为用于纠错目的和用于检错目的的循

音频的编解码

音频编码解码基本概念介绍 对数字音频信息的压缩主要是依据音频信息自身的相关性以及人耳对音频信息的听觉冗余度。音频信息在编码技术中通常分成两类来处理,分别是语音和音乐,各自采用的技术有差异。 语音编码技术又分为三类:波形编码、参数编码以及混合编码。 波形编码:波形编码是在时域上进行处理,力图使重建的语音波形保持原始语音信号的形状,它将语音信号作为一般的波形信号来处理,具有适应能力强、话音质量好等优点,缺点是压缩比偏低。该类编码的技术主要有非线性量化技术、时域自适应差分编码和量化技术。非线性量化技术利用语音信号小幅度出现的概率大而大幅度出现的概率小的特点,通过为小信号分配小的量化阶,为大信号分配大的量阶来减少总量化误差。我们最常用的G.711标准用的就是这个技术。自适应差分编码是利用过去的语音来预测当前的语音,只对它们的差进行编码,从而大大减少了编码数据的动态范围,节省了码率。自适应量化技术是根据量化数据的动态范围来动态调整量阶,使得量阶与量化数据相匹配。G.726标准中应用了这两项技术,G.722标准把语音分成高低两个子带,然后在每个子带中分别应用这两项技术。 参数编码:广泛应用于军事领域。利用语音信息产生的数学模型,提取语音信号的特征参量,并按照模型参数重构音频信号。它只能收敛到模型约束的最好质量上,力图使重建语音信号具有尽可能高的可懂性,而重建信号的波形与原始语音信号的波形相比可能会有相当大的差别。这种编码技术的优点是压缩比高,但重建音频信号的质量较差,自然度低,适用于窄带信道的语音通讯,如军事通讯、航空通讯等。美国的军方标准LPC-10,就是从语音信号中提取出来反射系数、增益、基音周期、清/浊音标志等参数进行编码的。MPEG-4标准中的HVXC声码器用的也是参数编码技术,当它在无声信号片段时,激励信号与在CELP时相似,都是通过一个码本索引和通过幅度信息描述;在发声信号片段时则应用了谐波综合,它是将基音和谐音的正弦振荡按照传输的基频进行综合。 混合编码:将上述两种编码方法结合起来,采用混合编码的方法,可以在较低的数码率上得到较高的音质。它的特点是它工作在非常低的比特率(4~16 kbps)。混合编码器采用合成分析技术。

CDMA语音编码和信道编码

CDMA的语音编码与信道编码 摘要:随着3G移动通信技术的逐步实现以及移动通信与互联网的融合,全球正迅速步入移动信息时代。CDMA已被广泛接纳为第三代移动通信的核心技术之一,它具有优越的性能。本文主要介绍CDMA中常用的语音编码技术与信道技术。 关键词:语音编码信道编码受激励线性编码码激励线性预测编码矢量和激励线性预测编码编码器解码器卷积码 1 CDMA中的语音编码技术 语音编码为信源编码,是将模拟信号转变为数字信号,然后在信道中传输。在数字移动通信中,语音编码技术具有相当关键的作用,高质量低速率的话音编码技术与高效率数字调制技术相结合,可以为数字移动网提供高于模拟移动网的系统容量。目前,国际上语音编码技术的研究方向有两个:降低话音编码速率和提高话音质量。 1.1 语音编码技术的分类 语音编码技术有三种类型:波形编码、参量编码和混合编码。 ●波形编码:是在时域上对模拟话音的电压波形按一定的速率抽样,再将 幅度量化,对每个量化点用代码表示。解码是相反过程,将接收的数字 序列经解码和滤波后恢复成模拟信号。波形编码能提供很好的话音质 量,但编码信号的速率较高,一般应用在信号带宽要求不高的通信中。 脉冲编码调制(PCM)和增量调制(ΔM)常见的波形编码,其编码速率 在16~64kbps。 ●参量编码:又称声源编码,是以发音模型作基础,从模拟话音提取各个 特征参量并进行量化编码,可实现低速率语音编码,达到2~4.8kbps。 但话音质量只能达到中等。 ●混合编码:是将波形编码和参量编码结合起来,既有波形编码的高质量 优点又有参量编码的低速率优点。其压缩比达到4~16kbps。泛欧GSM 系统的规则脉冲激励-长期预测编码(RPE-LTP)就是混合编码方案。1.2 CDMA的语音编码

通信信号处理的技术发展新方向

通信信号处理的技术发展新方向 一通信技术的起源 自19世纪初电通信技术问世以来,短短的100多年时间里,通信技术的发展可谓日新月异。“千里眼”、“顺风耳”等古人的梦想不但得以实现,而且还出现了许多人们过去想都不曾想过的新技术。 实现通信的方式很多,随着社会的需求、生产力的发展和科学技术的进步,目前的通信越来越依赖利用“电”来传递消息的电通信方式。由于电通信迅速、准确、可靠且不受时间、地点、距离的限制,因而近百年来得到了迅速的发展和广泛的应用。当今,在自然科学领域涉及“通信”这一术语时,一般均是指“电通信”。广义来讲,光通信也属于电通信,因为光也是一种电磁波。 通信技术的发展,不可避免的就要涉及到通信信号的处理。所谓"信号处理",就是要把记录在某种媒体上的信号进行处理,以便抽取出有用信息的过程,它是对信号进行提取、变换、分析、综合等处理过程的统称。 二通信系统的组成 通信是从一地向另一地传递和交换信息。实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。 信源是消息的产生地,其作用是把各种消息转换成原始电信号,称之为消息信号或基带信号。电话机、电视摄像机和电传机、计算机等各种数字终端设备就是信源。前者属于模拟信源,输出的是模拟信号;后者是数字信源,输出离散的数字信号。 发送设备的基本功能是将信源和信道匹配起来,即将信源产生的消息信号变换成适合在信道中传输的信号。变换方式是多种多样的,在需要频谱搬移的场合,调制是最常见的变换方式。对数字通信系统来说,发送设备常常又可分为信源编码与信道编码。 信道是指传输信号的物理媒质。在无线信道中,信道可以是大气(自由空间),在有线信道中,信道可以是明线、电缆或光纤。有线和无线信道均有多种物理媒质。媒质的固有特性及引入的干扰与噪声直接关系到通信的质量。根据研究对象的不同,需要对实际的物理媒质建立不同的数学模型,以反映传输媒质对信号的影响。 三信号处理的目的和方法 人们最早处理的信号局限于模拟信号,所使用的处理方法也是模拟信号处理方法。在用模拟加工方法进行处理时,对"信号处理"技术没有太深刻的认识。这是因为在过去,信号处理和信息抽取是一个整体,所以从物理制约角度看,满足信息抽取的模拟处理受到了很大的限制。 由于通信信号的特殊性,以及在传播过程中的干扰和损耗,有效的传输信号成了要解决的头等问题。 随着数字计算机的飞速发展,信号处理的理论和方法也得以发展。并出现了不受物理制约的纯数学的加工,即算法,并确立了信号处理的领域。信号处理的目的是削弱信号中的多余内容;滤出混杂的噪声和干扰;或者将信号变换成容易处理、传输、分析与识别的形式,以便后续的其它处理。现在,对于信号的处理,人们通常是先把模拟信号变成数字信号,然后利用高效的数字信号处理器或计算机对其进行数字信号处理。 一般数字信号处理涉及三个步骤: (一) 模数转换(A/D转换):把模拟信号变成数字信号,是一个对自变量和幅值同时进行离散化的过程,基本的理论保证是采样定理。 (二) 数字信号处理(DSP):包括变换域分析(如频域变换)、数字滤波、识别、合成等。

语音编码技术及其在通信系统中的应用

多媒体技术基础期末论文 题目:语音压缩编码及其在通信系统中的应用 专业:通信工程 姓名:张娴 学号: 1 2 3 0 7 1 3 0 4 4 9

2016年5月24日 在现代通信中,随着科学技术的迅速发展,图像、数据等非话音信息在通信信息总量中所占的比例大大提高,而且这种提高的趋势仍然会继续下去。比如说,以前的手机基本上只可以打电话,发短信,不能接收文件,不能观看视频,但是现在的3G手机甚至4G手机,可以看视频,接发文件,还有很多的应用软件。语音信号所占的传输比例的确是大大减小。但是,到目前为止,在大多数通信系统中,传输最多的信息仍然是语音信号。比如说我们经常打电话,用语音发微信,听音乐,看视频等等。在可以预见的未来通信中,尽管语音信号在通信信息总量中所占的比例会有所下降,但仍然会是传输最多的信息。 语音信号是模拟信号,不能直接在数字通信系统中传输,必须先进行模/数转换再进行数/模转换,这种转换就称为语音编译码(简称语音编码),其作用是将语音模拟信号转换为数字信号,到了接收端,再将收到的语音数字信号还原为语音模拟信号。可见,语音编码技术在数字通信中具有十分重要的作用,随着计算机技术与超大规模集成电路技术的飞速发展和广泛应用,信号的数字处理、数字传输和数字存储日益显示出巨大的优越性。数字化技术的应用范围迅速扩大到各个科学技术领域,渗透到工农业生产和社会生活的各个方面。因此,尽量减少信号占有带宽、持续时间和存储容积,以节省信号在传输、处理和存储中的开销,具有巨大的经济价值。所以,语音编码技术,尤其是语音压缩编码技术(编码速率在16kbit/s以下),近年来受到人们的广泛关注和重视,有着极为迫切的客观需求。正是在这种强大的客观需求推动下,近二十几年来,随着计算

有关语音传输速率、信道编码速率、信道总速率的专题

GSM系统的语音编码采用了规则脉冲激励长期预测编码(RPE-LEP编码器,Regular Pulse Excited Long Term Prediction ),RPE-LEP编码器结合了波形编码和声码器两种技术,编码速率低且话音质量高。原始语音信号是连续的模拟信号,经抽样、量化、编码等过程数字化之后,再送入RPE-LEP编码器,每20ms取样一次,每次输出260bit,所以语音传输全速率信道的速率为260bit/20ms=13kbit/s。 将每20ms取样输出的260bit的语音信号分成两部分,一部分是对差错敏感的,共182bit,如果这部分比特发生错误将严重影响语音质量;另一部分是对差错不敏感的,共78bit。然后,再对重要部分的182bit 进行分类:最重要的50bit和次重要的132bit,对最重要的50bit加上3个奇偶校验比特,次重要的132bit 再加上4个尾比特。然后,对这50+3+132+4=189bit进行R=1/2的卷积编码,此时,速率变为[(50+3+132+4)x2+78]/20ms=22.8kbit/s作为信道编码速率。 时隙的格式(普通突发脉冲序列)(见下图)

在GSM的TDMA中,帧被定义为每个载频中所包含的8个连续的时隙,相当于FDMA系统中的一个频道。在每个时隙中,信号以突发脉冲系列(burst)的形式发送。TDMA帧号是以3.5小时(2715648个TDMA 帧)为周期循环编号的。每个TDMA帧含8个时隙,整个帧时长约为4.615ms,每个时隙含156.25bit个突发脉冲码元,时隙时长为0.577ms。GSM规范定义了两种不同的复帧结构,即含26帧、持续时间为120ms和含51帧、持续时间为235.385ms。26帧的复帧包括26个TDMA 帧,持续时间为120ms,51个这样的复帧组成一个超帧。这种复帧用于携带TCH (和SACCH加FACCH),用于语音信道及其随路控制信道,其中24个突发序列用于业务,2个突发序列用于信令。时隙时长:120/26/8=15/26ms=0.577ms。信道总速率:156.25/0.577=270.83kbit/s。每个比特占用的时间约为:0.577/156.25=3.7us/bit

5 差错控制与信道编码

第五章 差错控制与信道编码
内容简介
学习要求
学习目录
结束放映
作者:蒋占军

内容简介
——差错控制就是通过某种方法,发现并纠正数据传输中出现的 错误。差错控制技术是提高数据传输可靠性的重要手段之一,现 代数据通信中使用的差错控制方式大都是基于信道编码技术来实 现的,本章对差错控制的基本概念以及常用的信道编码方案作了 比较详细的理论述。
返回
结束

学习要求
1. 理解差错控制的基本概念及其原理等; 2. 掌握信道编码的基本原理; 3. 了解常用检错码的特性; 4. 掌握线性分组码的一般特性; 5. 掌握汉明码以及循环码的编译码及其实现原理; 6. 了解卷积码的基本概念。
返回
结束

学习目录
5.1 概述 5.2 常用的简单信道编码 5.3 线性分组码 5.4 卷积码
返回
结束

5.1 概 述
本节内容提要:
——差错控制是数据通信系统中提高传输可靠性,降低系统传输误 码率的有效措施 。本节将介绍差错控制和信道编码的基本原理、 差错控制的实现方式等内容。 5.1.1 差错控制 5.1.2 信道编码 5.1.3 基于信道编码的差错控制方式
上一页
下一页

5.1.1 差错控制
差错控制 ——通过某种方法,发现并纠正传输中出现的错误。 香农信道编码定理 ——在具有确定信道容量的有扰信道中,若以低于信道容量的速率传输 数据,则存在某种编码方案,可以使传输的误码率足够小。 基于信道编码的差错控制 ——在发送端根据一定的规则,在数据序列中按照一定的规则附加一 些监督信息,接收端根据监督信息进行检错或者纠错。
上一页
下一页

现代通信技术的历史

现代通信技术的历史 所谓通信,最简单的理解,也是最基本的理解,就是人与人沟通的方法。无论是现在的电话,还是网络,解决的最基本的问题,实际还是人与人的沟通。现代通信技术,就是随着科技的不断发展,如何采用最新的技术来不断优化通信的各种方式,让人与人的沟通变得更为便捷,有效。这是一门系统的学科,目前炙手可热的3G就是其中的重要课题。 通信技术和通信产业20世纪80年代以来发展最快的领域之一。不论是在国际还是在国内都是如此。这是人类进入信息社会的重要标志之一。 通信就是互通信息。从这个意义上来说,通信在远古的时代就已存在。人之间的对话是通信,用手势表达情绪也可算是通信。以后用烽火传递战事情况是通信,快马与驿站传送文件当然也可是通信。现代的通信一般是指电信,国际上称为远程通信。 纵观同新的发展分为以下三个阶段:第一阶段是语言和文字通信阶段。在这一阶段,通信方式简单,内容单一。第二阶段是电通信阶段。1937年,莫尔斯发明电报机,并设计莫尔斯电报码。1876年,贝尔发明电话机。这样,利用电磁波不仅可以传输文字,还可以传输语音,由此大大加快了通信的发展进程。1895年,马可尼发明无线电设备,从而开创了无线电通信发展的道路。第三阶段是电子信息通信阶段。从总体上看,通信技术实际上就是通信系统和通信网的技术。通信系统是指点对点通所需的全部设施,而通信网是由许多通信系统组成的多点之间能相互通信的全部设施。 而现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。 数字通信即传输数字信号的通信,,是通过信源发出的模拟信号经过数字终端的心愿编码成为数字信号,终端发出的数字信号,经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,在传输到对段,经过相反的变换最终传送到信宿。数字通信以其抗干扰能力强,便于存储,处理和交换等特点,已经成为现代通信网中的最主要的通信技术基础,广泛应用于现代通信网的各种通信系统。 程控交换技术即是指人们用专门的电子计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。程控交换最初是由电话交换技术发展而来,由当初电话交换的人工转接,自动转接和电子转接发展到现在的程控转接技术,到后来,由于通信业务范围的不断扩大,交换的技术已经不仅仅用于电话交换,还能实现传真,数据,图像通信等交换。程控数字交换机处理速度快,体积小,容量大,灵活性强,服务功能多,便于改变交换机功能,便于建设智能网,向用户提供更多,更方便的电话服务。随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向给予分株的数据交换和宽带交换,以及适应下一代网络基于IP的业务综合特点的软交换方向发展。 信息传输技术主要包括光纤通信,数字微波通信,卫星通信,移动通信以及图像通信。 光纤是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍;损耗低,中继距离长;具有抗电磁干扰能力;线经细,重量轻;还有耐腐蚀,不怕高温等优点。 数字微波中继通信是指利用波长为1m~1mm范围内的电磁波通过中继站传输信号的一种通信方式。其主要特点为信号可以"再生";便于数字程控交换机的连接;便于采用大规模集成电路;保密性好;数字微波系统占用频带较宽等的优点,因此,虽然数字微波通信只有二十多年的历史,却与光纤通信,卫星通信一起被国际公认为最有发展前途的三大传输手段。 卫星通信简单而言就是地球上的无线电通信展之间利用人在地球卫星作中继站而进行的通信。其主要特点是:通信距离远,而投资费用和通信距离无关;工作频带宽,通信容量大,适用于多种业务的传输;通信线路稳定可靠;通信质量高等优点。

信道编码

第六章目标 通过本章学习,学生应该能够: 1.画出GSM突发脉冲序列的结构图并理解每个构成的用途。 2.理解为保护空中接口上语音、数据和控制信道不出错采用的不同措施。

GSM突发脉冲序列(Burst) 对面图示的是一个GSM突发脉冲序列(Burst),它包括以下几个部分: ●信息 即话音,数据或控制信息。 ●保护带 BTS和MS接收信息时都必须在分配给它的时隙这一短暂的时间段内接收和解码突发脉冲序列,所以对于定时精确性的要求极高。采用保护带之后,允许有一小段空白的时间误差,一定程度上降低了定时精确性的要求。准确的说,时隙的长度是 0.577ms,脉冲序列的长度是0.546ms,允许时隙中突发脉冲序 列有0.031ms时间上的误差。 ●偷帧标志 当话务信道突发脉冲序列被FACCH(Fast Associated Control Channel)盗用时,这两个比特将被设臵.只设臵了一个比特表示突发脉冲序列只有一半被盗用。 ●训练序列 供接收均衡器评估BTS和MS之间物理通路的传输质量,训练比特长26比特. ●尾比特 用于指示突发脉冲序列的开始和结束。

GSM 突发脉冲序列和TDMA帧 保护带保护带信息训练序列信息 尾比特 偷帧标志 尾比特常规突发脉冲序列

GSM突发脉冲序列… 突发脉冲序列类型(Burst Types) 对面图示了GSM空中接口用到的五种脉冲序列。所有的脉冲序列,不管是什么类型的,必须在时间上准确定时到给定的时隙。 突发脉冲序列Burst是BTS或MS发送的比特序列,时隙则是一个固定的时间段,脉冲序列必须顺序准确的到达这一时间段,以便接收器能正确接收解码。 ●常规突发脉冲序列(Normal Burst) 常规突发脉冲序列用于业务信道和除以下所说的各种控制信道以外的控制信道。(双向的) ●频率校正突发脉冲序列(Frequency Correction Burst) 该突发脉冲序列用于下行的FCCH,使MS能校正自己振荡器的频率并锁定到BTS的频率。 ●同步突发脉冲序列(Synchronization Burst) 用来用于下行的SCH,使MS同步到BTS。 ●填充突发脉冲序列(Dummy Burst) 当BCCH载频中没有用到的时隙中没有信息可发送时,发送填充突发脉冲序列(仅在下行方向) ●接入突发脉冲序列(Access Burst) 这种突发脉冲序列比其它类型的脉冲序列短很多。因为MS试图接入到系统时还不知道发射定时,所以要增加保护带。MS发送该突发脉冲序列时,BTS并不知道MS的位臵,所以来自MS的消息的定时也无法准确计算(接入突发脉冲序列仅为上行)。

第九章差错控制编码(信道编码)

第九章差错控制编码(信道编码) 9.1引言 一、信源编码与信道编码 数字通信中,根据不同的目的,编码分为信源编码与信道编码二大类。 信源编码~ 提高数字信号的有效性,如,PCM编码,M 编码,图象数据压缩编码等。 信道编码~ 提高传输的可靠性,又称抗干扰编码,纠错编码。 由于数字通信传输过程中,受到干扰,乘性干扰引起的码间干扰,可用均衡办法解决。 加性干扰解决的办法有:选择调制解码,提高发射功率。 如果上述措施难以满足要求,则要考虑本章讨论的信道编码技术,对误码(可能或已经出现)进行差错控制。 从差错控制角度看:信道分三类:(信道编码技术) ①随机信道:由加性白噪声引起的误码,错码是随机的,错码间统计独立。 ②突发信道:错码成串,由脉冲噪声干扰引起。 ③混合信道:既存在随机错误,又存在突发错码,那一种都不能忽略不计的信道。 信道编码(差错控制编码)是使不带规律性的原始数字信号,带上规律性(或加强规律性,或规律性不强)的数字信号,信道译码器则利用这些规律性来鉴别是否发生错误,或进而纠错。 需要说明的是信道编码是用增加数码,增加冗余来提高抗干扰能力。二:差错控制的工作方式 (1) 检错重发 (2) 前向纠错,不要反向信道 (3) 反馈校验法,双向信道 这三种差错控制的工作方式见下图所示: 检错重发 前向纠错 反馈校验法 检错误 判决信号 纠错码 信息信号 发 发 收 信息信号

9.2 纠错编码的基本原理 举例说明纠错编码的基本原理。 用三位二进制编码表示8种不同天气。 ???????? ?????雹 雾 霜 雪 雨阴 云 晴111 0111 01001 11001010 0000???→ ?种 许使用种中只准 48码组许用码组,其它为禁用雨阴云晴 011101110000??? ? ??? 许用码组中,只要错一位(不管哪位错),就是禁用码组,故这种编码能发现任何一位出错,但不能发现的二位出错,二位出错后又产生许用码。 上述这种编码只能检测错误,不能纠正错误。 因为晴雨阴错一位,都变成1 0 0。 要想纠错,可以把8种组合(3位编码)中,只取2种为许用码,其它6种为禁用码。 例如: 0 0 0 晴 1 1 1 雨 这时,接收端能检测两个以下的错误,或者能纠正一个错码。 例:收到禁用码组1 0 0时,如认为只有一位错,则可判断此错码发生在第1位,从而纠正为0 0 0(晴),因为1 1 1(雨)发生任何一个错误都不会变成1 0 0。 若上述接收码组种的错码数认为不超过二个,则存在两种可能性: 位错) (位错)(21111000/变成100 因为只能检出错误,但不能纠正。 一:分组码,码重,码距 (见樊书P282 表9-1) 将码组分段:分成信息位段和监督位段,称为分组码,记为(n, k ) n ~ 编码组的总位数,简称码长(码组的长度) k ~ 每组二进制信息码元数目,(信息位段) r k n =- ~ 监督码元数目,(监督位段)(见樊书P282,图9-2) 一组码共计8种

数字通信的简介与发展

数字通信的简介与发展The introduction and development of digital communication 作者:刁士琦 2015/12/17

摘要 本课题以为通信系统研究对象,通过网络、书籍查询相关知识与技术发展。 全文分为八部分,第一部分是绪论,介绍本课题的重要意义。第二部分是通信系统的相关知识。第三部分是数字通信系统的分类。第四部分是数字通信的特点。第五部分是数字通信的发展。第六部分为结论。 关键词:通信系统、数字通信

目录 摘要 (2) 1引言 (3) 2通信系统的基本组成 (4) 2.1信源 (4) 2.2信道 (4) 2.3接收设备 (4) 2.4信宿 (4) 2.5发送设备 (4) 3数字通信系统 (5) 3.1数字频带传输通信系统 (5) 3.2数字基带传输通信系统 (5) 3.3模拟信号数字化传输通信系统 (5) 4数字通信的主要特点 (5) 4.1数字通信的优点 (5) 4.2数字通信的缺点 (6) 5数字通信的发展 (6) 5.1数字通信的发展历史 (5) 5.2数字通信的发展现状 (7) 5.3数字通信的发展前景 (8) 6结论 (8) 参考文献 (10)

1引言 实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。现代通信系统主要借助电磁波在自由空间的传播或在导引媒体中的传输机理来实现,前者称为无线通信系统,后者称为有线通信系统。 2通信系统的基本组成 2.1信源 信源(信息源,也称发终端)的作用是把待传输的消息转换成原始电信号。信源输出的信号称为基带信号。所谓基带信号是指没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是信号频谱从零频附近开始,具有低通形式。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号,相应地,信源也分为数字信源和模拟信源。 2.2信道 信道是指信号传输的通道,可以是有线的,也可以是无线的,甚至还可以包含某些设备。图中的噪声源,是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。 2.3接收设备 在接收端,接收设备的功能与发送设备相反,即进行解调、译码、解码等。它的任务是从带有干扰的接收信号中恢复出相应的原始电信号来。 2.4信宿 信宿(也称受信者或收终端)是将复原的原始电信号转换成相应的消息,如电话机将对方传来的电信号还原成了声音。 2.5发送设备

现代通信技术发展的主要趋势和方向

现代通信技术发展的主要趋势和方向 摘要:本文回顾了20世纪移动通信技术发展的历程,对现代通信技术进行了概述。主要针对移动通信、卫星通信、光纤通信及数字微波通信进行了发展趋势的介绍。同时,对现代通信技术的未来发展方向进行了展望。 关键词:移动通信卫星通信光纤通信现代信息 技术发展趋势 0引言 20世纪在人类历史上写下了光辉的一章:1900年波罗的海的一群遇难渔民,通过无线电呼叫而得救,移动通信第一次在海上证明了它对人类的价值;1903年底莱特驾驶自己的飞行器飞上了蓝天,开创了航空交通新领域;1946年世界上第一架计算机诞生,开创了信息经济时代和扩展人类脑力的里程碑;1969年世界上第一个采用存储转发的分组交换计算机网络ARPANET开通,为因特网的高速发展奠定了基础。 纵观通信技术的发展,虽然只有短短的一百多年的历史,却发生了翻天覆地的变化,由当初的人工转接到后来的电路转接,以及到现在的程控交换和分组交换,还有可以作为未来分组化核心网用的ATM交换机,IP路由器;由当初只是单一的固定电话到现在的卫星电话,移动电话,IP电话等等,以及由通信和计算机结合的各种其他业务,第三代通信技术的即将上市,以及以后的第四代通信,随着通信技术的发展,人类社会已经逐渐步入信息化的社会。 21世纪是一个信息社会,信息交流已经成为人们生活的基本需要。通信作为传输和交换信息的重要手段,是推动人类社会文明、进步与发展的巨大动力。电话技术的演变日新月异,传输媒介、交换设备、传输设备、终端设备和通信方式的改变都是影响电信通信的因素。 1现代通信技术概述 现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。 1.1数字通信 数字通信即传输数字信号的通信,,是通过信源发出的模拟信号经过数字终端的心愿编码成为数字信号,终端发出的数字信号,经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,在传输到对段,经过相反的变换最终传送到信宿。 1.2程控交换 程控交换技术即是指人们用专门的电子计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向给予分株的数据交换和宽带交换,以及适应下一代网络基于IP的业务综合特点的软交换方向发展。 1.3信息传输 信息传输技术主要包括移动通信,光纤通信,卫星通信,数字微波通信,以及图像通信。 1)移动通信 早期的通信形式属于固定点之间的通信,随着人类社会党俄发展,信息传递日益频繁,移动通信正是因为具有信息交流灵活,经济效益明显等优势,得到了迅速的发展,所谓移动通信,就是在运动中实现的通信。其最大的优点是可以在移动的时候进行通信,方便,灵活。现在的移动通信系统主要有数字移动通信系统(GSM),码多分址蜂窝移动通信系统(CDMA)。 2)光纤通信 光纤是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍;损耗低,中继距离长;具有抗电磁干扰能力;线经细,重量轻;还有耐腐蚀,不怕高温等优点。 3)卫星通信 卫星通信简单而言就是地球上的无线电通信展之间利用人在地球卫星作中继站而进行的通信。其主要特点是:通信距离远,而投资费用和通信距离

软件无线电的历史和发展趋势

软件无线电的历史和发展趋势 姓名 (单位xxxx) 摘要:自20世纪90年代初以来,移动通信领域一场新的技术革命悄然兴起,这就是以软件无线电为特征的新一代通信系统研究与开发。软件无线电(SWR)技术是第三代移动通信系统和军用电台的发展趋势。文章主要介绍了软件无线电的概念、软件无线电的研究历史、软件无线电的应用和软件无线电在国际和国内的发展趋势。 关键词:软件无线电(SDR),无线通信,移动通信 一、引言 软件无线电(SDR)这一概念一经提出,就得到了全世界无线电领域的广泛关注。由于软件无线电所具有的灵活性、开放性等特点,使其在无线通信中获得了广泛应用。随着研究的深入,软件无线电的民用潜力日益受到重视,民用研究已经成为软件无线电研究的主战场,尤其是在移动通信方面更具有广阔的发展空间,被比喻为第三代、第四代全球通信的基石。东芝、诺基亚、摩托罗拉等各大通信公司总裁都宣布要从数字无线电向软件无线电转变,并正在为此不懈努力。无论是GSM还是CDMA技术,解决不同公司、不同标准之间互通的最佳办法就是采用软件无线电解决方案。 二、软件无线电简介 软件无线电的产生原因与海湾战争有关,当时以美国为首的多国部队中使用了多种不同制式的通讯设备,因而造成了互相通讯的困难。在1992年5月在美国通信系统会议上,JesephMitola(约瑟夫·米托拉)首次提出了“软件无线电”(SoftwareRadio,SDR)的概念。1995年IEEE通信杂志(CommunicationMagazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。1996年3月发起“模块化多功能信息变换系统”(MMITS)论坛,1999年6月改名为“软件定义的无线电”(SDR)

移动通信练习题+答案

1.(√)所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 2.(×)邻道干扰是指相邻或邻近的信道(或频道)之间的干扰,是由于一个弱信号串扰强信号而造成的干扰。(强信号串扰弱信号) 3.(√)移动通信的信道是指基站天线、移动用户天线和两幅天线之间的传播路径。 4.(×)电波的自由空间传播损耗是与距离的立方成正比的。(平方) 5.(×)由于多径传播所引起的信号衰落,称为多径衰落,也叫慢衰落。 6.【】(×)移动通信中,多普勒频移的影响会产生附加的调频噪声,出现接收信号的失真。 7.(√)莱斯分布适用于一条路径明显强于其他多径的情况。在接收信号中没有主导分量时,莱斯分布就转变为瑞利分布。 8.(×)在多径衰落信道中,由于时间色散导致发送信号产生的衰落效应是快衰落和慢衰落。(频率色散)P39 9.(√)分集接收的基本思想,就是把接收到的多个衰落独立的信号加以处理,合理地利用这些信号的能量来改善接收信号的质量。 10.(√)在实际工程中,为达到良好的空间分集效果,基站天线之间的距离一般相当于10多个波长或更多。 11.(×)GSM移动通信系统中,每个载频按时间分为16个时隙,也就是16个物理信道.8 12.(√)GSM中的逻辑信道分为专用信道和公共信道两大类。 13.(×)GSM中的同频干扰保护比要求C/I>-9dB,工程上一般增加3dB的余量。9 14.(×)GSM中的广播控制信道BCCH和业务信道TCH一样可通过跳频方式提高抗干扰性能。P261 15.(√)跳频就是有规则地改变一个信道的频隙(载频频带)。跳频分为慢跳频和快跳频。在GSM的无线接口上采用的是慢跳频技术。 16.(√)GPRS是指通用分组无线业务,是基于GSM网络所开发的分组数据技术,是按需动态占用频谱资源的。P293

论信息论与编码的发展与前景

信息论与编码的发展与前景 摘要:信息论理论的建立,提出了信息、信息熵的概念,接着人们提出了编码定理。编码方法有较大发展,各种界限也不断有人提出,使多用户信息论的理论日趋完整,前向纠错码(FEC)的码字也在不断完善。但现有信息理论中信息对象的层次区分对产生和构成信息存在的基本要素、对象及关系区分不清,适用于复杂信息系统的理论比较少,缺乏核心的“实有信息”概念,不能很好地解释信息的创生和语义歧义问题。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明,其他信道也有一些结果,但尚不完善。但近几年来,第三代移动通信系统(3G)的热衷探索,促进了各种数字信号处理技术发展,而且Turbo码与其他技术的结合也不断完善信道编码方案。 关键词:信息论信道编码纠错编码信息理论的缺陷 3G Turbo码 一、信息论的形成和发展 信息论从诞生到今天,已有五十多年历史,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。 1.1信息论形成的背景与基础 信息论是在人们长期的通信工程实践中,由通信技术和概率论、随机过程和数理统计相结合而逐步发展起来的一门学科。人们公认的信息论的奠基人是当代伟大的数学家、美国贝尔实验室杰出的科学家香农,他在1948年发表了著名的论文《通信的数学理论》,为信息论奠定了理论基础。近半个世纪以来,以通信理论为核心的经典信息论,正以信息技术为物化手段,向高精尖方向迅猛发展,并以神奇般的力量把人类社会推入了信息时代。随着信息理论的迅猛发展和信息概念的不断深化,信息论所涉及的内容早已超越了狭义的通信工程范畴,进入了信息科学领域。 通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。 电的通信系统(电信系统)已有100多年的历史了。在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。这是因为通信系统对人类社会的发展,其关系实在是太密切了。日常生活、工农业生产、科学研究以及战争等等,一切都离不开消息传递和信息流动。 例如,当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。1876年,贝尔(A.G.BELL)又发明了电话系统。1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。 本世纪初(1907年),根据电子运动的规律,福雷斯特(1,Forest)发明了能把电磁波进行放大的电子管。之后很快出现了远距离无线电通信系统。大功率超高频电子管发明以后,电视系统就建立起来了(1925—1927)。电子在电磁场运动过程中能量相互交换的规律被人们认识后,就出现了微波电子管(最初是磁控管,后来是速调管、行波管),接着,在三十年代末和四十年代初的二次世界大战初期,微波通信系统、微波雷达系统等就迅速发展起来。五十年代后期发明了量子放大器,六十年代初发明的激光技术,使人类进入了光纤通信的时代。

移动通信的发展史

移动通信发展史 调研报告 组员:周小灵 韦娅彬 薛琰 陈亦斌 陈健 夏文伟 时间:2012年4月6号 摘要和关键字是我加上的,标注为红色的是我认为可以删掉的,我觉得一代和二代大概3页不到的样子,3G大概3页多,这样的布局比较好。还有一些标点符号和段落前的空两格我改了。

摘要:移动通信发展至今经历了三代,第一代主要是模拟制式的频分双工;2G 是基于数字传输的,主要采用TDMA和CDMA技术;3G使用高的频带和TDMA技术传输数据来支持多媒体业务。未来的四代和五代是在服务质量、传输速率、带宽等方面的再次提升。 关键字:移动通信技术服务质量数据传输速率移动通信业务 引言 生活于21世纪的我们,每天都在用手机进行通信,似乎它早已成为我们生活中不可或缺的一部分,甚至有时会觉得没了它生活总少了点什么。 作为21世纪的我们,作为通信专业的学生,我们即应该了解时代的尖端技术,也应该了解技术的起源,了解它的成长史。很多技术的发展都是在原来的基础上进行改进的,只有这样我们才能追本溯源,才能对得起自己的所学。 随着社会的进步、经济和科技的发展,特别是计算机、程控交换、数字通信的发展,近些年来,移动通信系统以其显著的特点和优越性能得以迅猛发展,应用在社会的各个方面,到目前为止,全球移动用户超过 1亿,预计到本世纪末用户数将达到2亿。无线通信的发展潜力大于有线通信的发展,它不仅仅提供普通的电话业务功能,并能提供或即将提供丰富的多种业务,满足用户的需求。 本调研基于对移动发展各历程的调查,介绍移动通信各阶段的发展,及其相应的技术,并对其做简要的描述,让大家对于移动的发展史有一定的了解。同时也对未来的移动通信的发展进行展望。 从通信网的角度看,移动网可以看成是有线通信网的延伸,它由无线和有线两部分组成。无线部分提供用户终端的接入,利用有限的频率资源在空中可靠地传送话音和数据;有线部分完成网络功能,包括交换、用户管理、漫游、鉴权等,构成公众陆地移动通信网PLMN。从陆地移动通信的具体实现形式来分主要有模拟移动通信和数字移动通信这两部种。 移动通信系统从40年代发展至今,根据其发展历程和发展方向,可以划分为三个阶段,第四代是目前正在研究的热门,而第五代是对未来的展望。下面我们就来看下各个阶段的发展。

浅谈移动通信系统中的语音编码技术

浅谈移动通信系统中的语音编码技术 赵彦辉 (050000 河北坐地管线工程股份有限公司 河北 石家庄) 【摘 要】为提高移动通信系统的抗干扰能力和抗衰弱能力,移动通信采取了多种有效的技术措施,而语音编码技术就是其中非常重要的一种。本文对移动通信中的语音编码技术做出如下论述。 【关键词】语音编码 移动通信 技术 随着科学技术的迅速发展,移动通信技术已成为人们日常生活中的重要组成部分。为了提高数字移动通信中频带的使用率,我们通常使用的是调控解调技术和无线线路控制,在此基础上我们也可以使用语音编码技术,科学有效的去除数字移动通信系统中存在的语音冗余,达到维护优质编码的目的。 一、语音编码技术的种类 (一)参数编码 参数编码就是人们口中常说的声码器。其主要工作原理是通过将频率域内的信源信号或其他正交变化域内信源信号中的特征参量进行提取。然后通过对其进行系统的处理和转换,将其变成易于传输的数字代码,进而完成传输工作。相同的道理,参数解码则是将系统所接受到了数字序列经过系统的处理和转换,将其转变成为与之相对应的特征参量,并依靠所转变出的特征参量对语音信号进行重建。这种算法的最大优点就是其并不依赖于所输入语音的原始波形,而是能够根据其使用者(人类)的听觉特性来进行适当的调整,进而保证所解码的语音在任何时候能够具有一定的清晰度,便于使用者的理解和使用。目前所普遍使用的线性预测编码(LPC)就是参量编码当中最为常见的一种。 (二)波形编码 波形编码在语音编码方法中是最常见的一种,是指通过模拟语音波形的采样,然后量化采样的幅度,对其进行二进制编码。解码器作数模变化之后,低通滤波器会由现在的模式改变为原始模拟语音波形,以上为线性编码调制,也被称之为脉冲编码调制。可以通过自动适应预测、样值差分和非线性量化等方法实现数据的压缩。波形编码的最终目的是尽量使原始波形与解码器所恢复的模拟信号相一致,也就是将失真降到最小。波形编码可以称之为是最简单的方法,数码率相对较高,比较容易达到,当数码频率小于16k b i t音质很差,数码频率小于32k b i t音质会逐渐降低,数码频率为32kbit—64 kbit其音质最优。所以,在普通信号宽带通信中波形编码被有效利用,目前的移动通信中频率资源是非常紧张的,显然波形编码并适合。波形编码技术包括自适应差分编码、脉冲编码调制、增量调制等。 (三)混合编码 混合编码是语音编码方法当中相对困难的一种方法,其主要工作原理就是将参数编码与波形编码两者相结合,去糟取精择两者之优而用。在此基础之上,混合编码相对于参数编码和波形编码而言其音质更好一些,当然其复杂程度与技术含量也更高一些,正因如此笔者才会将混合编码定位于编码程序当中相对困难的依据。目前,规划脉冲、码本脉冲以及多脉冲激励线性预测编码等技术都是混合编码工作当中的主流技术。 二、语音编码技术在移动通信系统中的应用与发展 (一)窄带CDMA系统中的激励和矢量LPC编码 目前,美国的语音编码技术是较为先进的,其所使用的矢量预测和线性预测是构成其数字窝蜂系统的主要编码方式。在该编码系统当中,所使用的矢量预测和线性预测的数字信息速率为4.8k b i t/s,这在很大程度上提高了语音通话的质量。其通过脉冲编码调制技术将语音信号转化为数字信号,然后将数字信号输入到编码器,在编码器当中采用线性预测分析法来实现对语音信号的分析,得到预测参数,进而得到具有逆特性的滤波器。接着以滤波器为标准将声源信号当中的声道特性去除,并得出残差波形。通过残差波形与码本当中的各矢量模块进行加权组合,从而得出残差矢量。 (二)移动通信系统中的RPE-LTP 移动通信的第一代系统所使用的是F D M A模拟蜂窝系统,然而由于该系统的系统容量小、频带利用率低、业务种类有限等多种弊端,使其极大程度上的限制了移动通信系统的发展水平。为此第二代移动通信系统很快的就取代了第一代通信系统。相对于第一代移动通信系统而言,第二代移动通信系统的实际应用水平得到了显著的提高,其将所使用的系统更换为数字窝蜂系统,混合编码技术也成为了该系统当中的语音编码方式。另外根据所使用的激励源不同,第二代移动通信系统还将其编码方案进行了优化和处理。第二代移动通信系统所使用的语音编码方案是以相位间隔相等、幅度优化的规则脉冲信号作为激励源的,这使得所使用的混合波形信号最大程度的接近原始信号。此种方法在结合长期的预测的基础上,有效的降低了编码的速率和信号的多余度,同时此种方法具有语音质量高、计算量适中、易于硬件化和计算简单的优点。 (三)G系统中的VMR-WB编解码器 WCDMA和GSM系统中使用的多速率编码器为窄带的AMR,由于其受到带宽的限制,在语音处理中方面还是存在一些问题的。当宽带AMR音频带宽达到7KHz,采样频率达到16KHz时,其语音的音乐和自然度,尤其是在免提电话中,窄带语音编解码器会得到很大的改变。最初的GSM无线网络定义的宽带编码器为AMR—WB,现已被扩展为有线系统。AMR—WB的计量强度较大,因此,应充分的使用DSP处理能力。 三、结束语 综上所述,随着研发工作的不断深入,在语音编码技术中也在引进高阶统计分析技术、多精度时频分析技术和非线性预测等新分析技术。预计以上这些技术更能贴近于人耳的特性,最真实的分析与合成出最真实的语音,使编译码工作最大化接近于人们的听觉器官处理方式,实现低速率语音编研究工作的新突破。 参考文献: [1]郑国宏,陈亮,张翼鹏. 宽带语音编码技术专题讲座 (四)第8讲 移动通信中的宽带语音编码[J].军事通信技术,2012,01:100-104. [2]冯晓荣.分布式电话调度系统语音编解码方案的研究及DSP实现[D].重庆大学,2012. 57

相关文档
最新文档