大学物理化学知识点归纳

大学物理化学知识点归纳
大学物理化学知识点归纳

第一章气体的pvT关系

一、理想气体状态方程

pV=(m/M)RT=nRT

(1.1)

或pV

m

=p(V/n)=RT

(1.2)

式中p、V、T及n的单位分别为

P a 、m3、K及mol。V

m

=V/n称为气

体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。

此式适用于理想,近似于地适用于低压下的真实气体。

二、理想气体混合物

1.理想气体混合物的状态方程(1.3)

pV=nRT=(∑

B

B

n)RT

pV=mRT/M

mix

(1.4)

式中M

mix

为混合物的摩尔质量,其可表示为

M

mix def ∑

B

B

y M B

(1.5)

M

mix

=m/n=∑

B

B

m/∑

B

B

n

(1.6)

式中M

B

为混合物中某一种组分B

的摩尔质量。以上两式既适用于各种

混合气体,也适用于液态或固态等均

匀相混合系统平均摩尔质量的计算。

2.道尔顿定律

p

B

=n

B

RT/V=y

B

p

(1.7)

P=∑

B

B

p

(1.8)

理想气体混合物中某一种组分B

的分压等于该组分单独存在于混合气

体的温度T及总体积V的条件下所具

有的压力。而混合气体的总压即等于

各组分单独存在于混合气体的温度、

体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似

适用于低压混合系统。

3.阿马加定律

V B *=n

B

RT/p=y

B

V

(1.9)

V=∑V

B

*

(1.10)

V

B

*表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

三、临界参数

每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把

这个温度称为临界温度,以T

c 或t

c

示。我们将临界温度T

c

时的饱和蒸气

压称为临界压力,以p

c

表示。在临界温度和临界压力下,物质的摩尔体积

称为临界摩尔体积,以V

m,c 表示。临

界温度、临界压力下的状态称为临界

状态。

四、真实气体状态方程

1.范德华方程

(p+a/V

m

2)(V

m

-b)=RT

(1.11)

或(p+an2/V2)(V-nb)=nRT

(1.12)

上述两式中的a和b可视为仅与

气体种类有关而与温度无关的常数,

称为范德华常数。a的单位为Pa·m

6·mol,b的单位是m3mol.-1。该方

程适用于几个兆帕气压范围内实际气

体p、V、T的计算。

2.维里方程

Z(p,T)=1+Bp+Cp+Dp+…

(1.13)

或Z(V

m,

,T)=1+B/V

m

+C /

V

m

2 +D/ V

m

3 +…

(1.14)

上述两式中的Z均为实际气体

的压缩因子。比例常数

B’,C’,D’…的单位分别为

Pa-1,Pa-2,Pa-3…;比例常数B,C,D…的

单位分别为摩尔体积单位[V

m

]的一次方,二次方,三次方…。它们依次称为第二,第三,第四……维里系数。这两种大小不等,单位不同的维里系数不仅与气体种类有关,而且还是温度的函数。

该方程所能适用的最高压力

一般只有一两个MPa,仍不能适用于高压范围。

五、对应状态原理及压缩因子

1.压缩因子的对应式

Z def PV/(nRT) =pV

m

/(RT) (1.15)

压缩因子Z是个量纲为1的纯数,理想气体的压缩因子恒为1。一定量实际气体的压缩因子不仅与气体的T,P 有关,而且还与气体的性质有关。在任意温度下的任意实际气体,当压力趋于零时,压缩因子皆趋于1。此式适用于纯实际气体或实际气体混合系统在任意T,p下压缩因子的计算。

2.对应状态原理

P

r

=p/p

c

(1.16)

V

r

=V

m

/V

m,c

(1.17)

T=T/T

c

(1.18)

p

r

、V

r

、T

c

分别称为对比压力、对比体积和对比温度,又统称为气体的对比参数,三个量的量纲均为1。各种不同的气体,只要有两个对比参数相同,则第三个对比参数必定(大致)相同,这就是对应状态原理。

第二章热力学第一定律

一、热力学基本概念

1.状态函数

状态函数,是指状态所持有的、描述系统状态的宏观物理量,也称为状态性质或状态变量。系统有确定的状态,状态函数就有定值;系统始、终态确定后,状态函数的改变为定值;系统恢复原来状态,状态函数亦恢复到原值。

2.热力学平衡态

在指定外界条件下,无论系统与环境是否完全隔离,系统各个相的宏观性质均不随时间发生变化,则称系统处于热力学平衡态。热力学平衡须同时满足平衡(△T=0)、力平衡(△p=0)、相平衡(△μ=0)和化学平衡(△G=0)4个条件。

二、热力学第一定律的数学表达式

1.△U=Q+W

或dU=ΔQ+δW=δQ-p

amb

dV+δ

W`

规定系统吸热为正,放热为负。系统得功为正,对环境做功为负。式

中p

amb

为环境的压力,W`为非体积功。上式适用于封闭系统的一切过程。

2.体积功的定义和计算

系统体积的变化而引起的系统和环境交换的功称为体积功。其定义式为:

δW=-p

amb

dV

(1)气体向真空膨胀时体积功所的计算

W=0

(2)恒外压过程体积功

W=p

amb

(V

1

-V

2

)=-p

amb

△V 对于理想气体恒压变温过程

W=-p△V=-nR△T

(3)可逆过程体积功

W

r

=?2

1

p

V

V

dV

(4)理想气体恒温可逆过程体积功

W

r

=?2

1

p

V

V

dV=-nRTln(V1/V2)=-n

RTln(p

1

/p

2

)

(5)可逆相变体积功

W=-pdV

三、恒热容、恒压热,焓 1.焓的定义式

H def U + p V 2.焓变

(1)△H=△U+△(pV) 式中△(pV)为p V 乘积的增量,只有在恒压下△(pV)=p(V 2-V 1)在数值上等于体积功。

(2)△H=?2

1,T T m p dT nC

此式适用于理想气体单纯p VT 变化的一切过程,或真实气体的恒压变温过程,或纯的液、固态物质压力变化不大的变温过程。

3. 内能变 (1)△U=Qv

式中Qv 为恒热容。此式适用于封闭系统,W`=0、dV=0的过程。

△ U=?2

1,v T T m dT nC =

(12,v T -T m nC 式中m C ,v 为摩尔定容热容。此式适

用于n 、C V,m 恒定,理想气体单纯p 、V 、T 变化的一切过程。

4. 热容 (1) 定义

当一系统由于加给一微小的热容量δQ 而温度升高dT 时,δQ/dT 这个量即热容。

(2) 摩尔定容热容C V ,

m

C V ,m =C V /n=(T

U m

аа)V (封闭系

统,恒容,W 非=0)

(3)摩尔定压热容C p,m C p,m =

=n p C P

???

??T H m аа (封闭系统,恒压,W 非=0)

(4) C p, m 与 C V ,m 的关系 系统为理想气体,则有C p, m —C V ,

m

=R

系统为凝聚物质,则有C p, m —C V ,

m

≈0

(5)热容与温度的关系,通常可

以表示成如下的经验式

C p, m =a+bT+cT 2 或C p, m =a+b`T+c`T -2

式中a 、b 、c 、b`及c`对指定气体皆为常数,使用这些公式时,要注意所适用的温度范围。

(6)平均摩尔定压热容C p,m

C p,m =?2

1

,T T m p dT nC (T 2-T 1)

四、理想气体可逆绝热过程方程

()C m V ,12

T

T ()

R

V V 12

=1

()C m p ,12

T

T ()

R

p p -12

=1

()12p

p ()Γ12V V =1

上式γ=m C ,p /m C ,v ,称为热容比(以前称为绝热指数),以上三式适用于

m C ,v 为常数,理想气体可逆绝热过程,p,V,T 的计算。

五、反应进度 ξ=△n B /v B

上式适用于反应开始时的反应进度为零的情况,△n B =n B -n B ,0,n B ,0为反应前B 的物质的量。

νB 为B 的反应计算数,其量纲为1。ξ的单位为mol 。

六、热效应的计算 1.不做非体积功的恒压过程

Q p =△H=?

2

1

,T T

m p dT nC

2.不做非体积功的恒容过程

Q v =△U=?

2

1

,v T T

m dT nC

3.化学反应恒压热效应与恒容热效应关系

Q p - Q v =(△n)RT

4.由标准摩尔生成焓求标准摩尔反应焓变

Θ

m rH

△=

∑Θ

B

m f B )(H v B △ 5由标准摩尔燃烧焓求标准摩尔

反应焓变

Θm rH △=—∑Θ

B

m C )(H B v B △

6. m rH △与温度的关系 基希霍夫方程的积分形式

Θm rH △(T 2)= Θm rH △(T 1)+

?

Θ2

1

)(,T T m p dT B rC △

基希霍夫方程的微分形式 d Θm rH △=△

r

Θ

m

p,

C dT=∑Θ

B

m

p

B

vBC)

(

,

七、节流膨胀系数的定义式

μ

J-T

=(аT/аp)

H

μ

J-T

又称为焦耳—汤姆逊系数

第三章热力学第二定律

一、卡诺循环

1.热机效率

η

=-W/Q

1=(Q

1

+Q

2

)/Q

1

=(T

1

-T

2

)/T

1

式中Q

1和Q

2

分别为工质在循环

过程中从高温热源T

1

吸收热量和向低

温热源T

2

放出热量这两个过程的可逆热。此式适用于在两个不同的温度之间工作的热机所进行的一切可逆循环。

2.卡诺循环

所有工作于两个确定温度之间的热机,以可逆热机效率最大。

η1r η

r

即是Q

1

/T

1

+Q

2

/T

2

0??

?

?

?

?

=

<

可逆循环

不可逆循环

式中T

1

、T

2

为高低温热源的温度。

可逆时等于系统的温度。

二、热力学第二定律

1.克劳修斯说法

“不可能把热从低温物体传到高

温物体而不产生其他影响。”

2.开尔文说法

“不可能从单一热源吸取热量使

之完全转变为功而不产生其他影响。”

三、熵

1.熵的定义

d S defδQ

r

/T

式中Q

r

为系统与环境交换的可

逆热,T为可逆热δQ

r

时系统的温度。

2.克劳修斯不等式

dS

?

?

?

?

?

?

>

=

,不可逆过程

δ

,可逆过程

δ

T

Q

T

Q

/

/

3.熵判据

△S iso =△S sys +△S amb ?

??

???=>,可逆不可逆0,0

式中iso 、sys 和amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。可逆,即系统内部及系统与环境之间处于平衡态。在隔离系统中,一切自动进行的过程都是向熵增大的方向进行,这称为熵增原理。此式只适用于隔离系统。

四、熵变的计算 1.单纯的PVT 变化

过程中无相变化和化学变化,W`=0,可逆。

△S=?

2

1T Q r

δ=?+21T pdV dU =?+21T

Vdp dH 理想气体系统 △S=nC V,m ln

12T T +nRln 1

2V V

= nC p,m ln

12T T - nRln 1

2p p

= n C p ,m l n

12V V + n C V ,m ln 1

2p p 恒温(T 1=T 2)△S= nRln

1

2

V V =- nRln

1

2

p p 恒压(p 1=p 2)△S= nC p,m ln

1

2

T T = n C p ,m l n

1

2

V V 恒容(V 1=V 2)△S= nC V,m ln

1

2

T T = n C V ,m ln

1

2

p p 凝聚相系统 △S=?

2

1T

Q r

δ 恒容△S =T

,v 2

1

dT nC m T T ?

恒压△S=?

2

1

T

,T T m p dT nC

恒温△S=δQ r /T

2.相变化

可逆变化βα△S=β

α△H/T

不可逆相变,通常设计一条要包括可逆相变步骤在内的可逆途径,此可逆途径的热温熵才是该不可逆过程的熵变。

3.环境熵差及隔离系统熵差的计

△S amb =amb

r T Q ????

??21

δ= Q amb /

T amb =- Q sys / T amb

△S iso =△S amb +△S sys 4.化学反应的标准反应熵

Θm rS △=—∑Θ

B

m )(B S v B

若在温度区间T 1~T 2内,所有反应物及产物均不发生相变化,则

m rS △(T 2)=m rS △(T 1)+dT B C v T T m p B ?

2

1

T

)

(,B

五、热力学第三定律 0K

T lim →*

S m

(完美晶体,T)=0

或 *S m (完美晶体,0K )=0 上式中符号*代表纯物质。上述两式只适用于完美晶体。

六、亥姆霍兹函数

1. 亥姆霍兹函数定义式 A def U-TS

式中A 为系统的亥姆霍兹函数,

U 为系统的内能;TS 为系统温度与规定熵的乘积。

2. 亥姆霍兹函数判据

dA T,V ≤0???

???=<平衡(可逆)自发(不可逆)

在恒温恒容且不涉及非体积功时,才能用△A 判断过程的方向性。若△T,V A<0,则表明在指定的始终态(T,V 相等)之间有自动进行的可能性;若△T,V A>0,则表明在指定的始末态之间处于平衡态。

3. r W A T =△

恒温可逆过程,系统的亥姆霍兹函数变化等于此过程的可逆功W r 。

七、吉布斯(Gibbs )函数 1.吉布斯(Gibbs )函数的定义式 G def H-TS

H 、A 及G 皆为组合函数,它们

皆是系统具有广延性质的状态,而且

皆具有能量的单位。状态一定,它们

皆应有确定的数值,但它们的绝对值既无法测定,也无法求算。

2. 吉布斯(Gibbs )函数数据

dG T,P ≤0?

??

???=<平衡(可逆)自发(不可逆)

在恒温恒压且不涉及非体积功时,才可用△G来判断过程的方向性,在此条件下过程的方向性,在此条件下过程只能向吉布斯函数G减少的方向进行。

3. △G

T,P =W`

r

在恒温恒压下,过程的吉布斯函数等于始末状态间过程的可逆非体积功。在恒温恒压可逆的条件下,此等式才成立。

八、热力学基本方程

d U=T d S-p d V

d A=-S d T-p d V

d H=T d S-V d p

d G=-S d T+V d p

热力学基本公式的适用条件为封闭的热力学平衡系统的可逆方程。不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p、V、T变化的可逆过程,也可适用于相平衡或化学平衡的系统由一平衡状态变为另一平衡状态的可逆方程。

九、克拉佩龙方程

1. 克拉佩龙方程

dp/dT=

m

H

β

α

?/(T

m

V

β

α

?)

此方程适用于纯物质的α相和β相的两相平衡。

2.克劳修斯-克拉佩龙方程

dln(p/[p])=( △

vap

H

m

/RT2)dT

ln(p

2

/p

1

)=( △

vap

H

m

/R)(1/T

1

=1/T

2

)

此式适用于气-液(或气-固)两相

平衡;气体可视为理想气体;*V

m

(l)

与*V

m

(g)相比较可忽略不计;在T

1

~T

2的温度范围内摩尔蒸发焓可视为常数。

对于气-固平衡,上式的△

vap

H

m 则应改为固体的摩尔升华焓。

十、吉布斯-亥姆霍兹方程

V

T

A/T

?

?

?

?

?

?

?

?)

(=-U/T

2

p

T

G/T

?

?

?

?

?

?

?

?)

(=-H/T

2

这两个方程分别表示了A/T在恒容下随T的变化及G/T在恒压下随T

的变化。

十一、麦克斯韦关系式 -(T ?/V ?)S =(p ?/S ?)V (T ?/p ?)S =(V ?/S ?)p - (V ?/T ?)p =(S ?/p ?)T (p ?/T ?)V =(S ?/V ?)T

这4个偏微分方程称为麦克斯韦关系式。物质的量恒定的单相纯物质,只有pVT 变化的一切过程,上述4式皆可适用。对于混合系统,则要求系统的组成恒定,式中V 及S 分别为系统总体积及总的规定熵。

第四章 多组分系统热力学

一、 偏摩尔量

X B ?→?def C

n p T B n X ,,???? ??аа 其中X 为广度量,如V,U,S 全微分式

dX=B n p ,T X ??? ??ааdT+B

n T ,p X ?

??? ??ааdp+∑B

B B

dn X

总和X=∑B

B B n X

2.吉布斯—杜亥姆方程

在T 、p 一定条件下,∑B

B B dn X =0

或∑B

B B dX x =0

此处,x B 指B 的摩尔分数,X B 指B 的偏摩尔量。

3.偏摩尔量间的关系

T ?

???

??p G аа=V=B n T ,B p G ???? ??аа=V B p

???? ??p G аа=-S B n p ,B T G ???

??аа=-S B 二、化学式 1、定义式

混合物(或溶液)中组分B 的偏摩尔吉布斯函数G B 又称B 的化学势。

μB def G B =C

n p T B n ,,G ?

??? ??аа 由热力学的4个基本方程可以得: μ

B =

C n B n ,V ,S U ?

??? ??аа=C

n B

n ,p ,S H ?

??? ??аа=C n V T B

n A ,,???? ??аа=C

n p T B n G ,,?

??? ??аа 2.化学势判据

α

()()∑B B

B dn ααμ≤0?

?????=<平衡自发

(dT=0,dV=0,Δw`=0)

α

()()∑B B

B dn ααμ≤0?

?????=<平衡自发(dT=0,dp=0,Δw`=0)

其中,μB (α)指α相内的B 物质。 三、气体组分的化学势 1. 理想气体化学势

(1)纯理想气体的化学势为 μ*(pg )=()g Θμ+RTln(p/Θp )

μ*

(pg )表示纯理想气体在温度T 、

压力p 时的化学势。()g Θμ是纯理想气体在标准压力Θp =100kPa 下的化学势,即标准化学势。

(2)混合理想气体中任一组分B

的化学势为

μB (pg )=Θ)(g B μ+RTln ????

??Θp p B 其中,p B =y B 为B 的分压。 2.真实气体化学势

(1)纯真实气体的化学势为 μ*(g )

=()g Θμ+RTln ???

?

??Θp p +

?

??

?

???-p

m p RT g V 0

*)(dp 其中,)(*g V m 为该温度下纯真实气

体的摩尔体积。低压下,真实气体近似认为是理想气体,故积分项为0。

(3) 真实气体混合物中任一组分B 的化学势为 μB (g )

=Θ)(μg B +RTln ???? ??Θp p B +????

???-p p RT g V 0B

)(总dp

其中,V B (g )为真实气体混合物中组分B 温度T 及总压p 总 下的偏摩尔体积。

四、拉乌尔定律与亨利定律

1.拉乌尔定律

p A =*A p x A

式中p A 为溶液A 的蒸汽压;*A p 为纯溶剂在同样温度下的饱和蒸汽压。x A 为溶液中A 的摩尔分数。

.拉乌尔定律只适用于理想液态混合物或理想稀溶液中的溶剂。

2.亨利定律

p B =k

x,B

x

B

式中k

x,B

为亨利系数,其值与溶质、溶剂的性质及温度有关。也可用

其他浓度,如c

B 、b

B

来表示亨利定律,

但这时亨利系数的大小及单位皆应相应改变。

此式只适用于理想稀溶液中的溶质。当挥发性溶液的浓度较大时,应以活度代替浓度,并要求溶质在气相中的分子形态与液相相同。

五、理想液态混合物

定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。

p B =*

B

p x B

其中,0≤x

B

≤1,B为任一组分。

2.理想液态混合物中任一组分B 的化学势

μ

B(l)=*

)

(l

B

μ+RTln(x B)

其中,*

)

(l

B

μ为纯液体B在温度T、压力p的化学势。

若纯液体B在温度T、压力Θp下的标准化学势为Θ

)

(l

B

μ,则有

*

)

(l

B

μ=Θ

)

(l

B

μ+dp

p l

B

m

?Θ*p)(,V≈Θ)(l Bμ

其中,

)

(

,

V

l

B

m

为纯液态B在温度T 下的摩尔体积。

3. 理想液态混合物的混合性质

(1)△

mix

V=0

(2)△

mix

H=0

(3)△

mix

S=-?

?

?

?

?∑

B

R∑

B

B

B

)

ln(x

x

(4)△

min

G=—T△

mix

S

六、理想稀溶液

1.溶剂的化学势

μ

A(l)

=*

)

(

A l

μ+RTln(x A)

)

(

A l

μ=Θ

)

(

A l

μ+

RTln(x

A

)+dp

p

?Θ*p*A(l)m,V

当P与Θp相差不大时,积分项可

忽略,则A的化学势为

)

(

A l

μ=Θ

)

(

A l

μ+

RTln(x

A

)。稀溶液溶剂服从拉乌尔定律,溶质服从亨利定律,故稀溶液的溶剂化学势的表示与理想溶液中任一组分的化学势表达式一样。

2.溶质的化学势

溶质服从亨利定律,故 μB (溶质)=μB (g )=Θ)(g B μ+

RTln ?

??? ??Θp p B =Θ

)(g B μ+ RTln (Θ

p b k B B b /,)

= Θ

)

(g B μ

+ RTln

(ΘΘp b k B b /,)+ RTln (Θb /B b )

又因为Θ)(g B μ+ RTln

(ΘΘp b k B b /,)=Θ)(溶质μB +dp p ?Θ∞

p

)B(V 溶质

μB (溶质)=Θ)(溶质μB + RTln

(Θ

p /B b )+dp p

?Θ∞

*

p B V (溶质)

其中,在p 与Θp 相差不大时,可忽略积分项。

3.分配定律

在一定温度、压力下,当溶质在共存的两不互溶溶液间平衡时,若形成理想稀溶液,则溶质在两液相中的质量摩尔浓度之比为一常数:

K=b B (α)/b B (β)

其中K 为分配系数,b B (α)、b B (β)为溶质B 在α、β两相中的质量摩尔浓度。

七、稀溶液的依数性

溶剂蒸气压下降:△p A =*A p x B 凝固点降低(条件:溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出):

△T f =K f b B K f =

ΘA

m fus A f H M ,2

*T R △)(

沸点升高(条件:溶质不挥发): △T b =K b b B

K b =Θ

A

m A

b H M ,2

*T R △)( 渗透压:ⅡV=n B RT 八、逸度与逸度因子 1.逸度及逸度因子

气体B 的逸度p B ,是在温度T 、总压力p 总下,满足关系式

μB (g )=Θ)(g B μ+ RTln ????

??Θp p B 的物理量,它具有压力单位。其计算式为

B p def p B

exp ??

?

?????????????-?p B dp p RT g V 01)(总 逸度因子(即逸度系数)为气体B

的逸度与其分压之比

ΦB =B p /p B

理想气体逸度因子恒等于1。 2. 逸度因子的计算与普通化逸度因子图

ln ΦB =?

???

??

?-p

B dp p RT g V 0

1)(总 对纯真实气体,式中V B(g)即为该气体在T 、p 下的摩尔体积)(*

g V m

,用

)(*g V m =ZRT/p 代替V B (g )得ln Φ

=()?

-r

p r

r

p dp Z 0

1

不同气体,在相同对比温度Tr 、对比压力p r 下,有大致相同的压缩因子Z ,因而有大致相同的逸度因子Φ。

3.路易斯—兰德尔逸度规则 混合气体组分B 的逸度因子等于该组分B 在混合气体温度及总压下单

独存在时的逸度因子。

B p =ΦB p B =ΦB p 总y 总=*B

?p 总,

y 总

=*

B p y B

适用条件:由几种纯真实气体在恒温恒压下形成混合物时,系统总体

积不变,即体积有加和性。

九、活度与活度因子

对真实液态混合物中的溶剂: μB (l )

def

*)(l B μ+RTln(a B )=

*)(l B μ+RTlnx B f B

其中a B 为组分B 的活度,f B 为组分B 的活度因子。

若B 挥发,而在与溶液的气相中B 的分压P B ,则有

a B = p B /*

B p

且f B =

B B x a =B

B B x p p

* 第五章 化学平衡

一、化学反应的等温方程 1.化学反应亲和势的定义

A=—△r G m

A 代表在恒温、恒压和非体积功

W=0的条件下反应的推动力,A>0反

应能组分进行;A=0处于平衡态;A<0反应不能自发进行,反而是其逆反应会自发进行。

2.摩尔反应吉布斯函数与反应进

度的关系

(аG/аξ)

T, p

=∑

B

B

B

vμ=△r G m

式中的(аG/аξ)

T, p

表示在T、p 及组成一定条件下,反应系统的吉布斯函数随反应进度的变化率,称为摩尔反应吉布斯函数。

3.等温方程

r G

m

=△

r

Θ

m

G+RTlnJ p

式中△

r

Θ

m

G为标准摩尔反应吉布

斯函数;Jp=∏

B (p

B

/Θp)vB。此式适

用于理想气体或低压气体在恒温、恒压及恒组成的条件下,按化学反应计量式进行单位反应的吉布斯函数变的计算。

二、标准平衡常数

1.定义式

r

Θ

m

G=—RTlnΦ

K

式中Φ

K称为标准平衡常数;

Φ

K=J p(平衡)。此式适用于理想气体或低压下气体的温度T下,按化学反应计量式进行单位反应时,反应的△

r

Θ

m

G与Φ

K的相互换算。

二、理想气体反应系统的标准平

衡常数

Φ

K=∏

B

(eq

B

p/Θp)vB

式中eq

B

p为化学反应中任一组分

B的平衡分压。

3.有纯凝聚态物质参加的理想气

体反应系统的标准平衡常数

Φ

K=∏

(g

B

(eq

B

p(g)/Θp)vB(g)

三、温度对标准平衡常数的影响

化学反应的等压方程—范特霍夫

方程

微分式

dlnΦ

K/dT=Θ

m

rH

△/RT2

积分式

ln()Θ

Θ

1

2

/K

K=Θ

m

rH

△(T2-T1)/( RT2T1)

不定积分式lnΦ

K=—Θ

m

rH

△/

(RT)+C

对于理想气体反应,Θ

m

rH

△为定

值,积分式或不定积分式只适用于

m

rH

△为常数的理想气体恒压反应。若

m

rH

△是T的函数,应将其函数关系

式代入微分式后再积分,即可得到

lnΦ

K与T的函数关系式。

四、压力、惰性组分、反应物配比对理想气体化学平衡的影响

1.压力对平衡转化率的影响

ΦK =∏

B

B

v B p p ???

? ??Θ=∏B B

v B p p y ???

?

??Θ=∑Θ???

?

??vB

p p ×∏B

vB

B y

增高压力,反应向有利于体积减小的方向进行。

2.惰性组分对平衡转化率的影响

ΦK =∏B B

v B B p p n n n ????

???+Θ∑0=

∑Θ

???

?

??+∑B

n B n

n p p 0

/×∏B

vB

B n

v B 为参加化学反应各组分的化学计量数,∑B n 和∑B v 分别为对反应组分(不包括惰性组分)的物质的量、化学计量数求和。当

∑B

v

=0时,恒

压下加入惰性组分对转化率无影响;当∑B v >0,恒压下加入惰性组分,平衡向生成产物的方向移动;若∑B v <0,则正好相反。

3.反应物的摩尔配比对平衡转化

率的影响

对于气相化学反应aA+bB=yY+zZ

当摩尔配比r=n B /n A =b/a 时,产物在混合气体中的含量为最大。

五、真实气体反应的化学平衡

ΦK =∏

B

()B

v eq B

??∏

B

(eq B p /Θp )

vB

=∏B

(eq

B ∧p /Θp )vB

上式中eq

B

p 、eq

B ∧p 、eq

B ?分别为气体

在B 化学反应达平衡时的分压力、逸度和逸度系数。ΦK 则为用逸度表示的

标准常数,有些书上用Θ

1K 表示。

上式中eq

B ∧p =eq B p ?eq

B

?。 六、混合物和溶液中的化学平衡 1.常压下液态混合物中

ΦK =∏

B

()B

v eq a B

=∏B

()

B v eq f B

×

∏B

()

B v eq x B

2.常压下液态溶液中的化学平衡

ΦK =()A

A

v eq

a ∏B

()

B v eq a B

=

????????? ?

?-∑B eq B A eq A b M v ?exp ×

()

?

?????∏ΘB

v eq B eq B B

b b /γ

第六章 相平衡

一、相率

F=C-P+2 其中,C=S-R- R`

式中F 为系统的独立变量数,即自由度:C 为组分数;R 为独立的平

衡反应数;R`为独立的限制条件数,即除了任一相中∑B x =1,同一物质在各平衡相中的浓度受化学势相等的限制以及R 个独立化学反应的平

衡常数

ΦK 对浓度的限制之外其它的浓度(或

分压)限制条件皆包含于R`之中。S 为系统的化学物质,P 为相数。公式中的“2”代表T 和p 两个条件。此式只适用于只受温度、压力影响的平恒系统。

二、杠杆规则

杠杆规则在相平衡中是用来计算

系统分成平衡两相(或两部分)时,两相(或两部分)的相对量。如图6-1所示,设在温度T 下,系统中共存在

的两相分别为α相与β相。图中M 、α、

β分别表示系统点与两相的相点;

M B x 、αB x 、βB x 分别代表整个系统、

α相和β相的组成(以B 的摩尔分数表

示);n 、αn 和βn 则分别为系统点、

α相与β相的物质的量。由质量 得

n α(M B x -αB x )=n α

(βB x -M B x ) 或βαn n =α

βB

M B M

B B

x x x x --)(

上式称为杠杆规则,它表示为α、β两相的物质的量的相对大小。如式中

的组成由摩尔分数βB x 、M B x 、α

B x 换

成质量分数αωB 、M B ω、βωB 时,两相

的量相应由物质的量n α与n α换成两相

的质量mα与mα。

三、单组分系统相图

参考图6-2,单组分体系C=1,单相时,P=1则F=2,温度和压力均可变,称为双变量体系;汽化、凝固和升华时两相平衡(三条线上),P=2,则F=1,温度和压力只有一个可变,称为单变量体系;而其三相点(O点)外,P=3,则F=0,状态确定,温度、压力和组成都是定值,没有变量。

四、二组分图

1.气-液平衡相图

二组分体系C=2,若在恒温条件下,可作压力-组分图;若在恒压条件下,可作温度-组分图。此时自由度

F=2-P+1=3-P。定压下,单项区F=2;二相区F=1;最高、最低恒沸点的混合物F=0。

参看图6-3,图(a)、(b)完全共溶系统气-液平衡的压力-组分相同。图(a)是A、B两种物质形成理想液态混合物的相图。图(b)是A、B两种物质形成真实液态混合物的相图,两图的差别很明显,图(a)的液相线为直线。图(c)是二组分理想液态混合物的气-液平衡温度-组成相图。图(d)是部分互溶系统的温度-组成相图,具有最低恒沸点的完全互溶体系与部分互溶体系的组合。图(e)是完全不互溶系统的温度-组成相图。由相图可以得出,共沸点低于每一种纯液体的沸点。

2.固-液相图

固相完全不互溶的固液平衡温度-组成图:图(a)是简单低共熔混合物;图(b)是形成稳定化合物;图(c)是形成不稳定化合物。

固相部分互溶的固液平衡温度-组成图:图(d)是体系具有低共熔点;图(e)是体系有转熔温度。

图6-4所示的二组分固-液相图具有以下共同特征:1)图中的水平线均是三相线;2)图中垂线都表示化合物。

五、三组分系统

利用相率研究体系中相和自由度的变化C=3,F=C-P+2=5-P,自由度最小为0,则相数最多是5;相数最少为1,自由度最多是4。

采用固定温度和压力,利用正三角形的三边表现三组分的摩尔分量,得到体系中各相得平衡曲线。此时条件自由度F*=3-P。

1.相图类型

相图类型(如图6-5所示)分为两大类:

(1)部分互溶的三液体系

有一对部分互溶的三液体体系(a)

有二对部分互溶的三液体体系(b)

有三对部分互溶的三液体体系(c)

(2)二固-液的水盐体系

无水合盐和复盐形成的体系;

有水合盐形成的体系(d)

有复盐形成的体系(e)

利用二固-液的水盐体系采用逐步循环法进行盐类的提纯和分离。

2.三组分体系相图的共同特征

(1)扇形区为固液平衡二相区。

(2)三角形区为三相区,各相成分和状态由三角形的顶端描述。

(3)杠杆规则适用于两相区,三相区接连适用两次杠杆规则同样可以确定各相的量,三组分相图用于材料特性(例如反磁性、超导性等)的研究。

第七章电化学

一、法拉第定律

Q=Zfξ

通过电极的电量正比于电极反应的反应进度与电极反应电荷数的乘

积。其中F=L

e

,为法拉第常数,一般取F=96485C·mol 近似数为965000C·mol。

二、离子迁移数及电迁移率

大学物理化学公式集

电解质溶液 法拉第定律:Q =nzF m = M zF Q dE r U dl ++ = dE r U dl --= t +=-+I I =-++r r r +=-+U U U ++=∞∞ +Λm ,m λ=() F U U F U ∞∞+∞+-+ r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。 近似:+∞+≈,m ,m λλ +∞ +≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液) 离子迁移数:t B = I I B =Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S ·m -1 莫尔电导率:Λm =kV m =k/c 单位S ·m 2·mol -1 cell l R K A ρ ρ== cell 1K R kR ρ== 科尔劳乌施经验式:Λm =() c 1 m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞ +-- +=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =() m m m 2 m c c ΛΛΛΛ∞∞Φ - 平均质量摩尔浓度:±m =() v 1v v m m - - ++ 平均活度系数:±γ=() 1v v -- +γγ+ 平均活度:±a =() v 1v v a a - - ++=m m γ± ± Φ 电解质B 的活度:a B =v a ±=v m m ?? ? ??Φ±±γ +v v v B + a a a a ± -- == m +=v +m B m -=v -m B ( ) 1 v v v B m v v m +±+-- = 离子强度:I = ∑i 2i i z m 21 德拜-休克尔公式:lg ±γ=-A|z +z --|I

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

大学物理化学试题及答案

物理化学 试卷一 一、选择题 ( 共15题 30分 ) 1. 下列诸过程可应用公式 dU = (Cp- nR)dT进行计算的是: ( C ) (A) 实际气体等压可逆冷却 (B) 恒容搅拌某液体以升高温度 (C) 理想气体绝热可逆膨胀 (D) 量热弹中的燃烧过程 2. 理想气体经可逆与不可逆两种绝热过程: ( B ) (A) 可以从同一始态出发达到同一终态因为绝热可逆ΔS = 0 (B) 从同一始态出发,不可能达到同一终态绝热不可逆S > 0 (C) 不能断定 (A)、(B) 中哪一种正确所以状态函数 S 不同 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定故终态不能相同 3. 理想气体等温过程的ΔF。 ( C ) (A)>ΔG (B) <ΔG (C) =ΔG (D) 不能确定 4. 下列函数中为强度性质的是: ( C ) (A) S (B) (G/p)T (C) (U/V)T 容量性质除以容量性质为强度性质 (D) CV 5. 273 K,10p下,液态水和固态水(即冰)的化学势分别为μ(l) 和μ(s),两者的关系为:( C ) (A) μ(l) >μ(s) (B) μ(l) = μ(s) (C) μ(l) < μ(s) (D) 不能确定

6. 在恒温抽空的玻璃罩中封入两杯液面相同的糖水 (A) 和纯水 (B)。经历若干

时间后,两杯液面的高度将是(μ(纯水)>μ(糖水中水) ,水从(B) 杯向(A) 杯转移 ) ( A ) (A) A 杯高于 B 杯 (B) A 杯等于 B 杯 (C) A 杯低于 B 杯 (D) 视温度而定 7. 在通常情况下,对于二组分物系能平衡共存的最多相为: ( D ) (A) 1 (B) 2 (C) 3 (D) 4 * Φ=C+2-f=2+2-0=4 8. 硫酸与水可形成H2SO4·H2O(s)、H2SO4·2H2O(s)、H2SO4·4H2O(s)三种水合物,问在 101325 Pa 的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种? ( C ) (A) 3 种 (B) 2 种 (C) 1 种 (D) 不可能有硫酸水合物与之平衡共存。 * S = 5 , R = 3 , R' = 0,C= 5 - 3 = 2 f*= 2 -Φ+ 1 = 0, 最大的Φ= 3 , 除去硫酸水溶液与冰还可有一种硫酸水含物与之共存。 9. 已知 A 和 B 可构成固溶体,在 A 中,若加入 B 可使 A 的熔点提高,则B 在此固溶体中的含量必 _______ B 在液相中的含量。 ( A ) (A) 大于 (B) 小于 (C) 等于 (D)不能确定 10. 已知反应 2NH3= N2+ 3H2在等温条件下,标准平衡常数为 0.25,那么,在此条件下,氨的合成反应 (1/2) N2+(3/2) H2= NH3 的标准平衡常数为: ( C ) (A) 4 (B) 0.5 (C) 2 K (D) 1 * $p(2) = [K $p(1)]= (0.25)= 2 11. 若 298 K 时,反应 N2O4(g) = 2NO2(g) 的 K $p= 0.1132,则: (1) 当 p (N2O4) = p (NO2) = 1 kPa 时,反应将 _____( B )_____; (2) 当 p (N2O4) = 10 kPa,p (NO2) = 1 kPa 时,反应将 ____( A )____ 。

天津大学版物理化学复习提纲

物理化学复习提纲 一、 热力学第一定律 1. 热力学第一定律:ΔU = Q -W (dU=δQ -δW ,封闭体系、静止、无 外场作用) *热Q,习惯上以系统吸热为正值,而以系统放热为负值;功W ,习惯上以系统对环境作功为正值,而以环境对系统作功为负值。 **体积功 δW=(f 外dl =p 外·Adl )=p 外dV=nRT ?21/V V V dV =nRTlnV 2/V 1=nRTlnp 1/p 2 2. 焓:定义为H ≡U+pV ;U ,H 与Q ,W 区别(状态函数与否?) 对于封闭体系,Δ H= Qp, ΔU= Qv, ΔU= -W (绝热过程) 3. Q 、W 、ΔU 、ΔH 的计算 a. ΔU=T nCv.md T T ?21= nCv.m(T 2-T 1) b. ΔH=T nCp.md T T ?21= nCp.m(T 2-T 1) c. Q :Qp=T nCp.md T T ?21;Qv=T nCv.md T T ?2 1 d. T ,P 衡定的相变过程:W=p (V 2-V 1);Qp=ΔH=n ΔH m ;ΔU=ΔH -p(V 2-V 1) 4. 热化学 a. 化学反应的热效应,ΔH=∑H(产物)-∑H (反应物)=ΔU+p ΔV (定压反应) b. 生成热及燃烧热,Δf H 0m (标准热);Δr H 0m (反应热)

c. 盖斯定律及基尔戈夫方程 [G .R.Kirchhoff, (?ΔH/?T)=C p(B) -C p(A)= ΔCp] 二、 热力学第二定律 1. 卡诺循环与卡诺定理:η=W/Q 2=Q 2+Q 1/Q 2=T 2-T 1/T 2,及是 (Q 1/T 1+Q 2/T 2=0)卡诺热机在两个热源T 1及T 2之间工作时,两个热源的“热温商”之和等于零。 2. 熵的定义:dS=δQr/T, dS ≠δQir/T (克劳修斯Clausius 不等式, dS ≥δQ/T ;对于孤立体系dS ≥0,及孤立系统中所发生任意过程总是向着熵增大的方向进行)。 熵的统计意义:熵是系统混乱度的度量。有序性高的状态 所对应的微观状态数少,混乱度高的状态所对应的微观状态数多,有S=kln Ω, 定义:S 0K =0, 有 ΔS=S (T)-S 0K =dT T Cp T ??/0 3. P 、V 、T 衡时熵的计算: a. ΔS=nRlnP 1/P 2=nRlnV 2/V 1(理气,T 衡过程) b. ΔS=n T T nCp.md T T /21?(P 衡,T 变) c. ΔS=n T T nCv.md T T /21?(V 衡,T 变) d. ΔS=nC v.m lnT 2/T 1+ nC p.m lnV 2/V 1(理气P 、T 、V 均有变化时) 4. T 、P 衡相变过程:ΔS=ΔH 相变/T 相变 5. 判据: a. ΔS 孤{不能实现可逆,平衡不可逆,自发 00 0?=? (ΔS 孤=ΔS 体+ΔS 环, ΔS 环=-Q 体/T 环)

大学物理化学主要公式

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

大学物理化学必考公式总结

物理化学期末重点复习资料

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

第八章电解质溶液

、 第九章 1.可逆电极有哪些主要类型每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m),AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 》 2.什么叫电池的电动势用伏特表侧得的电池的端电压与电池的电动势是否相同为何在测电动势时要用对消法 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为~的Cd一Hg齐时,标准电池都有稳定的电动势值试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗答:在Cd一Hg的二元相图上,Cd的质量分数约为~的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号为什么电极电势有正、有负用实验能测到负的电动势吗

大学物理化学公式大全

热力学第一定律 功:δW=δW e+δWf (1)膨胀功δWe=p 外 dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移.如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。 热Q:体系吸热为正,放热为负. 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体得内能与焓只就是温度得单值函数. 热容C=δQ/dT (1)等压热容:C p=δQ p/dT= (?H/?T)p (2)等容热容:Cv=δQ v/dT= (?U/?T)v 常温下单原子分子:C v ,m =C v,m t=3R/2 常温下双原子分子:C v,m=C v ,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p -Cv=[p+(?U/?V)T](?V/?T)p (2)理想气体Cp—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=Cp/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T 1 -T2) 热机效率:η= 冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ- T ==- 实际气体得ΔH与ΔU: ΔU=+ΔH=+ 化学反应得等压热效应与等容热效应得关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=ΔrUm+RT 化学反应热效应与温度得关系: 热力学第二定律 Clausius不等式: 熵函数得定义:dS=δQ R /TBoltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U-TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功得封闭体系得热力学基本方程:dU=TdS-pdVdH=TdS+Vdp dF=—SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V得关系: CV=T C p =T Gibbs自由能与温度得关系:Gibbs-Helmholtz公式=-

大学物理化学核心教学方案计划教案第二版(沈文霞)课后标准参考答案第4章

第四章多组分系统热力学 一.基本要求 1.了解混合物的特点,熟悉多组分系统各种组成的表示法。 2.掌握偏摩尔量的定义和偏摩尔量的加和公式及其应用。 3.掌握化学势的狭义定义,知道化学势在相变和化学变化中的应用。 4.掌握理想气体化学势的表示式,了解气体标准态的含义。 5.掌握Roult定律和Henry定律的含义及用处,了解它们的适用条件和不同之处。 6.了解理想液态混合物的通性及化学势的表示方法,了解理想稀溶液中各组分化学势的表示法。 7.了解相对活度的概念,知道如何描述溶剂的非理想程度,和如何描述溶质在用不同浓度表示时的非理想程度。 8.掌握稀溶液的依数性,会利用依数性来计算未知物的摩尔质量。 二.把握学习要点的建议 混合物是多组分系统的一种特殊形式,各组分平等共存,服从同一个经验规律(即Rault定律),所以处理起来比较简单。一般是先掌握对混合物的处理方法,然后再扩展到对溶剂和溶质的处理方法。先是对理想状态,然后扩展到对非理想的状态。 偏摩尔量的定义和化学势的定义有相似之处,都是热力学的容量性质在一定的条件下,对任一物质B的物质的量的偏微分。但两者有本质的区别,主要体现在“一定的条件下”,即偏微分的下标上,这一点初学者很容易混淆,所以在学习时一定要注意它们的区别。偏摩尔量的下标是等温、等压和保持除B以外的其他组成不变(C B )。化学势的下标是保持热力学函数的两个特征变量和保持除B以外的其他组成不变。唯独偏摩尔ibbs自G由能与狭义化学势是一回事,因为Gibbs自由能的特征变量是,T p,偏摩尔量的下标与化学势定义式的下标刚好相同。 多组分系统的热力学基本公式,比以前恒定组成封闭系统的基本公式,在 d n时所引起的相应热最后多了一项,这项表示某个组成B的物质的量发生改变 B

大学物理化学知识点归纳只是分享

大学物理化学知识点 归纳

第一章 气体的pvT 关系 一、 理想气体状态方程 pV=(m/M )RT=nRT (1.1) 或pV m =p (V/n )=RT (1.2) 式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。V m =V/n 称为气体的摩尔体积,其单位为m 3·mol 。R=8.314510J ·mol -1 ·K -1称为摩尔气体常数。 此式适用于理想,近似于地适用 于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程 (1.3) pV=nRT=(∑B B n )RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑B B y M B (1.5) M mix =m/n= ∑B B m /∑B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T 及总体积V 的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似适用于低压混合系统。 3.阿马加定律 V B * =n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以T c 或t c 表示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an 2/V 2)(V-nb)=nRT (1.12) 上述两式中的a 和b 可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a 的单位为Pa ·m 6 ·mol ,b 的单位是m 3mol.-1。该 方程适用于几个兆帕气压范围内实际气体p 、V 、T 的计算。 2.维里方程 Z(p ,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C /

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

大学物理化学公式集[整理版]9页word文档

大学物理化学公式集 热力学第一定律 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21 T T T - 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律 Clausius 不等式:0T Q S B A B A ≥?∑ →δ— 熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:A =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:

大学物理化学汇总..

物理化学习题汇总 一、填空题 1.一定量的某理想气体,经过节流膨胀,此过程的ΔU =0 ,ΔH =0,ΔS >0,ΔG <0.(填>,<,=0或无法确定) 热力学第三定律可表示为:在绝对0K,任何物质完美晶体的熵值为零。 2.理想气体状态方程的适用条件:理想气体;高温低压下的真实气体。 3.可逆膨胀,体系对环境做最大功;可逆压缩。环境对体系做最小功。 4.可逆相变满足的条件:恒温,恒压,两相平衡。 5.可逆循环的热温商之和等于零,可逆过程的热温商 = dS. 6.自发过程都有做功的能力,反自发过程需环境对系统做功,自发过程的终点是平衡态。 10.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变ΔSsys > 0 及环境的熵变ΔSsur < 0 。 (理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。)11.在50℃时,液体A的饱和蒸汽压是液体B的饱和蒸汽压的3倍,A和B两液体形成理想液态混合物,达气液平衡时,液相中A的摩尔分数为0.5,则气相中B的摩尔分数yB为______。 0.25yB=PB/P=PB*xB/(PA*xA+PB*xB) 13.道尔顿定理的内容:混合气体的总压力等于各组分单独存在于混合气体的温度体积条件下所产生压力的总和。 14.热力学第二定理表达式 ds ≧ &Q / T 。 15.熵增原理的适用条件绝热条件或隔离系统。 16.353.15K时苯和甲苯的蒸气压分别为100KPa和38.7KPa二者形成混合物,其平衡气相的组成Y苯为0.30,则液相的组成X苯为 0.142 。 17.在室温下,一定量的苯和甲苯混合,这一过程所对应的DH大约为 0 。 18.反应能否自发进行的判据。 答案:dS条件是绝热体系或隔离系统,(dA)T,V,Wf=o0,(dG)T,P,Wf。 20.节流膨胀的的定义。 答案:在绝热条件下气体的的始末态压力分别保持恒定不变情况下的膨胀过程。

相关文档
最新文档