循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法
循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法

一、循环冷却水系统为什么会结垢

1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:

Ca(HCO 3)2 CaCO 3 + H 2O + CO 2

当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:

Ca(HCO3)2 + 2OH- CaCO 3 + 2H 2O + CO 32-

难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。

2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡:

Ca2++CO3 2- CACO 3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO

3

2-〕的乘积为碳酸钙在此条件下的溶度

积K

SP

,为一定值。

若此条件下〔Ca2+〕×〔CO

32-〕> K

SP

时,平衡向右移,有晶体析出。

若此条件下〔Ca2+〕×〔CO

32-〕< K

SP

时,平衡向左移,晶体溶解。

注:实际情况下〔Ca2+〕×〔CO

32-〕值称为K

CP

二、抑制为结垢的方法

(一) 化学方法

1. 加酸:

目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.

优点:费用较小,效果比较明显

缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.

2. 软化

目的:降低水中至垢阳离子的含量

优点:防止结垢效果好

缺点:操作复杂、软化后水腐蚀性增强.

3. 加阻垢剂:

目的:使碳酸钙的过饱和溶液保持稳定。

优点:防垢效果好、具有缓蚀作用、针对性强.

缺点:药剂一般含磷,对环境保护造成压力.

(二) 物理方法(电子防垢)

电子水处理仪中有静电水处理器(带电极),和电子感应水处理器(非接触)两大类。

静电水处理器通过法兰连接在供水管道上,通过释能器内阳极发射高压静电场来改变水垢的结晶形式,其电磁场频率单一,在常温下作用有效时间~2个小时。它的实际防垢率跟水质关系很大,当用在高硬度水或高浊度水时,其防垢率明显降低。早期产品的金属电极没有涂层,水中的悬浮物会吸附在电极表面,干扰了静电场的发射,防垢率随之降低,电极污染严重时防垢性能完全丧失,所以3个月到半年必须擦洗一次电极。为减少维护电极的频率,现在的产品在电极表面覆有泰氟隆涂层,表面光滑,抗污染能力有所提高,但泰氟隆涂层耐磨性能差,水中杂质的冲刷会破坏泰氟隆涂层,一旦涂层破损,电极很快被污染,防垢率随之降低,若使用者不能及时知道,就会引起设备结垢严重,造成生产隐患。

静电水处理器则是一根稀有金属棒为阳极,亮体为阴极,由镀锌钢管制成。被处理的水通过芯棒与亮体之间的环状空间流入用水设备。静电场发生器,是向静电水处理器提供高频电场能量与控制的设备,静电场电压高达为 8500V 以上。

静电水处理器安装的数量及位置不合理时,会对系统产生腐蚀。静电水处理器是利用电化学原理使水分子极化(磁化),极化的水分子具有极强的电负性,来吸引钙、镁离子,从而延缓其结垢时间,达到其防垢的目的。具有极强的电负性的水分子也能侵蚀水垢和锈垢。但是.如果电子水处理器的安装数量及位置不合理时,它会对水系统产生严重的腐蚀,它的这种负面作用远大于正面作用。会对冷却器、水泵系统及设备造成严重的危害。以蓝星化工的已二醇为例说明.在清理泵人口的时发现有成团成团的红色铁锈随水涌出,可见

水系统的腐蚀已经相当的严重。为了解决腐蚀问题.操作人员将水系统的所有静电水处理器全部关掉.经过一段时间的观察,发现在清理泵入口过滤器时,水质明显变清.当再使用静电水处理器时,发现循环水系统的水质又开始变的浑浊,并经过反复的实验,发现使用静电水处理器是严重腐蚀水系统管道的根源,最后拆除了所有的静电水处理器。

最新一代广谱感应水理器:广谱感应水处理器的主机产生强度和频率都按一定规律变化的脉冲电流,通过缠绕在管道外壁的信号线形成感应电磁场作用到水中,使水中的钙镁离子与酸根离子结合生成大量的文石晶核,在水中的矿物质超过饱和溶解度时,钙镁离子与酸根离子在文石晶核上形成大量的文石晶体,该文石晶体呈惰性,粘附力弱,很容易被水流冲走。

广谱感应水处理器产生的感应电磁场其变频范围宽,可适用于多种水质,这就解决了以前多种电子水处理器频率单一只适合某种特定水质的问题,在油田原油集输系统的油水混合物防垢方面也有很好的应用效果。

广谱感应水处理器在常温下的作用有效时间是可达12小时。在一般流速下作用距离可达几公里至十几公里,同一工况可减少设备的安装数量。

广谱感应水处理器没有任何与水接触的部件,不用担心电极被污染或磨损。其实际防垢率高,可达90%以上,效果稳定,可用在高硬度水或高浊度水广谱感应水处理器能根据水质情况和水的流速调整对输出电流进行补偿,可适用于高流速系统,水质变化大的系统。该产品免维护,是当今世界最先进的物理防垢技术。

- 中国门户发表于:2009-07-03 09:44:26

循环水结垢原理及处理方

循环水结垢原理及处理 方 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

循环水结垢原理及处理方法 一. 结垢原理 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO 3)2 ? CaCO 3 ˉ + H 2O + CO 2- 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2 + 2OH- ? CaCO 3 ˉ + 2H 2O + CO 32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。 碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡: Ca2++CO3 2- CACO 3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO 3 2-〕的乘积为碳酸 钙在此条件下的溶度积K SP ,为一定值。 若此条件下〔Ca2+〕×〔CO 32-〕> K SP 时,平衡向右移,有晶体 析出。 若此条件下〔Ca2+〕×〔CO 32-〕< K SP 时,平衡向左移,晶体溶 解。 注:实际情况下〔Ca2+〕×〔CO 32-〕值称为K CP 二. 抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小 缺点:不易控制、过量会产生腐蚀的危险、有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量 优点:防止结垢效果好 缺点:操作复杂、软化后水腐蚀性增强. 3.加阻垢剂: 目的:使碳酸钙的过饱和溶液保持稳定。 优点:防垢效果好、具有缓蚀作用、针对性强. 缺点:药剂一般含磷,对环境保护造成压力. (二)物理方法

浅谈循环水的结垢

浅谈循环水的结垢 [摘要]人类社会为了满足生活及生产的需求,要从各种天然水体中取用大量的水,其数量是极为可观的。除生活用水外,工业用水量也很大,几乎没有哪一种工业不用水。[1]本文主要从循环水的水温、流速等方面对循环水使用中常见的结垢问题进行了分析,提出了控制想法,对于循环水的正常运行具有一定指导意义。 【关键词】循环水;结垢 1、简介 循环水系统出现设备结垢、腐蚀等等,是换热设备降低换热效率、发生泄露的主要危害。目前工业应用的水质稳定剂多为阻垢缓蚀剂,质量的差强人意,换热设备材质的种类各异,都会造成循环水系统运行状况的差异。 2、结垢的影响因素 结垢是指在水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。敞开式循环冷却水系统的结垢主要成分有CaCO3和腐蚀产物二种,由于缓蚀剂的使用使腐蚀产物大大减少,而以CaCO3垢、Ca3(PO4)2垢及锌垢为主要成份。垢的产生会引起水冷设备换热效率下降,管线的阻力增大,导致循环水量减少或列管的堵塞等。敞开式循环冷却水系统中影响结垢的主要因素是冷却水pH、Ca、总碱度、水温、流速及金属表面状况等。[2] 2.1水温 循环冷却水中的碳酸钙、碳酸镁等硬度盐类,其溶解度都是随着温度的升高而减小,因此水温越高越易析出,同时分子活动也随温度的上升越加活泼,水垢的附着速度也越高。 污垢的温差表示法是生产现场常用的表示结垢程度的方法,它通过换热器工艺介质和冷却水进出口温差的变化来反映污垢沉积量的变化。[3] 2.2流速 水垢的附着速度是随着换热器内的冷却水流速的增大而减小的。一般而言,如水流速度达到1.0m/s以上时,水垢、悬浮物等杂质易被水流冲走,不易沉积,相反某些部位流速过小、存在死角拐角、温差大的地方就容易沉积水垢,因此应适当提高水流速度来降低设备的结垢。 此外,循环水本身水质、温差、换热表面光滑度、浓缩倍数、阻垢剂的选择和正确使用等因素都对结垢有着重要的影响。

循环水中腐蚀和管道结垢原因和处理方法

在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。 1.结垢和腐蚀产生的机理和原因 结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。 1.1补充水 由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。 1.2温度 导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。并且,在溶

循环水(冷却水)腐蚀结垢及微生物问题探讨

冷却水问题探讨 一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀 !腐蚀发生原因: 金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。 a.铁材质与水中氧气作用而腐蚀,其反应如下: 氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。 b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。

图 : pitting 会导致设备快速破损 c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。 双金属腐蚀 d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。 !腐蚀控制方法: 腐蚀之控制不外是改变系统金属材质,就是改变系统环境。改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。然改变系统环境是目前广泛被用到控制腐蚀的方法。在水系统内,有三种方式改变水中环境来有效抑制腐蚀; 用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。 利用化学或机械方法将溶存于水中之氧气去除。 加入腐蚀抑制剂 。 如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。腐蚀既是一种电池反应 ﹐

采暖循环水结垢问题及解决

2011年08月 科教纵横 采暖循环水结垢问题及解决 文/鲁彬 摘 要:采暖循环水系统存在的主要问题是换热设备的结垢影响换热效率,目前在采暖循环水系统的水处理中,通常采用软化水方式,即在补水系统安装钠离子交换器,将水质软化后注入循环系统。在国内水处理市场上,各种物理法水处理设备主要以解决防垢、缓蚀、杀菌为主。 关键词:采暖循环水;结垢;暖通 中图分类号:TD928.5 文献标识码:A 文章编号:1006-4117(2011)08-0299-01 一、采暖水循环系统的组成 对于普通居民采暖系统,热量表、疏水器、降污器、过滤器及阀门等,是采暖系统的重要配件,为保证系统正常运行,安装时应符合设计要求。集中采暖建筑物热力入口及分户热计量户内系统入户装置,具有过滤、调节、计量及关断等多种功能,为保证正常运转及方便检修、查验,应按设计要求施工和验收。高温热水一般工作压力较高,而一旦渗漏危害性也要高于低温热水,因此规定可拆件使用安全度较高的法兰和耐热橡胶板做垫料。热量表、疏水器、除污器、过滤器及阀门的型号、规格、公称压力及安装位置应符合设计要求。采暖系统人口装置及分户热计量系统人户装置,应符合设计要求。安装位置应便于检修、维护和观察。散热器支管长度超过1.5m时,应在支管上安装管卡。上供下回式系统的热水于管变径应顶平偏心连接,蒸汽干管变径应底平偏心连接。在管道干管上焊接垂直或水平分支管道时,干管开孔所产生的钢渣及管壁等废弃物不得残留管内,且分支管道在焊接时不得插入于管内。另外,采暖管道分支相连接时或焊接连接时,较多使用冲压弯头。由于其弯曲半径小,不利于自然补偿。在作为自然补偿时,应使用煨弯。同时规定,塑料管及铝塑复合管除必须使用直角弯头的场合,应使用管道弯曲转弯,以减少阻力和渗漏的可能,特别是在隐蔽敷设时。 二、采暖循环水垢的产生原因 现在居民所常用采暖的主要形式有电暖直接辐射法和水暖管道辐射法,第二种也就是采暖循环水系统。普通管道采暖系统主要采用专门设计的管道回路式结构,目前多以PP-R和PEX管材作为散热管道,由于管路较长,由于供水温度的变化会产生钙镁离子垢长期附着在管路内壁上,如果不定期处理,也会导致温度下降,直接影响散热效果。另外,由于水中含有大量的微生物,在条件适宜的情况下会产生大量的生物粘泥,生物粘泥覆盖在管壁内部,造成管道变绿、变黑,据有关资料统计,在地热采暖系统中,平均每年管道结垢1mm,而这1mm厚的水垢可导致水温下降6℃,这不仅影响正常的使用温度,也造成能源的浪费,如长时间得不到有效的清洁处理,会使地热采暖系统出现故障,造成管内栓塞无法使用,甚至造成破坏地面,拆除或更换地热管路系统,给地暖用户造成财产损失与生活不便。 三、系统水压试验及除污 采暖系统安装完毕,管道保温之前应进行水压试验。试验压力应符合设计要求。蒸汽、热水采暖系统,应以系统顶点工作压力加0.1MPa作水压试验,同时在系统顶点的试验压力不小于0.3MPa。高温热水es采暖系统.试验压力应为系统顶点工作压力加0.4MPa。使用塑料管及复合管的热水采暖系统;应以系统顶点工作压力加0.2MPa作水压试验,同时在系统顶点的试验压力不小于0.4MPa。使用钢管及复合管的采暖系统应在试验压力下10min内压力降不大干0.02MPa,降至工作压力后检查,不渗、不漏;使用塑料管的采暖系统应在试验压力下1h内压力降不大干0.05MPa,然后降压至工作压力的1.15倍,稳压2h,压力降不大于0.03MPa,同时各连接处不渗、不漏。系统试压合格后,应对系统进行冲洗并清扫过滤器及除污器。现场观察,直至排出水不含泥沙、铁屑等杂质,且水色不浑浊为合格。系统冲洗完毕应充水、加热,进行试运行和调试。 四、利于除污除垢的管道安装要求 管道坡度是热水采暖系统中的空气和蒸汽采暖系统中的凝结水顺利排除的重要措施,安装时应有一定的坡度。为妥善补偿采暖系统中的管道伸缩,避免因此而导致的管道破坏,补偿器及固定支架等应按设计要求正确施工。实践中发现,热水采暖系统由于水力失调导致热力失调的情况多有发生。为此,系统中的平衡阀及调节阀,应按设计要求安装,并在试运行时进行调节、作出标志。科学的安装能够保证蒸汽采暖系统安全正常的运行。例如从受力状况考虑,使焊口处所受的力最小,确保方形补偿器不受损坏。避免因方形补偿器垂直安装产生“气塞”造成的排气、泄水不畅,从而避免了水垢的积淀。膨胀水箱的膨胀管及循环管上不得安装阀门。当采暖热媒为110℃—130℃的高温水时,管道可拆卸件应使用法兰,不得使用长丝和活接头。法兰垫料应使用耐热橡胶板。焊接钢管管径大于32mm的管道转弯,在作为自然补偿时应使用煨弯。塑料管及复合管除必须使用直角弯头的场合外应使用管道直接弯曲转弯。管道、金属支架和设备的防腐和涂漆应着良好,无脱皮、起泡、流淌和漏涂缺陷。 五、除垢清洗剂的使用 很多厂家开发出了除垢清洗剂,但是当我们在水中加注使用时,一定要做到操作安全、快速、高效、简捷、省时、环保、节能。操作安全是对人员不能有毒副作用,也不能腐蚀管道,高效是要求能快速的清除水垢,不影响正常使用。环保,是指对环境没有长期的危害,也不会对人造成健康的损害。还有的公司开发出了新技术新设备。该管路清洁设备的工作原理是以压缩空气做为动力,利用PSI发射器向管路中发射一颗大于管路内径10—20%的特制射弹,使射弹沿管线高速运动并与管路内壁充分磨擦,达到清洁管路内壁的干式物理清洁技术。一分钟可清洗200米以上,有效清洁地热盘管内长期积存的水锈、粘泥、残留物等杂质。这是物理式清洁,不用任何化学试剂和水。它能有效清除地热盘管内部的钙镁离子垢和生物粘泥及其它残留杂质,轻松解决管路栓塞问题。 总而言之,采暖循环水系统是世界举世公认的一项先进的理想采暖新技术,也是我们最常见的采暖系统。它具有舒适健康、安全可靠、清洁环保、节能经济、节省空间、美观时尚等不可比拟的优势,受到广大国民的青睐。但由于采暖循环水系统中出现水垢等常见且不易解决的问题,要求安装工作者和使用者要科学地采取对策。 作者单位:甬港现代工程有限公司参考文献: [1]王爱军.Y型除污器在换热站的合理应用[J].石河子科技,2006.03. [2]陶明锋.浅谈热力系统“除污器”应注意的问题[J].黑龙江科技信息,2009.16. [3]李生武,姜文涛.除污器应用研究[J].齐齐哈尔大学学报(自然科学版),2009.04. 2011.08 299

循环水结垢原因与防止教学教材

循环水结垢原因与防止 1、固相物的生成 ⑴形成污垢的原因: ①多组份过饱和溶液中盐类的结晶析出;②有机胶状物和矿质胶状物的沉积;③不同分散度的某些物质固体颗粒的粘结;④某些物质的电化学还原过程生成物等。 以上混合物沉积总称作污垢。 ⑵形成水垢的原因:水中溶解盐类产生固相沉淀是构成结垢 (水垢)的主要因素,其产生固相沉淀的条件是: ①随着温度的升高,某些盐类的溶解度降低,如Ca(HCO3)2 CaC03 Ca(0H)2、CaS04 MgC03 Mg(0H)2等; ②随着水份的蒸发,水中溶解盐的浓度增高,达到过饱和程度; ③在被加热的水中产生化学过程,某些离子形成另一些难溶的盐类离子。 具备了上述条件的某些盐类,首先在金属表面上个别部分沉积出原始的结晶胚,并以此为核心逐渐合并增长。之所以易沉积于金属表面,这是因为金属表面在微观上具有一定的粗糙度,微观上的凹凸不平成为过饱和溶液中固体结晶核心;同时加热面上的氧化膜对固相物也有很强的吸附力。作为构成水垢的盐类——钙镁,在过饱和溶液中生成固相结晶胚芽,逐变而为颗粒,具有无定形或潜晶型结构,接着互相聚附,形成结晶或絮团。固相沉渣的生成与胚芽核心的生成速度有关,即与单位时间内出现的结晶核数量与结晶生长的线速度有关,而这两个因素又与水温和水中含盐浓度及其它杂质的存在有关。 2、重碳酸盐的分解冷却水结垢的主要原因是因为水中含有较多的重碳酸钙,在加热过程中失去平衡,分解为碳酸钙、二氧化碳和水。碳酸钙溶解度较低,因而首先在冷却设备表面沉积下来。温度、压力等因素也影响结垢的强度与速度。重碳酸钙是反溶解度盐类,在超过一定温度(临界点)时,其饱和浓度急剧减小。 3、钙、镁碳酸盐水垢碳酸盐水垢通常以致密的结晶沉淀在加热器壁面甚至冷却塔填料或壁上。但当水温在过热面超过100C时,CaC0沉淀是海绵状的絮状体。虽然,在沸腾温度以下,也有可能出现硫酸钙的沉淀,但这只能是特例,因为硫酸钙的三种状态: C aS04 2CaS04 H20 CaS04 2H20三者的溶解度都很大,因而在冷却水的具体条件下,可以完全不必考虑硫酸钙的沉积问题。氢氧化钙的溶解度也是随温度升 高而降低的,但在一般情况下在水中不会生成氢氧化钙,因而也不必考虑。重点在于钙镁的碳酸盐: Ca2++2HCO3=H2O+CO+CaCO3 Ca(HC03)2=CaCO3+H20+CO2 Mg(HCO3)2=MgC0@H2O+CO2 MgCO的溶解度比CaCO3勺溶解度大六倍以上,而且在水中的MgCO会很快水解。

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施 化工生产中各类介质的热量交换均离不开冷却水换热器这一重 要的工业设备,大多数冷却水换热器在使用过程中存在结垢堵塞和腐蚀问题,常出现因换热不够而被迫停车清洗甚至导致换热器的报废更换,严重时会影响生产的安全稳定运行,针对冷却水换热器结垢和腐蚀的原因,阐述了常见的结垢和腐蚀的处理措施。 1、结垢的原因 A、悬浮于循环水中的固体微粒附着在换热器表面,一般由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、有无等组成,当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,造成垢下腐蚀,为某些细菌生存和繁殖创造了条件。当防腐措施不当时,最终导致换热表面腐蚀穿孔泄漏。 B、一般生物污垢均指微生物污垢,循环水系统中最常见的微生物主要是铁细菌、真菌,铁细菌能见溶于水中的Fe2+转化为不溶于水的Fe2O3的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓度差腐蚀电池,腐蚀金属。 C、结晶污垢 在冷却循环水中,随着水分的蒸发,水中溶解的盐类(重碳酸盐、硫酸盐、硅酸盐)的浓度升高,部分盐类因过饱和而析出,而某些盐类因为则因通过换热器表面受热分解形成沉淀,这些盐类有无机盐组成,结晶致密,被称为结晶水垢。 D、腐蚀污垢 具有腐蚀性的流体或流体中含有腐蚀性杂质对换热器表面腐蚀 而产生的污垢,腐蚀程度取决于流体中的成分、温度及被处理流体中的PH等因素,金属腐蚀主要是温度在40~50℃的氧腐蚀,而合成冷排工作温度40~60℃,正好跟金属发生氧腐蚀的温度相吻合,加之循环水的PH值长期偏低,一般都在PH至8.0以下,更容易形成金属腐蚀。 2、腐蚀原因 A、电化学腐蚀是金属最常见的一种腐蚀形式当冷却水系统内

循环水结垢问题

一循环水结垢问题 我们公司使用的循环水是从长江里抽上来的水,经过简单的沉降处理后就作为循环水用于生产中,在生产过程中冷凝器经常结垢堵塞,我们每几个月就要清洗一次,而且清洗时不好清洗,需请清洗公司的进行化学清洗才行,清洗费用很多。对于循环水结垢问题,我们也采取了很多的方法进行处理,如加药、超声波除垢、安装水处理器等等,但效果不是很好。请问同行们你们的循环水结垢严重么?你们是采用什么方法处理的? 1、两种思路供你选择: 1、对水源进行水质分析,可参考锅炉水质分析方法分析,主要分析水中的钙、镁离 子浓度,叫硬度。 2、根据水质分析结果,自配或者请水质稳定剂生产厂家配制水质稳定剂添加,其主 要作用是增加垢物的溶度积,减缓垢物的形成和防止沉积,适时排泄和补充新鲜水。 3、分析垢物成分,看看是以碳酸盐垢为主还是硫酸盐垢为主,或者是两者的混合垢, 再结合设备材质,在设备运行一段时间,垢物严重时,停车,谨慎选用盐酸、磷酸、 硝酸、硫酸的复配物清洗设备,酸浓在10-15%之间。当酸浓降至4%以下时,根据 垢物清洗情况适当给予补充,直到垢物清洗到满意为止。 2、我们公司有一段时间也是出现你说的情况。但是我们后来给离子膜系统单独上了凉 水塔自循环系统然后定期加药,排污,对于进水和凉水塔水定期做水质分析,主要 离子是钙、镁、磷、氯根等离子。同时对凉水塔大修时对塔进行清污,管道清洗等。 3、循环水结垢确实是一个头疼的问题,加缓蚀阻垢剂、除藻剂等方法都用过,但每年 大修时仍需要对夹套进行化学清洗。在我们南方蒸发量又大,循环水的钙镁离子容 易浓缩,加药频繁,费用很高。我觉得可以从下面几个方面考虑优化: 1、寻求高效稳定的缓蚀阻垢剂; 2、夹套定期进行化学清洗; 3、循环水池定期排污,加入清洁水。 4、我公司使用的循环水也是从长江里抽上来的水,我们首先投加混凝剂进入反应池, 混凝后再到沉淀池,经过过虑后送到各个装置做生产工业用水,若要做装置冷却用

浅谈循环水系统的结垢与管理

浅谈循环水系统的结垢与管理 安全生产部张利民 摘要:本文概述了循环水系统的作用,并从水系统结垢的原因及影响进行了分析,水的结垢受水质、水温、流速的影响,根据原因及操作现场的运行情况,提出了对现有的水系统需要采取那些控制措施,可在循环水系统进一步落实实行科学的管理方式。 关键词:循环水、冷水、冷却水、结垢、管理与运行 1、概述 工业循环水系统是工业企业正常运行的基本保证,循环水系统的管理中遇到了设备结垢、腐蚀、生物粘泥堵塞等等,使换热设备损坏和效率降低。目前工业应用的水质稳定剂多为缓蚀阻垢剂,但阻垢剂的品质参差不齐,系统的换热设备的种类千差万别,同时管理的方法又各有不同,这就造成了循环水系统运行的优劣之分。因此,我对循环水系统的管理谈谈自己认识。 2、结垢原因及影响因素 循环水结垢其实是循环水系统中微溶物质在环境条件发生变化导致生成过饱和现象,产生晶核析出,随着晶核不断长大沉积在换热器表面,按垢的种类可分为碳酸垢、磷酸垢、硅酸垢、硫酸垢等;按金属离子区分可分为钙垢、镁垢、铁垢等。换热器内垢的形成受到水质、水温、流速、换热温差和缓蚀阻垢剂等因素的影响。 2.1 循环水和原水的水质 循环冷却水在运行过程中,随着挥发的消耗,水中各种杂质的浓度就会相应增大,结垢的概率就会同时增加,这时补充水的水质其含盐量、碱度、硬度、pH值等指标就显得尤为重要。这几个指标越高循环水越容易达到饱和而产生结垢。因此这在投加阻垢剂方案时就必须考虑进去。 2.2 水温和浓缩倍数 循环水中的碳酸钙、碳酸镁等硬度盐类,其溶解度都是随着温度的升高而减小,因此水温越高越易结垢;循环水的浓缩倍数在夏季热负荷较大时就应适当降低,减少系统中硬度盐类离子的浓度,就会相应减少设备结垢的概率, 2.3 流速 水垢的附着速度是随着换热器内的冷却水流速的增大而减小,如果水流速度达到1.0m/s以上时,水垢、悬浮物等杂质易被水流冲走,不易沉积,相反如果在换热器中,某些部位流速过小或水流分配不均、死角就容易沉积水垢。因此根据换热器的形式、结构在工艺条件允许的情况下,适当提高水流速度也是降低设备结垢的有效手段。

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法 一、循环冷却水系统为什么会结垢 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO3)2→CaCO3↓+ H2O + CO2↑ 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固) 在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。 若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。 若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。 注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP 二、抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度. 优点:费用较小,效果比较明显 缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量

循环水结垢原理及处理方1

循环水结垢原理及处理方法 一.结垢原理 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO3)2→CaCO3↓+ H2O + CO2↑ 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32-难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。 碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡: Ca2++CO3 2-CACO3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。 若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。 若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。 注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP 二.抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度. 优点:费用较小 缺点:不易控制、过量会产生腐蚀的危险、有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量 优点:防止结垢效果好 缺点:操作复杂、软化后水腐蚀性增强. 3.加阻垢剂: 目的:使碳酸钙的过饱和溶液保持稳定。 优点:防垢效果好、具有缓蚀作用、针对性强. 缺点:药剂一般含磷,对环境保护造成压力. (二)物理方法

循环冷却水的防垢处理方法

循环冷却水的防垢处理方法 循环冷却水产生水垢和水质恶化的原因: (1)水中游离及溶解的CO2大量逸散,当CO2的含量不足以保证重碳酸盐的平衡时,给水管道和用水设备内就会形成CaCO3沉淀,引起系统内CaCO3结垢; (2)水中所含的溶解性气体、腐蚀性盐类与酸类等电解质与金属接触时,因为电解质的作用,从金属表面析出Fe2+,使设备和管道金属遭到破坏; (3)空气中的污染物如尘土、杂物、可溶性气体及换热器物料渗漏等均可进入循环水,致使微生物大量繁殖,加速金属的腐蚀; (4)由于补充水带来或水在循环使用过程中产生的各种微生物、其它有机物及无机悬浮杂质在管道和换热器表面沉积。 循环冷却水的防垢处理方法: (1)排污法: 当补充水的碳酸盐硬度较低时,可以用限制循环水的浓缩倍数的方法,使循环水的碳酸盐硬度小于极限碳酸盐硬度,即可防止结垢。 如果不考虑系统中的渗漏损失,则循环水进行连续排污时,为防垢所需的排污量可用下式求出: 其中P1:循环水系统的蒸发损失,占循环水量的%; P2:冷却塔风吹损失,占循环水量的%; P3:为防垢所必需的连续排污量,占循环水量的%; H碳:补充水的碳酸盐硬度(meq/L); H极:补充水的极限碳酸盐硬度(meq/L)。 浓缩倍数与排污量的关系为: 其中N:循环水的浓缩倍数; P:循环水的补充水量,占循环水量的%。 若要使循环冷却水稳定,不发生CaCO3沉淀,则N≤H极/ H碳,由此可以得

出:P≥H 极 P1/(H极-H碳)。该式说明,在P1范围大致确定的情况下,补充水的H 极与H 碳 差值越小,则所需补充水量越大,反之越小。式中P3的计算结果如果为 负值,则不需要排污,计算结果为正值时排污量一般不超过3~5%为宜。该法主要用于暂时硬度较低的水质及水资源较丰富的地区。在实际中仅靠排污法不能解决循环冷却水的水质问题,尚需要结合其它措施。 3、酸化法:酸化法是通过加酸,降低水的碳酸盐硬度,使碳酸盐硬度转变为溶解度较大的非碳酸盐硬度,同时保持循环水的碳酸盐硬度在极限碳酸盐硬度之下,从而达到防止结垢的目的 2、阻垢剂处理法:在循环水中加入某些化学药剂,就可以起到阻止水垢的作用,称为阻垢处理,所用的药剂称为阻垢剂。 常用阻垢剂有: (1)聚合磷酸盐:在循环水中,采用的是三聚磷酸钠(Na5P3O10)和六偏磷 酸钠(NaPO3)6聚合磷酸盐在低剂量如(在2-4mg/L)时,是一种有效的 阻垢剂。它们溶于水后,在水中电离生成长链的—O—P—O—P—高价阴 离子,容易吸附在微小的碳酸钙晶粒上,使晶粒表面上的表面电位向负 方向上移动,增大了晶粒之间的排斥力,起到分散作用。另一种观点是 干扰了碳酸钙晶体的正常生长,晶格受到扭曲,生成的碳酸钙不是坚硬 的方解石晶体,而是疏松、分散的软垢,易被水流分散于水中。聚合物 还可与水中Ca 2+、Mg 2+形成配位离子或整合离子,从而使它们稳定存 在与水中,提高了循环水的极限碳酸盐硬度,达到防止结垢的作用。 (2)有机磷酸盐:有机磷以酸(盐)分子结构中,都含有—C—P—键,所以 具有耐氧化性高,耐温性高,不易被酸、碱破坏及不易水解、降解等优 点。它在高剂量(如100mg/L以上)时,是一种阴极型缓蚀剂,在低剂 量(2~4mg/L)时,是一种阻垢剂。有机磷酸能与水中结垢离子形成络 合物,使水中结垢离子失去部分结垢性能,但其阻垢作用主要是由于阻 垢剂分子吸附在晶体表面,堵塞或覆盖晶体生长晶格点,阻碍了晶格离 子或分子的表面扩散和定位,而产生内部应力和扭曲作用,抑制了晶体 生长和结垢。) 磷酸根离子能与铜离子形成极稳定的络合物,所以对铜 及铜锌合金有一定得腐蚀性,甚至会发生点蚀。

循环水结垢的原因

循环水结垢的原因不外乎以下几个原因: 1、水的硬度与碱度同时偏高,这样导致了循环水中的成垢离子浓度积超出允许的范围; 2、阻垢剂效果不佳,或阻垢剂加入量过少; 3、水中硅酸根超标; 4、换热器内部分管道流速偏低,或者说管程里的水分配不好。 被冷介质温度180度,冷凝膜系数是很高的,估计水速低,它的膜系数也低,这样管壁温度偏向高温侧,就容易结垢; 要核算管内水速,保证水速在0.5m/s以上,最好1m/s. 估计面积也偏小了,47度回水温度,也比较容易结垢的。 我们回水温度设计是50摄氏度,操作上一般不超过45度,另外180度就用水冷有点高了,前面可以考虑加个风机。 另外,我单位请外面一个水处理公司给换热器都做了水速监测,认为最佳水速是0.7米/秒。 急用水在什么温度容易结垢? 60-80°! 我在招标太阳能热水器时要求水温不高于80度。在80度时易结垢。 矿物质太多结垢 请问一般自来水结垢温度是多少?与海拔无关吧?煤气和电热水器、太阳能热水器等等如何除垢? 这要看组成硬度的形式和硬度的大小,一般不超过60度就不会产生水垢,与海拔无关。民用最好的方法,是在进户管上装一台性能好的磁性软水器,使我们所用的水都变成小分子活化水,将来你的电热水器、太阳能热水器都不会再产生水垢,而且以前产生的水垢还会慢慢的剥落下来;洗澡、洗头会变得非常滑润,洗衣会很干净而且省水省洗衣粉;喝水、泡茶感觉会很舒服...... 我的邮箱:bysclyxgs@https://www.360docs.net/doc/461127025.html, 田先生 一般水温不超过65度不怎么起垢和海拔的关系不怎么大,除垢的方法不少,不过效果都不怎么好,现在很多产品都在想增加除垢的方法。 和海拔无关,温度超过60,海尔售后有个除垢棒,直接放在热水器里。可能需100元左右

循环水处理方案

循环水系统水质处理方案 1 刖言 水是人类最宝贵的财富之一,地球上的淡水资源是有限的,可供人类利用的水资源就更少,节约水资源已刻不容缓。为此近年来国家在宪法中又颁发了"水法"这些做法都促进并强迫我们重视节约使用水资源,减少水的污染,以利工农业进一步发展和人类自身的繁衍。 为了使循环冷却水系统正常运行,确保换热设备的长期使用,防止循环水在使用中所生产的腐蚀、结垢及微生物污垢的危害,提高热交换设备的冷却效率,确保生产的正常运行,必须对循环冷却水进行水质稳定化学处理,这不仅能提高冷却效率,延长设备的使用寿命,并且对节约能源(节水、节电),减少大修费用及工作量和保护环境都有非常积极的意义。 根据对循环水处理的经验,再综合系统的特点,建议对循环水系统进行水清洗、化学清洗预膜,然后进入正常运行阶段。正常运行中投加氧化型杀菌剂和非氧化型杀菌灭藻剂来控制循环水系统的细菌、粘泥的大量滋生。 2 系统参数及水质状况 2.1 系统参数

2.2 水质状况

根据工厂的实际状况,采用软化水作为冷却塔的补水,补充水水质如下:

从上表可以看出,如果该补充水未经过浓缩,在40C的情况下运行,可以看出在供、回水管道、冷却塔中都呈腐蚀性,只有在换热装置表面80C的情况下,才略呈结垢的特性,所以在此情况下正常运行,只需要用杀菌、缓蚀的化学品。在浓缩5倍40 r的情况下: 在浓缩倍数是5倍80 r的情况下:

通过以上分析,在5倍的浓缩倍数下运行,只需要进行杀菌灭藻。 3系统水冲洗 3.1 清洗的目的 主要是冲洗在安装过程中进入地下管道和设备中的泥沙和焊渣,为化学清洗做准备。 3.2 冲洗前应具备的条件 321 为保证管道清洗效果,各使用循环水的车间,入户管阀门已经安装完 毕,在入户阀前已经安装了旁路阀,避免管道中的泥沙和焊接的焊渣等进入到换热器中。 3.2.2 循环水泵已经安装完毕,机械、电气具备启动条件,冷却塔已经安装完成,循环水的回水直接可以回到冷却水池,与上塔部分相连的管道已经拆开,避免堵塞冷却塔溅水装置和填料。 3.2.3 冷却塔的补水管路安装完毕,并具备补水条件。 3.2.4 每个循环回路上的所有使用循环冷却水的设备安装完毕。 3.3 冲洗步骤

循环水结垢的原因

循环水结垢的原因 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

循环水结垢的原因不外乎以下几个原因: 1、水的硬度与碱度同时偏高,这样导致了循环水中的成垢离子浓度积超出允许的范围; 2、阻垢剂效果不佳,或阻垢剂加入量过少; 3、水中硅酸根超标; 4、换热器内部分管道流速偏低,或者说管程里的水分配不好。 被冷介质温度180度,冷凝膜系数是很高的,估计水速低,它的膜系数也低,这样管壁温度偏向高温侧,就容易结垢; 要核算管内水速,保证水速在s以上,最好1m/s. 估计面积也偏小了,47度回水温度,也比较容易结垢的。 我们回水温度设计是50摄氏度,操作上一般不超过45度,另外180度就用水冷有点高了,前面可以考虑加个风机。 另外,我单位请外面一个水处理公司给换热器都做了水速监测,认为最佳水速是米/秒。急用水在什么温度容易结垢 60-80°! 我在招标太阳能热水器时要求水温不高于80度。在80度时易结垢。 矿物质太多结垢

请问一般自来水结垢温度是多少与海拔无关吧煤气和电热水器、太阳能热水器等等如何除垢 这要看组成硬度的形式和硬度的大小,一般不超过60度就不会产生水垢,与海拔无关。民用最好的方法,是在进户管上装一台性能好的磁性软水器,使我们所用的水都变成小分子活化水,将来你的电热水器、太阳能热水器都不会再产生水垢,而且以前产生的水垢还会慢慢的剥落下来;洗澡、洗头会变得非常滑润,洗衣会很干净而且省水省洗衣粉;喝水、泡茶感觉会很舒服...... 我的田先生 一般水温不超过65度不怎么起垢和海拔的关系不怎么大,除垢的方法不少,不过效果都不怎么好,现在很多产品都在想增加除垢的方法。 和海拔无关,温度超过60,海尔售后有个除垢棒,直接放在热水器里。可能需100元左右 水最易结垢的温度 沸腾的开水最容易结垢。有水垢现在也不用烦恼了,现在有经济实用的办法解决开水中的水垢问题了,在淘宝店铺:泰山天工,有十元一套的专利产品水垢过滤器,轻松去除开水中的水垢、铁锈等沉淀物和悬浮物。 冷却水水质有问题,高炉水冷管结垢严重影响换热效果,致使高炉温度上升,可进行冷却水系统清洗除垢。 可以用5%的盐酸,另加千分之一的酸洗缓蚀剂。用泵打循环清洗。 水在多少度的时候会结出水垢呢电热水器内胆会不会结垢呢 水在多少度的时候会结出水垢呢电热水器内胆会不会结垢呢

影响循环水水质的原因和处理

影响循环水水质的原因和处理 、

目录 摘要 (3) 关键词 (3) 一、物料泄漏对水质的影响及处理 (3) 二、环境变化对水质的影响及处理 (4) 三、结论 (5) 参考文献 (5)

影响循环水水质的原因和处理 摘要:冷却水重复利用是节水减排的必然趋势,循环水的水质直接影响装置水冷却器及管路的安全运行,水质超标,对换热器形成腐蚀,造成泄漏,泄漏进一步使水质恶化,恶化的水质再对冷换设备加重腐蚀,形成恶心循环,严重时可影响装置生产。 关键词:循环水、物料泄漏、水垢、剥离 工厂在生产过程中,循环水投用污水回用水,冷却水重复使用是节水减排的必然趋势。一方面, 水冷却器制造质量问题发生而使水冷却器发生泄漏的现象在实际生产中也会碰到,其中出现的主要问题是换热管与花板接头处焊接不实或涨管不严,从而引起泄漏;有些沉积物的存在还将处进碳钢表面腐蚀电池的形成,造成高传染区的腐蚀穿孔事故。另一方面循环水冷却塔不是一个封闭的系统, 塔池直接与外部世界接触,由外面的世界带来的污染物更多。因在塔池周围的粉尘、泥沙、杂草、树叶等杂物,在有风的日子里极易进入冷却塔水池。这些有机和无机杂质,可以跟水通过管道、热交换器,在其表面沉积下来形成污垢。如果热交换器漏油量大、这些漏油和其它污物会附着在换热器和管壁上。由于温度高,通过复杂的效果,也可以形成较硬的污垢。所以,结垢、腐蚀相互促进,形成了复杂的协同效应,影响甚至破坏了生产系统的正常运行。主要分析了影响循环水水质的因素,并提出了相应的保证循环水水质的措施。 一、物料泄漏对水质的影响及处理 因为水冷却器制造质量问题发生而使水冷却器发生泄漏的现象在实际生产中也会碰到,其中出现的主要问题是换热管与花板接头处焊接不实或涨管不严,从而引起泄漏;有些沉积物的存在还将处进碳钢表面腐蚀电池的形成,造成高传染区的腐蚀穿孔事故。同时微生物的大量繁殖使水质恶化,浊度升高,COD升高。泄漏发生后,由于循环水水质恶化,打破原来在循环水系统所建立起来的抑制腐蚀、污垢沉积和微生物繁殖的平衡,使水冷却器换热效率下降,腐蚀进一步加剧,因此直接影响到各装置的正常生产。循环水系统发生泄漏,可以使水中黏泥量增加,这种黏泥因黏性强而及易在换热器内形成污垢。如果发生物料泄漏后,一些换热管内因黏泥沉积使空间减小,严重时甚至将换热管完全堵塞,这对水冷却器的效果产生极大影响。由于泄漏时许多酸性物料会进入到循环水中,引起循环水PH值降低,因此还加快了水冷却器的腐蚀速度。如果发生泄漏,水冷却器的换热管的金属表面一般都被油膜或黏

循环冷却水的结垢控制

12-6 循环冷却水处理 字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。其后果主要表现为: (1) 铜管内水的阻力增加; (2) 在设备扬程相同的情况下,冷却水的流量减少; (3) 使凝汽器进出口的冷却水温差加大; (4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。 当出现上述现象时,就应对循环冷却水予以判别。 一、水质判断 在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下 Ca(HCO3)2→CaCO3↓+CO2+H2O (12-36) 尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。 循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。水质判断的主要方法有: 1.饱和指数法[又称朗格里尔(Langlier)指数法] 它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。即 IL=pH0-pH s (12-37) 式中I L——饱和指数; pH0——水的实测pH值; pH s——水在碳酸钙饱和平衡时的pH值。 当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。 pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出: pH s=(9.3+N s+N t)-(N H+N A) (12-38)

循环水处理方案

循环水处理方案(总11页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

循环水系统水质处理方案 1 前言 水是人类最宝贵的财富之一,地球上的淡水资源是有限的,可供人类利用的水资源就更少,节约水资源已刻不容缓。为此近年来国家在宪法中又颁发了"水法"这些做法都促进并强迫我们重视节约使用水资源,减少水的污染,以利工农业进一步发展和人类自身的繁衍。 为了使循环冷却水系统正常运行,确保换热设备的长期使用,防止循环水在使用中所生产的腐蚀、结垢及微生物污垢的危害,提高热交换设备的冷却效率,确保生产的正常运行,必须对循环冷却水进行水质稳定化学处理,这不仅能提高冷却效率,延长设备的使用寿命,并且对节约能源(节水、节电),减少大修费用及工作量和保护环境都有非常积极的意义。 根据对循环水处理的经验,再综合系统的特点,建议对循环水系统进行水清洗、化学清洗预膜,然后进入正常运行阶段。正常运行中投加氧化型杀菌剂和非氧化型杀菌灭藻剂来控制循环水系统的细菌、粘泥的大量滋生。 2 系统参数及水质状况 2.1 系统参数 2.2 水质状况 根据工厂的实际状况,采用软化水作为冷却塔的补水,补充水水质如下:

从上表可以看出,如果该补充水未经过浓缩,在40℃的情况下运行,可以看出在供、回水管道、冷却塔中都呈腐蚀性,只有在换热装置表面80℃的情况下,才略呈结垢的特性,所以在此情况下正常运行,只需要用杀菌、缓蚀的化学品。在浓缩5倍40℃的情况下: 在浓缩倍数是5倍80℃的情况下: 通过以上分析,在5倍的浓缩倍数下运行,只需要进行杀菌灭藻。 3 系统水冲洗 3.1 清洗的目的

相关文档
最新文档